Delft University of Technology
Faculty EEMCS
Mekelweg 4, 2628 CD Delft
Exam Complex Analysis (wi4243AP/wi4244AP)
Thursday 31 October 2013; 09:00-12:00.

Lecturer: K. P. Hart.
Second reader: H. A. W. M. Kneppers
This exam consists of six questions.
Marks per question: see margin.
Resources allowed: calculator

1. Let α be a complex number such that $|\alpha| \neq 1$ and consider the bilinear transformation given by

$$
\begin{equation*}
w=\frac{z-\alpha}{\bar{\alpha} z-1} . \tag{2}
\end{equation*}
$$

a. Show that this transformation maps the unit circle onto itself.
b. What is the image of the unit disk under this transformation?
c. How does w traverse the unit circle as z traverses the unit circle in the positive direction?
d. Now let $\alpha=\frac{1}{2} i$. Determine the image of the part of the unit disk that lies in the first quadrant under the transformation.
2. Define $u(x, y)=x \cos x \cosh y+y \sin x \sinh y$
a. Verify that u is harmonic.
(4) b. Determine all analytic functions that have u as their real part and write these as functions of z.
(5) 3. a. Let h be an analytic map from the unit disc $D=\{z:|z| \leqslant 1\}$ to itself such that $h(0)=0$. Show that $|h(z)| \leqslant|z|$ for $z \in D$ and $\left|h^{\prime}(0)\right| \leqslant 1$. Hint: Consider the function $h(z) / z$.
b. Let f be an analytic map from the unit disc $D=\{z:|z| \leqslant 1\}$ to itself. Show that $\left|f^{\prime}(0)\right| \leqslant 1-|f(0)|^{2}$. Hint: Let $\alpha=f(0)$ and consider the function $g(z)=\frac{f(z)-\alpha}{\bar{\alpha} f(z)-1}$.
(8) 4. Let a be a real number such that $a>1$; evaluate the following integral

$$
\int_{0}^{2 \pi} \frac{1}{a^{2}-2 a \sin \theta+1} \mathrm{~d} \theta
$$

Give all details.
(8) 5. Let a and b be positive real numbers. Evaluate the following integral

$$
\int_{0}^{\infty} \frac{x \sin a x}{x^{2}+b^{2}} \mathrm{~d} x
$$

Give all details.
6. We consider the many-valued function $w=\sqrt{z^{2}+1}$.
a. Suppose we use the branch of $\sqrt{ }$ that has the positive real axis as its branch cut and is such that $\sqrt{-1}=i$. Determine the image of the upper half plane minus the segment $[0, i]$ under this mapping (see below)

From now on we use the principal branch of $\sqrt{ }$, that is, the negative real axis is the branch cut and $\sqrt{1}=1$.
b. Show that

$$
f(z)=(z+i) \sqrt{\frac{z-i}{z+i}}
$$

defines a branch of our function with branch cut $[-i, i]$. What is the value of $f(1)$?
c. Determine the first four terms of the Laurent series of this branch in the annulus $\{z:|z|>1\}$. Hint: $\sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}+\cdots$ if x is real and $|x|<1$.
d. Calculate

$$
\oint_{S} f(z) \mathrm{d} z
$$

where S is the square with vertices at $\pm 5 \pm 5 i$.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$
\text { Grade }=\frac{\text { Total }+6}{6}
$$

and rounded in the standard way.

