wi4243AP: Complex Analysis week 2, Monday

K. P. Hart
Faculty EEMCS
TU Delft

Delft, 08 September, 2014

Outline

(1) 1.3: Geometric properties

- Roots of unity
- Cross ratio
- Symmetry with respect to a circle
(2) 1.5: Infinity and the Riemann sphere
(3) 8.2:Bilinear transformations
- Bilinear transforms
- Preservation of circles
- Preservation of symmetry

Roots of unity, notation

As we have seen the n values of $1^{\frac{1}{n}}$ are

$$
e^{\frac{2 k \pi i}{n}}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n} \quad(k=0,1, \ldots, n-1)
$$

We often write $\omega_{n}=e^{\frac{2 \pi}{n} i}$, so that the roots are

$$
1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1}
$$

- $\omega_{2}=e^{\pi i}=-1$
- $\omega_{3}=e^{\frac{2}{3} \pi i}=-\frac{1}{2}+\frac{1}{2} \sqrt{3} i$
- $\omega_{4}=e^{\frac{1}{2} \pi i}=i$

Roots of unity, properties

These are the solutions to $z^{n}-1=0$ or

$$
(z-1)\left(z^{n-1}+\cdots+z+1\right)=0
$$

SO, ...,

$$
\omega_{n}^{n-1}+\cdots+\omega_{n}+1=0
$$

and likewise for $\omega_{n}^{2}, \ldots, \omega_{n}^{n-1}$.

Fifth roots of unity

We calculate $\omega_{5}=\cos \frac{2}{5} \pi+i \sin \frac{2}{5} \pi$.
Key observations

- $z^{4}+z^{3}+z^{2}+z+1=\left(z-\omega_{5}\right)\left(z-\omega_{5}^{2}\right)\left(z-\omega_{5}^{3}\right)\left(z-\omega_{5}^{4}\right)$
- $\omega_{5}^{4}=\overline{\omega_{5}}$ and $\omega_{5}^{3}=\overline{\omega_{5}^{2}}$
- $\left(z-\omega_{5}\right)\left(z-\omega_{5}^{4}\right)=z^{2}-2 \cos \frac{2}{5} \pi z+1$
- $\left(z-\omega_{5}^{2}\right)\left(z-\omega_{5}^{3}\right)=z^{2}-2 \cos \frac{4}{5} \pi z+1$

Fifth roots of unity, continued

Set $a=\cos \frac{2}{5} \pi$ and $b=\cos \frac{4}{5} \pi$ and note that

$$
\left(z^{2}-2 a z+1\right)\left(z^{2}-2 b z+1\right)=z^{4}+z^{3}+z^{2}+z+1
$$

and also
$\left(z^{2}-2 a z+1\right)\left(z^{2}-2 b z+1\right)=z^{4}-2(a+b) z^{3}+(2+4 a b) z^{2}-2(a+b) z+1$
So that $-2(a+b)=1$ and $2+4 a b=1$.
Solution: $\cos \frac{2}{5} \pi=-\frac{1}{4}+\frac{1}{4} \sqrt{5}$ and $\cos \frac{4}{5} \pi=-\frac{1}{4}-\frac{1}{4} \sqrt{5}$.

So ω_{5} is ...

Now use $\sin \frac{2}{5} \pi=\sqrt{1-\cos ^{2} \frac{2}{5} \pi}$ to get $\sin \frac{2}{5} \pi=\frac{1}{4} \sqrt{10+2 \sqrt{5}}$ and so

$$
\omega_{5}=-\frac{1}{4}+\frac{1}{4} \sqrt{5}+\frac{i}{4} \sqrt{10+2 \sqrt{5}}
$$

Bonus

We also get:

$$
\cos \frac{1}{5} \pi=-\cos \frac{4}{5} \pi=\frac{1}{4}+\frac{1}{4} \sqrt{5}
$$

and

$$
\sin \frac{1}{5} \pi=\sin \frac{4}{5} \pi=\frac{1}{4} \sqrt{10-2 \sqrt{5}}
$$

Cross ratio

Given four distinct complex numbers $z_{1}, z_{2} z_{3}$ and z_{4}; their cross ratio is

$$
\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}
$$

If the points lie on a circle then their cross ratio is real, and conversely.

Cross ratio

The argument is in this picture

$\operatorname{Arg} \frac{z_{1}-z_{3}}{z_{1}-z_{4}}=-\theta$
$\operatorname{Arg} \frac{z_{2}-z_{3}}{z_{2}-z_{4}}=-\theta$
$\operatorname{Arg} \frac{z_{1}-z_{3}}{z_{1}-z_{4}} \frac{z_{2}-z_{4}}{z_{2}-z_{3}}=0$

Cross ratio

and in this picture

Arg $\frac{z_{1}-z_{3}}{z_{1}-z_{4}}=-\theta$
$\operatorname{Arg} \frac{z_{2}-z_{3}}{z_{2}-z_{4}}=\pi-\theta$
$\operatorname{Arg} \frac{z_{1}-z_{3}}{z_{1}-z_{4}} \frac{z_{2}-z_{4}}{z_{2}-z_{3}}=-\pi$
and two more variations.

Definition

Two points, z_{1} and z_{2}, are symmetric with repect to the circle with center C and radius r if

- they are on the same half-line emanating from C
- $\left|z_{1}-C\right| \cdot\left|z_{2}-C\right|=r^{2}$

z and $1 / z$

If $z \neq 0$ then z and $1 / \bar{z}$ are symmetric with respect to the unit circle - the circle with center 0 and radius 1 .

So $1 / z$ is the complex conjugate of the symmetry point of z with respect to the unit circle.

Infinity

We add an extra point to the complex plane, that we call ∞. It will make lots of formulas and formulations nicer.
Arithmetic for the new point:

- $z+\infty=\infty+z=\infty$ (all complex z)
- $z \times \infty=\infty \times z=\infty($ all complex $z \neq 0)$
- $z / 0=\infty$ (all complex $z \neq 0$)
- $z / \infty=0$ (all complex z)
- $\infty / z=\infty($ all complex $z \neq 0)$

Still undefined: $\infty-\infty, 0 \times \infty, 0 / 0, \infty / \infty, \ldots$

The Riemann Sphere

Here is a picture of how ∞ is attached to \mathbb{C} :

The Riemann Sphere

The equation of the sphere is as in the book:

$$
\xi^{2}+\eta^{2}+\left(\zeta-\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

see page 31 .
The basic properties are:
Circles and straight lines all become circles on the Riemann sphere; straight lines become circles that pass through ∞ (the North Pole).
This will become important in a few moments when we discuss bilinear transformations.

The Riemann Sphere

Here is another way of attaching ∞ to \mathbb{C} :

The formules change a bit but the remarks above concerning lines and circles remain valid.

Definition

A bilinear transformation or Möbius transformation is a map $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
f(z)=\frac{a z+b}{c z+d}
$$

with a, b, c and d complex numbers such that $a d-b c \neq 0$.
Basic examples: $z \mapsto \frac{1}{z}, z \mapsto a z$ and $z \mapsto z+b$.
Every bilinear transformation is a composition of these (page 376).

Connection with matrices

Every invertible 2×2-matrix determines a bilinear transformation. If

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { and }\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

determine $f(z)$ and $g(z)$ respectively then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
a \alpha+b \gamma & a \beta+b \delta \\
c \alpha+d \gamma & c \beta+d \delta
\end{array}\right)
$$

determines $f(g(z))$ (write out the formulas).

Inverse

Easy consequence: each bilinear transformation is bijective as a map from the Riemann sphere to itself.
The inverse of

$$
z \mapsto \frac{a z+b}{c z+d}
$$

is given by

$$
z \mapsto \frac{d z-b}{-c z+a}
$$

Note: the factor $1 /(a d-b c)$ cancels.

Cross ratio

The cross ratio determines a bilinear transform:

$$
z \mapsto \frac{\left(z-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z-z_{4}\right)\left(z_{2}-z_{3}\right)}
$$

It maps z_{2} to $1, z_{3}$ to 0 , and z_{4} to ∞
(and the circle through z_{2}, z_{3} and z_{4} onto the real axis).

Other cross ratios

If one of z_{2}, z_{3} or z_{4} equals ∞ we can make suitable bilinear transforms too.

If $z_{2}=\infty$ use

$$
z \mapsto \frac{z-z_{3}}{z-z_{4}}
$$

If $z_{3}=\infty$ use

$$
z \mapsto \frac{z_{2}-z_{4}}{z-z_{4}}
$$

If $z_{4}=\infty$ use

$$
z \mapsto \frac{z-z_{3}}{z_{2}-z_{3}}
$$

Common abbreviation: $\left(z, z_{2}, z_{3}, z_{4}\right)$.

Mapping triples to triples

Given two triples, $\left(z_{2}, z_{3}, z_{4}\right)$ and (w_{2}, w_{3}, w_{4}) of points on the Riemann sphere there is one bilinear transform M that maps z_{i} to w_{i} for all i.

To find it first take the transform that maps $\left(z_{2}, z_{3}, z_{4}\right)$ to $(1,0, \infty)$ and the inverse of the transform that maps $\left(w_{2}, w_{3}, w_{4}\right)$ to $(1,0, \infty)$.

Mapping triples to triples

Why only one?
Count the number of fixed points:

$$
z=\frac{a z+b}{c z+d} \text { iff } c z^{2}+(d-a) z-b=0
$$

So

- two fixed points if $c \neq 0$
- one fixed point if $c=0$ and $d \neq a$
- no fixed point if $c=0, a=d$ and $b \neq 0$
- only fixed points $c=0, a=d$ and $b=0$ (and so $M z=z$).

Mapping triples to triples

So, the possibilities are: $0,1,2$, all.
Hence if M has three or more fixed points then $M z=z$.
If S and T both map $\left(z_{2}, z_{3}, z_{4}\right)$ to $\left(w_{2}, w_{3}, w_{4}\right)$ then $T^{-1} S$ has three fixed points, hence $T^{-1} S z=z$ or $S z=T z$ for all z.

Example

$(i, 0, \infty) \mapsto(1+i, 0,1-i)$.
First $(i, 0, \infty) \mapsto(1,0, \infty)$, via $z \mapsto z / i$.
Second $(1+i, 0,1-i) \mapsto(1,0, \infty)$, via

$$
w \mapsto \frac{(w-0)(1+i-(1-i))}{(w-(1-i))(1+i-0)}=\frac{2 i w}{(1+i) w-2}
$$

and take its inverse: $z \mapsto \frac{-2 z}{-(1+i) z+2 i}$.
Finally take the composition: $z \mapsto \frac{2 i z}{(i-1) z+2 i}$

Circles

Given a bilinear transform M and a circle or a line C, the image of C is a circle or a line.

Argument: take three points z_{2}, z_{3} and z_{4} on C then M is the composition of the transform that takes $\left(z_{2}, z_{3}, z_{4}\right)$ to $(1,0, \infty)$ and the one that takes $(1,0, \infty)$ to $\left(M z_{2}, M z_{3}, M z_{4}\right)$.

This composition takes C first to the real axis and then to the circle or line determined by $M z_{2}, M z_{3}$ and $M z_{4}$.

Complex conjugates

Assume z_{2}, z_{3} and z_{4} lie on unit circle; so $z \mapsto\left(z, z_{2}, z_{3}, z_{4}\right)$ maps the unit circle onto the real axis.
What can we say about w and z if $\left(w, z_{2}, z_{3}, z_{4}\right)=\overline{\left(z, z_{2}, z_{3}, z_{4}\right)}$?
Do the calculations (and use that $\bar{z}_{i}=1 / z_{i}$):

$$
\begin{aligned}
\frac{\left(\bar{z}-\bar{z}_{3}\right)\left(\bar{z}_{2}-\bar{z}_{4}\right)}{\left(\bar{z}-\bar{z}_{4}\right)\left(\bar{z}_{2}-\bar{z}_{3}\right)} & =\frac{\left(\bar{z}-1 / z_{3}\right)\left(1 / z_{2}-1 / z_{4}\right)}{\left(\bar{z}-1 / z_{4}\right)\left(1 / z_{2}-1 / z_{3}\right)} \times \frac{z_{3} z_{2} z_{4}}{z_{4} z_{2} z_{3}} \\
& =\frac{\left(z_{3} \bar{z}-1\right)\left(z_{4}-z_{2}\right)}{\left(z_{4} \bar{z}-1\right)\left(z_{3}-z_{2}\right)} \times \frac{\bar{z}}{\bar{z}} \\
& =\frac{\left(1 / \bar{z}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(1 / \bar{z}-z_{4}\right)\left(z_{2}-z_{3}\right)}
\end{aligned}
$$

Symmetry with respect to a circle

So, because bilinear transforms are bijective:

$$
\left(w, z_{2}, z_{3}, z_{4}\right)=\overline{\left(z, z_{2}, z_{3}, z_{4}\right)} \text { iff } w=\frac{1}{\bar{z}}
$$

that is, $\left(w, z_{2}, z_{3}, z_{4}\right)=\overline{\left(z, z_{2}, z_{3}, z_{4}\right)}$ iff w and z are symmetric with respect to the unit circle.
We deduce: bilinear transformations preserve symmetry with respect to circles and lines.

Orientation

Consider this picture again

$$
\begin{aligned}
& \operatorname{Arg} \frac{w_{1}-z_{3}}{w_{1}-z_{4}}>\theta \\
& \operatorname{Arg}\left(w_{1}, z_{2}, z_{3}, z_{4}\right)>0 \\
& \operatorname{Arg} \frac{w_{2}-z_{3}}{w_{2}-z_{4}}<\theta \\
& \operatorname{Arg}\left(w_{2}, z_{2}, z_{3}, z_{4}\right)<0
\end{aligned}
$$

Orientation

Remember: the cross-ration $\left(z, z_{2}, z_{3}, z_{4}\right)$ sends $\left(z_{2}, z_{3}, z_{4}\right)$ to $(1,0, \infty)$ and the circle through them to the real line.

The inside, to the right of $\left(z_{2}, z_{3}, z_{4}\right)$, goes to the upper half plane, to the right of $(1,0, \infty)$.

Thus, Moebius transforms preserve orientation. They also preserve perpendicularity.

What to do?

From the book: Sections 1.3, 1.5 and 8.2
Suitable exercises: $1.29-1.40,1.47-1.49 ; 8.21-8.34$
Recommended exercises: 1.30, 1.31, 1.36, 1.37, 1.40, 1.47, 1.48; 8.23, 8.24, 8.25

You should now be able to do Problem 1 on each of last year's exams (they're on Blackboard).

