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Roots of unity, notation

As we have seen the n values of 1
1
n are

e
2kπ
n

i = cos
2kπ

n
+ i sin

2kπ

n
(k = 0, 1, . . . , n − 1)

We often write ωn = e
2π
n
i , so that the roots are

1, ωn, ω
2
n, . . . , ω

n−1
n .

ω2 = eπi = −1

ω3 = e
2
3
πi = −1

2 + 1
2

√
3i

ω4 = e
1
2
πi = i
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Roots of unity, properties

These are the solutions to zn − 1 = 0 or

(z − 1)(zn−1 + · · ·+ z + 1) = 0

so, . . . ,
ωn−1
n + · · ·+ ωn + 1 = 0

and likewise for ω2
n, . . . , ωn−1

n .
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Fifth roots of unity

We calculate ω5 = cos 2
5π + i sin 2

5π.
Key observations

z4 + z3 + z2 + z + 1 = (z − ω5)(z − ω2
5)(z − ω3

5)(z − ω4
5)

ω4
5 = ω5 and ω3

5 = ω2
5

(z − ω5)(z − ω4
5) = z2 − 2 cos 2

5πz + 1

(z − ω2
5)(z − ω3

5) = z2 − 2 cos 4
5πz + 1
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Fifth roots of unity, continued

Set a = cos 2
5π and b = cos 4

5π and note that

(z2 − 2az + 1)(z2 − 2bz + 1) = z4 + z3 + z2 + z + 1

and also

(z2−2az+1)(z2−2bz+1) = z4−2(a+b)z3+(2+4ab)z2−2(a+b)z+1

So that −2(a + b) = 1 and 2 + 4ab = 1.

Solution: cos 2
5π = −1

4 + 1
4

√
5 and cos 4

5π = −1
4 −

1
4

√
5.
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So ω5 is . . .

Now use sin 2
5π =

√
1− cos2 2

5π to get sin 2
5π = 1

4

√
10 + 2

√
5 and

so

ω5 = −1

4
+

1

4

√
5 +

i

4

√
10 + 2

√
5
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Bonus

We also get:

cos
1

5
π = − cos

4

5
π =

1

4
+

1

4

√
5

and

sin
1

5
π = sin

4

5
π =

1

4

√
10− 2

√
5
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Cross ratio

Given four distinct complex numbers z1, z2 z3 and z4; their cross
ratio is

(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

If the points lie on a circle then their cross ratio is real, and
conversely.

K. P. Hart wi4243AP: Complex Analysis



1.3: Geometric properties
1.5: Infinity and the Riemann sphere

8.2:Bilinear transformations

Roots of unity
Cross ratio
Symmetry with respect to a circle

Cross ratio

The argument is in this picture

z1 z2

z3
z4

θ θ

2θ

Arg z1−z3
z1−z4

= −θ

Arg z2−z3
z2−z4

= −θ

Arg z1−z3
z1−z4

z2−z4
z2−z3

= 0
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Cross ratio

and in this picture

z1

z2
z3

z4

θ

π − θ

2θ

Arg z1−z3
z1−z4

= −θ

Arg z2−z3
z2−z4

= π − θ

Arg z1−z3
z1−z4

z2−z4
z2−z3

= −π

and two more variations.
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Definition

Two points, z1 and z2, are symmetric with repect to the circle with
center C and radius r if

they are on the same half-line emanating from C

|z1 − C | · |z2 − C | = r2

z1

z2

r

C
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z and 1/z

If z 6= 0 then z and 1/z are symmetric with respect to the unit
circle — the circle with center 0 and radius 1.

z

1/z0
1/z

So 1/z is the complex conjugate of the symmetry point of z with
respect to the unit circle.
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Infinity

We add an extra point to the complex plane, that we call ∞.
It will make lots of formulas and formulations nicer.
Arithmetic for the new point:

z +∞ =∞+ z =∞ (all complex z)

z ×∞ =∞× z =∞ (all complex z 6= 0)

z/0 =∞ (all complex z 6= 0)

z/∞ = 0 (all complex z)

∞/z =∞ (all complex z 6= 0)

Still undefined: ∞−∞, 0×∞, 0/0, ∞/∞, . . .
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Here is a picture of how ∞ is attached to C:

K. P. Hart wi4243AP: Complex Analysis



1.3: Geometric properties
1.5: Infinity and the Riemann sphere

8.2:Bilinear transformations

The Riemann Sphere

The equation of the sphere is as in the book:

ξ2 + η2 + (ζ − 1

2
)2 =

1

4

see page 31.

The basic properties are:

Circles and straight lines all become circles on the Riemann sphere;
straight lines become circles that pass through ∞ (the North Pole).

This will become important in a few moments when we discuss
bilinear transformations.
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Here is another way of attaching ∞ to C:

The formules change a bit but the remarks above concerning lines
and circles remain valid.
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Definition

A bilinear transformation or Möbius transformation is a map
f : C→ C defined by

f (z) =
az + b

cz + d

with a, b, c and d complex numbers such that ad − bc 6= 0.

Basic examples: z 7→ 1
z , z 7→ az and z 7→ z + b.

Every bilinear transformation is a composition of these (page 376).
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Connection with matrices

Every invertible 2× 2-matrix determines a bilinear transformation.
If (

a b
c d

)
and

(
α β
γ δ

)
determine f (z) and g(z) respectively then(

a b
c d

)(
α β
γ δ

)
=

(
aα + bγ aβ + bδ
cα + dγ cβ + dδ

)
determines f

(
g(z)

)
(write out the formulas).

K. P. Hart wi4243AP: Complex Analysis



1.3: Geometric properties
1.5: Infinity and the Riemann sphere

8.2:Bilinear transformations

Bilinear transforms
Preservation of circles
Preservation of symmetry

Inverse

Easy consequence: each bilinear transformation is bijective as a
map from the Riemann sphere to itself.
The inverse of

z 7→ az + b

cz + d

is given by

z 7→ dz − b

−cz + a

Note: the factor 1/(ad − bc) cancels.
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Cross ratio

The cross ratio determines a bilinear transform:

z 7→ (z − z3)(z2 − z4)

(z − z4)(z2 − z3)

It maps z2 to 1, z3 to 0, and z4 to ∞
(and the circle through z2, z3 and z4 onto the real axis).
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Other cross ratios

If one of z2, z3 or z4 equals ∞ we can make suitable bilinear
transforms too.

If z2 =∞ use

z 7→ z − z3

z − z4

If z3 =∞ use

z 7→ z2 − z4

z − z4

If z4 =∞ use

z 7→ z − z3

z2 − z3

Common abbreviation: (z , z2, z3, z4).
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Mapping triples to triples

Given two triples, (z2, z3, z4) and (w2,w3,w4) of points on the
Riemann sphere there is one bilinear transform M that maps zi
to wi for all i .

To find it first take the transform that maps (z2, z3, z4)
to (1, 0,∞) and the inverse of the transform that maps
(w2,w3,w4) to (1, 0,∞).
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Mapping triples to triples

Why only one?

Count the number of fixed points:

z =
az + b

cz + d
iff cz2 + (d − a)z − b = 0

So

two fixed points if c 6= 0

one fixed point if c = 0 and d 6= a

no fixed point if c = 0, a = d and b 6= 0

only fixed points c = 0, a = d and b = 0 (and so Mz = z).
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Mapping triples to triples

So, the possibilities are: 0, 1, 2, all.
Hence if M has three or more fixed points then Mz = z .

If S and T both map (z2, z3, z4) to (w2,w3,w4) then T−1S has
three fixed points, hence T−1Sz = z or Sz = Tz for all z .
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Example

(i , 0,∞) 7→ (1 + i , 0, 1− i).

First (i , 0,∞) 7→ (1, 0,∞), via z 7→ z/i .

Second (1 + i , 0, 1− i) 7→ (1, 0,∞), via

w 7→ (w − 0)(1 + i − (1− i))

(w − (1− i))(1 + i − 0)
=

2iw

(1 + i)w − 2

and take its inverse: z 7→ −2z

−(1 + i)z + 2i
.

Finally take the composition: z 7→ 2iz

(i − 1)z + 2i

K. P. Hart wi4243AP: Complex Analysis



1.3: Geometric properties
1.5: Infinity and the Riemann sphere

8.2:Bilinear transformations

Bilinear transforms
Preservation of circles
Preservation of symmetry

Circles

Given a bilinear transform M and a circle or a line C , the image of
C is a circle or a line.

Argument: take three points z2, z3 and z4 on C then M is the
composition of the transform that takes (z2, z3, z4) to (1, 0,∞)
and the one that takes (1, 0,∞) to (Mz2,Mz3,Mz4).

This composition takes C first to the real axis and then to the
circle or line determined by Mz2, Mz3 and Mz4.
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Complex conjugates

Assume z2, z3 and z4 lie on unit circle; so z 7→ (z , z2, z3, z4) maps
the unit circle onto the real axis.

What can we say about w and z if (w , z2, z3, z4) = (z , z2, z3, z4)?

Do the calculations (and use that z i = 1/zi ):

(z − z3)(z2 − z4)

(z − z4)(z2 − z3)
=

(z − 1/z3)(1/z2 − 1/z4)

(z − 1/z4)(1/z2 − 1/z3)
× z3z2z4

z4z2z3

=
(z3z − 1)(z4 − z2)

(z4z − 1)(z3 − z2)
× z

z

=
(1/z − z3)(z2 − z4)

(1/z − z4)(z2 − z3)
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Symmetry with respect to a circle

So, because bilinear transforms are bijective:

(w , z2, z3, z4) = (z , z2, z3, z4) iff w =
1

z

that is, (w , z2, z3, z4) = (z , z2, z3, z4) iff w and z are symmetric
with respect to the unit circle.
We deduce: bilinear transformations preserve symmetry with
respect to circles and lines.
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Orientation

Consider this picture again

z2

z3
z4

θ

2θ

w1

w2 Arg w1−z3
w1−z4

> θ

Arg(w1, z2, z3, z4) > 0

Arg w2−z3
w2−z4

< θ

Arg(w2, z2, z3, z4) < 0
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Orientation

Remember: the cross-ration (z , z2, z3, z4) sends (z2, z3, z4) to
(1, 0,∞) and the circle through them to the real line.

The inside, to the right of (z2, z3, z4), goes to the upper half plane,
to the right of (1, 0,∞).

Thus, Moebius transforms preserve orientation.
They also preserve perpendicularity.
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What to do?

From the book: Sections 1.3, 1.5 and 8.2
Suitable exercises: 1.29 – 1.40, 1.47 – 1.49; 8.21 – 8.34
Recommended exercises: 1.30, 1.31, 1.36, 1.37, 1.40, 1.47, 1.48;
8.23, 8.24, 8.25

You should now be able to do Problem 1 on each of last year’s
exams (they’re on Blackboard).
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