wi4243AP: Complex Analysis
 week 1, Friday

K. P. Hart
Faculty EEMCS
TU Delft

Delft, 5 September, 2014

Outline

(1) Section 1.1

- Complex numbers
(2) Section 1.2
- Algebra
- Algebra and geometry
(3) Section 1.3
- More geometry

Definition

A complex number is an ordered pair (x, y) of real numbers. We write

$$
z=(x, y)=x(1,0)+y(0,1)=x+y i
$$

Note: we abbreviate $(1,0)=1$ and $(0,1)=i$ and we shall define multiplication in such a way that $(0,1)^{2}=-(1,0)$, i.e., $i^{2}=-1$. Notation:

- $\operatorname{Re} z=x$ - real part
- $\operatorname{Im} z=y$ - imaginary part

Representation

Every complex number, $x+y i$, corresponds to a point, (x, y), in the plane.

- $|z|=\sqrt{x^{2}+y^{2}}$; the modulus
- θ; angle, the argument

Representation

We introduce some geometry via polar coordinates.
Properties

- $x=|z| \cos \theta$
- $y=|z| \sin \theta$

There are infinitely many values for θ.
Principal value: $\operatorname{Arg} z$, chosen in interval $(-\pi, \pi]$
Other values: $\arg z=\operatorname{Arg} z+2 k \pi$

Addition and multiplication

Addition: coordinate-wise

$$
z+w=x+y i+u+v i=(x+u)+(y+v) i
$$

Multiplication (use distributive law and $i^{2}=-1$):

$$
z \cdot w=(x+y i)(u+v i)=(x u-y v)+(x v+y u) i
$$

for example: $(2+i)(3+4 i)=(6-4)+(8+3) i=2+11 i$

Division

The formula $(x+i y)(x-i y)=x^{2}+y^{2}$ helps with division:

$$
\frac{1}{x+i y}=\frac{x-i y}{(x+i y)(x-i y)}=\frac{x-y i}{x^{2}+y^{2}}
$$

For example

$$
\begin{aligned}
\frac{16+63 i}{3+4 i} & =\frac{16+63 i}{3+4 i} \cdot \frac{3-4 i}{3-4 i} \\
& =\frac{(48+252)+(-64+189) i}{9+16} \\
& =\frac{300+125 i}{25}=12+5 i
\end{aligned}
$$

Complex conjugate

We write $\overline{x+y i}=x-y i$, the complex conjugate.

- Geometrically: reflection in real axis.
- $|z|=|\bar{z}|$ and $z \cdot \bar{z}=|z|^{2}$
- $\operatorname{Arg} \bar{z}=-\operatorname{Arg} z$ (except when z is real and negative)
- $z+\bar{z}=2 x=2 \operatorname{Re} z$
- $z-\bar{z}=2 i y=2 i \operatorname{lm} z$
- $\overline{z \pm w}=\bar{z} \pm \bar{w}$,

$$
\overline{z \cdot w}=\bar{z} \cdot \bar{w},
$$

$$
\overline{z / w}=\bar{z} / \bar{w}
$$

Multiplication

Write $z=r(\cos \varphi+i \sin \varphi)$ and $w=s(\cos \psi+i \sin \psi)$, we get

$$
\begin{aligned}
z w & =r s(\cos \varphi+i \sin \varphi)(\cos \psi+i \sin \psi) \\
& =r s((\cos \varphi \cos \psi-\sin \varphi \sin \psi)+i(\sin \varphi \cos \psi+\cos \varphi \sin \psi)) \\
& =r s(\cos (\varphi+\psi)+i \sin (\varphi+\psi))
\end{aligned}
$$

So multiply moduli and add angles.

Multiplication: example

Set $z=-1+i$ en $w=1+\sqrt{3} i$.
Then

- $z=\sqrt{2}\left(\cos \frac{3}{4} \pi+i \sin \frac{3}{4} \pi\right)$
- $w=2\left(\cos \frac{1}{3} \pi+i \sin \frac{1}{3} \pi\right)$
- $z w=(-1-\sqrt{3})+(1-\sqrt{3}) i$

And so ...

Multiplication, example

... we find

$$
\begin{aligned}
(-1-\sqrt{3})+i(1-\sqrt{3}) & =2 \sqrt{2}\left(\cos \frac{13}{12} \pi+i \sin \frac{13}{12} \pi\right) \\
& =2 \sqrt{2}\left(\cos -\frac{11}{12} \pi+i \sin -\frac{11}{12} \pi\right)
\end{aligned}
$$

so we write

$$
\arg z w=\arg z+\arg w
$$

but not

$$
\operatorname{Arg} z w=\operatorname{Arg} z+\operatorname{Arg} w
$$

Multiplication, example

Division

Write $z=r(\cos \varphi+i \sin \varphi)$ and $w=s(\cos \psi+i \sin \psi)$, we get

$$
\begin{aligned}
\frac{z}{w} & =\frac{r(\cos \varphi+i \sin \varphi)}{s(\cos \psi+i \sin \psi)} \\
& =\frac{r}{s} \cdot \frac{\cos \varphi+i \sin \varphi}{\cos \psi+i \sin \psi} \cdot \frac{\cos \psi-i \sin \psi}{\cos \psi-i \sin \psi} \\
& =\frac{r}{s} \cdot \frac{(\cos \varphi+i \sin \varphi)(\cos \psi-i \sin \psi)}{\cos ^{2} \psi+\sin ^{2} \psi} \\
& =\frac{r}{s}(\cos (\varphi-\psi)+i \sin (\phi-\psi)) .
\end{aligned}
$$

So divide moduli and subtract angles.

De Moivre's formula

For any angle θ and any integer n we have

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

Application: easy formulas for $\cos n \theta$ and $\sin n \theta$:

$$
\begin{aligned}
\cos 3 \theta+i \sin 3 \theta & =\cos ^{3} \theta+3 \cos ^{2} \theta i \sin \theta+3 \cos \theta i^{2} \sin ^{2} \theta+i^{3} \sin ^{3} \theta \\
& =\left(\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta\right)+i\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)
\end{aligned}
$$

thanks to the binomial formula

Chebyshev polynomials

Note

$$
\begin{aligned}
\cos 3 \theta & =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& =\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

So $\cos 3 \theta=T_{3}(\cos \theta)$, where $T_{3}(x)=4 x^{3}-3 x$.
T_{3} is a Chebyshev polynomial; these are used in interpolation and approximation theory.

Chebyshev polynomials

General definition: $\cos n \theta=T_{n}(\cos \theta)$.
Using De Moivre's identity and the binomial formula we get

$$
T_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n}{2 k} x^{n-2 k}\left(1-x^{2}\right)^{k}
$$

See Problem 1.18 for an other formula for T_{n}.

Fractional exponents

What is $(\cos \theta+i \sin \theta)^{q}$ if q is a (proper) fraction, say $q=\frac{m}{n}$?
Remember: for real positive x, by definition,

$$
y=x^{\frac{m}{n}} \text { is that real positive number with } y^{n}=x^{m}
$$

In complex numbers: no such choice available, no positive/negative numbers.

Fractional exponents

We solve $z^{n}=(\cos \theta+i \sin \theta)^{m}$.

- write $z=r(\cos \varphi+i \sin \varphi)(r=|z|$ and $\varphi=\operatorname{Arg} z)$
- we get $r^{n}(\cos n \varphi+i \sin n \varphi)=\cos m \theta+i \sin m \theta$
- so $r=1$ and $\cos n \varphi=\cos m \theta$ and $\sin n \varphi=\sin m \theta$
- we get $n \varphi=m \theta+2 k \pi$ (k an integer)
- as $-\pi<\varphi \leqslant \pi$ there are n suitable values for k
- so: $(\cos \theta+i \sin \theta)^{\frac{m}{n}}$ has n values

Fractional exponents, example

What are the values of $\left(\frac{1}{2} \sqrt{2}+\frac{1}{2} \sqrt{2} i\right)^{\frac{2}{3}}$?
We have $\theta=\frac{1}{4} \pi$, so we get

$$
3 \varphi=\frac{1}{2} \pi+2 k \pi \text { or } \varphi=\frac{1}{6} \pi+\frac{2}{3} k \pi
$$

with $k=-1,0,1$, to get $-\pi<\varphi \leqslant \pi$.
The values are $-i\left(\varphi=-\frac{1}{2} \pi\right), \frac{1}{2} \sqrt{3}+\frac{1}{2} i\left(\varphi=\frac{1}{6} \pi\right)$ and $-\frac{1}{2} \sqrt{3}+\frac{1}{2} i\left(\varphi=\frac{5}{6} \pi\right)$

Fractional exponents

Difference between real and complex analysis:
many-valued functions

- $z \mapsto z^{\frac{1}{2}}$ a two-valued function
- $z \mapsto z^{\frac{2}{3}}$ a three-valued function
- $z \mapsto z^{-\frac{2}{5}}$ a five-valued function

Euler's formula (one of the many)

We write (for now as an abbreviation):

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

thanks to angle-adding we know

$$
e^{i \theta+i \varphi}=e^{i \theta} \cdot e^{i \varphi}
$$

(as it should be).
Later we'll see further justification for this formula.

Euler's formula, use

If $|z|=r$ and $\operatorname{Arg} z=\theta$ we write $z=r e^{i \theta}$.
We write the values of $z^{\frac{m}{n}}$ as

$$
r^{\frac{m}{n}} e^{i\left(\frac{m}{n} \theta+2 \frac{k m}{n} \pi\right)}
$$

$$
(k=0, \ldots, n-1)
$$

Note: $r \geqslant 0$ so $r^{\frac{m}{n}}$ is unambiguous.
Also note: the values form a regular n-gon with $r^{\frac{m}{n}} e^{i \frac{m}{n} \theta}$ as its 'first' vertex.

Square roots

Using Euler's formula (and because $e^{i \pi}=-1$) the values of \sqrt{z} are

$$
\sqrt{r} e^{i \frac{1}{2} \theta} \text { and }-\sqrt{r} e^{i \frac{1}{2} \theta}
$$

Direct calculation: look at $(u+i v)^{2}=x+i y$. We get

- $u^{2}-v^{2}=x$ (real parts)
- $2 u v=y$ (imaginary parts)
- $u^{2}+v^{2}=\sqrt{x^{2}+y^{2}}$ (moduli)

Now solve...

Square roots

... the first and third to get

$$
\begin{aligned}
& u^{2}=\frac{1}{2}\left(\sqrt{x^{2}+y^{2}}+x\right) \text { or } u= \pm \sqrt{\frac{1}{2}\left(\sqrt{x^{2}+y^{2}}+x\right)} \\
& v^{2}=\frac{1}{2}\left(\sqrt{x^{2}+y^{2}}-x\right) \text { or } v= \pm \sqrt{\frac{1}{2}\left(\sqrt{x^{2}+y^{2}}-x\right)}
\end{aligned}
$$

Of the four combinations only two survive because of $2 u v=y$.
Example: $(u+i v)^{2}=5+12 i$ gives $u= \pm 3$ and $v= \pm 2$; we get $3+2 i$ and $-3-2 i$ because $2 u v=12>0$.

Don't remember the formula but do remember the method.

Modulus again

Useful formulas: with $z=x+i y$ we have

- $|z|^{2}=x^{2}+y^{2}=z \cdot \bar{z}$
- $|x|,|y| \leqslant \sqrt{x^{2}+y^{2}}=|z|$ or
- $|\operatorname{Re} z|,|\operatorname{Im} z| \leqslant|z|$

Triangle inequality

Theorem

Given two complex numbers z and w we have

$$
||z|-|w|| \leqslant|z-w| \leqslant|z|+|w|
$$

Proof.

$$
\begin{aligned}
& -|z-w|^{2}=(z-w)(\bar{z}-\bar{w})=|z|^{2}+|w|^{2}-(z \bar{w}+\bar{z} w) \\
& \quad(|z|+|w|)^{2}=|z|^{2}+|w|^{2}+2|z w| \\
& -(z \bar{w}+\bar{z} w)=-2 \operatorname{Re} z \bar{w} \leqslant 2|z \bar{w}|=2|z w|
\end{aligned}
$$

This gives the second \leqslant.

Triangle inequality

Theorem

Given two complex numbers z and w we have

$$
||z|-|w|| \leqslant|z-w| \leqslant|z|+|w|
$$

Proof.

The first \leqslant follows from the second:

$$
\begin{aligned}
& |z|=|z-w+w| \leqslant|z-w|+|w| \text { so }|z|-|w| \leqslant|z-w| \\
& -|w|=|w-z+z| \leqslant|w-z|+|z| \text { so }|w|-|z| \leqslant|w-z|
\end{aligned}
$$

Now combine.

Triangle inequality, use

Useful in over- and underestimating moduli.
Example: we must often estimate the modulus of something like

$$
\frac{1}{R e^{i t}-z}
$$

We know $\left|R e^{i t}-z\right| \geqslant\left|\left|R e^{i t}\right|-|z|\right|=|R-|z||$. So, if R is large enough (as it usually is):

$$
\left|\frac{1}{R e^{i t}-z}\right| \leqslant \frac{1}{|R-|z||}=\frac{1}{R-|z|}
$$

What to do?

From the book: Sections 1.1, 1.2 and 1.3
Suitable exercises: 1.1 - 1.40
Recommended exercises: 1.1, 1.2, 1.6, 1.9, 1.12, 1.13, 1.23, 1.24, $1.25,1.30,1.40$

