wi4243AP: Complex Analysis

week 2, Monday

K. P. Hart

Faculty EEMCS TU Delft

Delft, 08 September, 2014

Outline

1.3: Geometric properties

- Roots of unity
- Cross ratio
- Symmetry with respect to a circle

2 1.5: Infinity and the Riemann sphere

- 8.2:Bilinear transformations
 - Bilinear transforms
 - Preservation of circles
 - Preservation of symmetry

Roots of unity Cross ratio Symmetry with respect to a circle

Roots of unity, notation

As we have seen the *n* values of $1^{\frac{1}{n}}$ are

$$e^{\frac{2k\pi}{n}i} = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} \qquad (k = 0, 1, \dots, n-1)$$

We often write $\omega_n = e^{\frac{2\pi}{n}i}$, so that the roots are

$$1, \omega_n, \omega_n^2, \ldots, \omega_n^{n-1}.$$

•
$$\omega_2 = e^{\pi i} = -1$$

• $\omega_3 = e^{\frac{2}{3}\pi i} = -\frac{1}{2} + \frac{1}{2}\sqrt{3}i$
• $\omega_4 = e^{\frac{1}{2}\pi i} = i$

Roots of unity Cross ratio Symmetry with respect to a circle

Roots of unity, properties

These are the solutions to $z^n - 1 = 0$ or

$$(z-1)(z^{n-1}+\cdots+z+1)=0$$

so, . . . ,

$$\omega_n^{n-1} + \dots + \omega_n + 1 = 0$$

and likewise for $\omega_n^2, \ldots, \omega_n^{n-1}$.

Roots of unity Cross ratio Symmetry with respect to a circle

Fifth roots of unity

We calculate $\omega_5 = \cos \frac{2}{5}\pi + i \sin \frac{2}{5}\pi$. Key observations

•
$$z^4 + z^3 + z^2 + z + 1 = (z - \omega_5)(z - \omega_5^2)(z - \omega_5^3)(z - \omega_5^4)$$

• $\omega_5^4 = \overline{\omega_5}$ and $\omega_5^3 = \overline{\omega_5^2}$
• $(z - \omega_5)(z - \omega_5^4) = z^2 - 2\cos\frac{2}{5}\pi z + 1$
• $(z - \omega_5^2)(z - \omega_5^3) = z^2 - 2\cos\frac{4}{5}\pi z + 1$

Roots of unity Cross ratio Symmetry with respect to a circle

Fifth roots of unity, continued

Set
$$a = \cos \frac{2}{5}\pi$$
 and $b = \cos \frac{4}{5}\pi$ and note that

$$(z^2 - 2az + 1)(z^2 - 2bz + 1) = z^4 + z^3 + z^2 + z + 1$$

and also

$$(z^{2}-2az+1)(z^{2}-2bz+1) = z^{4}-2(a+b)z^{3}+(2+4ab)z^{2}-2(a+b)z+1$$

So that -2(a + b) = 1 and 2 + 4ab = 1.

Solution: $\cos \frac{2}{5}\pi = -\frac{1}{4} + \frac{1}{4}\sqrt{5}$ and $\cos \frac{4}{5}\pi = -\frac{1}{4} - \frac{1}{4}\sqrt{5}$.

Roots of unity Cross ratio Symmetry with respect to a circle

Now use
$$\sin \frac{2}{5}\pi = \sqrt{1 - \cos^2 \frac{2}{5}\pi}$$
 to get $\sin \frac{2}{5}\pi = \frac{1}{4}\sqrt{10 + 2\sqrt{5}}$ and
so
 $\omega_5 = -\frac{1}{4} + \frac{1}{4}\sqrt{5} + \frac{i}{4}\sqrt{10 + 2\sqrt{5}}$

Roots of unity Cross ratio Symmetry with respect to a circle

Bonus

We also get:
$$\cos\frac{1}{5}\pi=-\cos\frac{4}{5}\pi=\frac{1}{4}+\frac{1}{4}\sqrt{5}$$
 and
$$\sin\frac{1}{5}\pi=\sin\frac{4}{5}\pi=\frac{1}{4}\sqrt{10-2\sqrt{5}}$$

Cross ratio

Roots of unity Cross ratio Symmetry with respect to a circle

Given four distinct complex numbers z_1 , z_2 z_3 and z_4 ; their *cross ratio* is

$$\frac{(z_1-z_3)(z_2-z_4)}{(z_1-z_4)(z_2-z_3)}$$

If the points lie on a circle then their cross ratio is real, and conversely.

Roots of unity **Cross ratio** Symmetry with respect to a circle

Cross ratio

The argument is in this picture

 $\operatorname{Arg} \tfrac{z_1 - z_3}{z_1 - z_4} = -\theta$

$$\operatorname{Arg} \tfrac{z_2 - z_3}{z_2 - z_4} = -\theta$$

Arg
$$\frac{z_1 - z_3}{z_1 - z_4} \frac{z_2 - z_4}{z_2 - z_3} = 0$$

Roots of unity **Cross ratio** Symmetry with respect to a circle :

and in this picture

Cross ratio

Arg
$$\frac{z_1 - z_3}{z_1 - z_4} = -\theta$$

Arg $\frac{z_2 - z_3}{z_2 - z_4} = \pi - \theta$
Arg $\frac{z_1 - z_3}{z_1 - z_4} \frac{z_2 - z_4}{z_2 - z_3} = -\pi$

and two more variations.

 1.3: Geometric properties
 Roots of unity

 1.5: Infinity and the Riemann sphere
 Cross ratio

 8.2:Bilinear transformations
 Symmetry with resp

Definition

Two points, z_1 and z_2 , are symmetric with repect to the circle with center C and radius r if

• they are on the same half-line emanating from C

•
$$|z_1 - C| \cdot |z_2 - C| = r^2$$

z and 1/z

Roots of unity Cross ratio Symmetry with respect to a circle

If $z \neq 0$ then z and $1/\overline{z}$ are symmetric with respect to the *unit circle* — the circle with center 0 and radius 1.

So 1/z is the complex conjugate of the symmetry point of z with respect to the unit circle.

Delft University of Technology

Infinity

We add an extra point to the complex plane, that we call $\infty.$ It will make lots of formulas and formulations nicer. Arithmetic for the new point:

•
$$z + \infty = \infty + z = \infty$$
 (all complex z)
• $z \times \infty = \infty \times z = \infty$ (all complex $z \neq 0$)
• $z/0 = \infty$ (all complex $z \neq 0$)
• $z/\infty = 0$ (all complex z)
• $\infty/z = \infty$ (all complex $z \neq 0$)

Still undefined: $\infty - \infty$, $0 \times \infty$, 0/0, ∞/∞ , ...

The Riemann Sphere

Here is a picture of how ∞ is attached to \mathbb{C} :

The Riemann Sphere

The equation of the sphere is as in the book:

$$\xi^2 + \eta^2 + (\zeta - \frac{1}{2})^2 = \frac{1}{4}$$

see page 31.

The basic properties are:

Circles and straight lines all become circles on the Riemann sphere; straight lines become circles that pass through ∞ (the North Pole). This will become important in a few moments when we discuss bilinear transformations.

The Riemann Sphere

Here is another way of attaching ∞ to \mathbb{C} :

The formules change a bit but the remarks above concerning lines and circles remain valid.

Delft University of Technology

Bilinear transforms Preservation of circles Preservation of symmetry

Definition

A bilinear transformation or Möbius transformation is a map $f: \mathbb{C} \to \mathbb{C}$ defined by

$$f(z) = \frac{az+b}{cz+d}$$

with a, b, c and d complex numbers such that $ad - bc \neq 0$.

Basic examples: $z \mapsto \frac{1}{z}$, $z \mapsto az$ and $z \mapsto z + b$.

Every bilinear transformation is a composition of these (page 376).

Bilinear transforms Preservation of circles Preservation of symmetry

Connection with matrices

Every invertible 2 \times 2-matrix determines a bilinear transformation. If

$$egin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix}$$
 and $egin{pmatrix} lpha & eta \\ \gamma & \delta \end{pmatrix}$

determine f(z) and g(z) respectively then

$$\begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \mathsf{a}\alpha + \mathsf{b}\gamma & \mathsf{a}\beta + \mathsf{b}\delta \\ \mathsf{c}\alpha + \mathsf{d}\gamma & \mathsf{c}\beta + \mathsf{d}\delta \end{pmatrix}$$

determines f(g(z)) (write out the formulas).

Bilinear transforms Preservation of circles Preservation of symmetry

Inverse

Easy consequence: each bilinear transformation is bijective as a map from the Riemann sphere to itself. The inverse of

$$z \mapsto rac{az+b}{cz+d}$$

is given by

$$z\mapsto rac{dz-b}{-cz+a}$$

Note: the factor 1/(ad - bc) cancels.

Cross ratio

Bilinear transforms

The cross ratio determines a bilinear transform:

$$z\mapsto rac{(z-z_3)(z_2-z_4)}{(z-z_4)(z_2-z_3)}$$

It maps z_2 to 1, z_3 to 0, and z_4 to ∞ (and the circle through z_2 , z_3 and z_4 onto the real axis).

Bilinear transforms Preservation of circles Preservation of symmetry

Other cross ratios

If one of $z_2,\,z_3$ or z_4 equals ∞ we can make suitable bilinear transforms too.

If $z_2 = \infty$ use $z \mapsto \frac{z - z_3}{z - z_4}$ If $z_3 = \infty$ use $z \mapsto \frac{z_2 - z_4}{z - z_4}$ If $z_4 = \infty$ use $z \mapsto \frac{z - z_3}{z_2 - z_3}$ Common abbreviation: (z, z_2, z_3, z_4) .

Bilinear transforms Preservation of circles Preservation of symmetry

Mapping triples to triples

Given two triples, (z_2, z_3, z_4) and (w_2, w_3, w_4) of points on the Riemann sphere there is one bilinear transform M that maps z_i to w_i for all i.

To find it first take the transform that maps (z_2, z_3, z_4) to $(1, 0, \infty)$ and the inverse of the transform that maps (w_2, w_3, w_4) to $(1, 0, \infty)$.

Bilinear transforms Preservation of circles Preservation of symmetry

Mapping triples to triples

Why only one?

Count the number of fixed points:

$$z = \frac{az+b}{cz+d} \text{ iff } cz^2 + (d-a)z - b = 0$$

So

- two fixed points if $c \neq 0$
- one fixed point if c = 0 and $d \neq a$
- no fixed point if c = 0, a = d and $b \neq 0$
- only fixed points c = 0, a = d and b = 0 (and so Mz = z).

Delft University of Technology

Bilinear transforms Preservation of circles Preservation of symmetry

Mapping triples to triples

So, the possibilities are: 0, 1, 2, all. Hence if *M* has three or more fixed points then Mz = z. If *S* and *T* both map (z_2, z_3, z_4) to (w_2, w_3, w_4) then $T^{-1}S$ has

three fixed points, hence $T^{-1}Sz = z$ or Sz = Tz for all z.

Bilinear transforms Preservation of circles Preservation of symmetry

Example

$$(i,0,\infty)\mapsto (1+i,0,1-i).$$

First
$$(i, 0, \infty) \mapsto (1, 0, \infty)$$
, via $z \mapsto z/i$.

Second $(1+i,0,1-i)\mapsto (1,0,\infty)$, via

$$w \mapsto \frac{(w-0)(1+i-(1-i))}{(w-(1-i))(1+i-0)} = \frac{2iw}{(1+i)w-2}$$

and take its inverse: $z \mapsto \frac{-2z}{-(1+i)z+2i}$.

Finally take the composition: $z \mapsto \frac{2iz}{(i-1)z+2i}$

Bilinear transforms Preservation of circles Preservation of symmetry

Circles

Given a bilinear transform M and a circle or a line C, the image of C is a circle or a line.

Argument: take three points z_2 , z_3 and z_4 on C then M is the composition of the transform that takes (z_2, z_3, z_4) to $(1, 0, \infty)$ and the one that takes $(1, 0, \infty)$ to (Mz_2, Mz_3, Mz_4) .

This composition takes C first to the real axis and then to the circle or line determined by Mz_2 , Mz_3 and Mz_4 .

Bilinear transforms Preservation of circles Preservation of symmetry

Complex conjugates

Assume z_2 , z_3 and z_4 lie on unit circle; so $z \mapsto (z, z_2, z_3, z_4)$ maps the unit circle onto the real axis.

What can we say about w and z if $(w, z_2, z_3, z_4) = \overline{(z, z_2, z_3, z_4)}$? Do the calculations (and use that $\overline{z}_i = 1/z_i$):

$$\begin{aligned} \frac{(\overline{z} - \overline{z}_3)(\overline{z}_2 - \overline{z}_4)}{(\overline{z} - \overline{z}_4)(\overline{z}_2 - \overline{z}_3)} &= \frac{(\overline{z} - 1/z_3)(1/z_2 - 1/z_4)}{(\overline{z} - 1/z_4)(1/z_2 - 1/z_3)} \times \frac{z_3 z_2 z_4}{z_4 z_2 z_3} \\ &= \frac{(z_3 \overline{z} - 1)(z_4 - z_2)}{(z_4 \overline{z} - 1)(z_3 - z_2)} \times \frac{\overline{z}}{\overline{z}} \\ &= \frac{(1/\overline{z} - z_3)(z_2 - z_4)}{(1/\overline{z} - z_4)(z_2 - z_3)} \end{aligned}$$

K. P. Hart wi4243AP: Complex Analysis

Delft University of Technology

Bilinear transforms Preservation of circles Preservation of symmetry

Symmetry with respect to a circle

So, because bilinear transforms are bijective:

$$(w, z_2, z_3, z_4) = \overline{(z, z_2, z_3, z_4)}$$
 iff $w = \frac{1}{\overline{z}}$

that is, $(w, z_2, z_3, z_4) = \overline{(z, z_2, z_3, z_4)}$ iff w and z are symmetric with respect to the unit circle.

We deduce: bilinear transformations preserve symmetry with respect to circles and lines.

Bilinear transforms Preservation of circles Preservation of symmetry

Orientation

Consider this picture again

Arg
$$\frac{w_1 - z_3}{w_1 - z_4} > \theta$$

Arg $(w_1, z_2, z_3, z_4) > 0$
Arg $\frac{w_2 - z_3}{w_2 - z_4} < \theta$
Arg $(w_2, z_2, z_3, z_4) < 0$

Bilinear transforms Preservation of circles Preservation of symmetry

Orientation

Remember: the cross-ration (z, z_2, z_3, z_4) sends (z_2, z_3, z_4) to $(1, 0, \infty)$ and the circle through them to the real line.

The inside, to the right of (z_2, z_3, z_4) , goes to the upper half plane, to the right of $(1, 0, \infty)$.

Thus, Moebius transforms preserve orientation. They also preserve perpendicularity.

Bilinear transforms Preservation of circles Preservation of symmetry

What to do?

From the book: Sections 1.3, 1.5 and 8.2 Suitable exercises: 1.29 - 1.40, 1.47 - 1.49; 8.21 - 8.34 Recommended exercises: 1.30, 1.31, 1.36, 1.37, 1.40, 1.47, 1.48; 8.23, 8.24, 8.25

You should now be able to do Problem 1 on each of last year's exams (they're on Blackboard).

