# wi4243AP/wi4244AP: Complex Analysis week 2, Friday

K. P. Hart

Faculty EEMCS TU Delft

Delft, 12 September, 2014



# Outline



#### 2.1: Functions of a complex variable

- Mapping properties
- Exponential and trigonometric functions
- 3 2.3: Differentiability





## Monday's Example

$$(i,0,\infty)\mapsto (1+i,0,1-i).$$

First: 
$$(i, 0, \infty) \mapsto (1, 0, \infty)$$
, via  $z \mapsto z/i$ .

Second:  $(1+i,0,1-i)\mapsto (1,0,\infty)$ , via

$$w \mapsto \frac{(w-0)(1+i-(1-i))}{(w-(1-i))(1+i-0)} = \frac{2iw}{(1+i)w-2}$$

and take its inverse:  $z \mapsto \frac{-2z}{-(1+i)z+2i}$ .

Finally take the composition:  $z\mapsto rac{2iz}{(i-1)z+2i}$ 

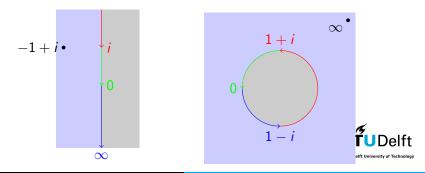


# Monday's Example

There was an error on the board: the point that is mapped to  $\infty$  is actually

$$\frac{-2i}{-1+i} = -1+i$$

Here is the correct picture



K. P. Hart wi4243AP/wi4244AP: Complex Analysis

And so ...

You should now really be able to do Problem 1 on each of last year's exams (they're on Blackboard).



# Notation

- $N(z_0,\varepsilon)$ , the  $\varepsilon$ -neighbourhood of  $z_0$ ; it is  $\{z : |z z_0| < \varepsilon\}$
- $N'(z_0,\varepsilon)$ , the reduced/deleted  $\varepsilon$ -neighbourhood of  $z_0$ ; it is  $N(z_0,\varepsilon) \setminus \{z_0\} = \{z : 0 < |z z_0| < \varepsilon\}$



# Kinds of points

Let S be a set in  $\mathbb{C}$  and z a point in  $\mathbb{C}$ ; we say z is

- an interior point of S if there is  $\varepsilon > 0$  such that  $N(z, \varepsilon) \subseteq S$
- a boundary point of S if for every ε > 0 the set N(z, ε) contains points of S and its complement
- a limit or accumulation point of S if for every ε > 0 the set N'(z, ε) contains points of S

For example: consider the set  $\{z : |z| \leq 1\}$ . The point  $\frac{1}{3} + \frac{1}{3}i$  is an interior point;  $\frac{3}{5} + \frac{4}{5}i$  is a boundary point and also an accumulation point; 1 + i is none of the above, it is an exterior point.



# Open and closed sets

Let S be a set in  $\mathbb{C}$ , we say S is

- open if every point of S is also an interior point of S
- closed if its complement  $\mathbb{C} \setminus S$  is open

Rule-of-thumb: sets defined by strict inequalities are open; sets defined using  $\leq$  are closed; sets defined using both are neither open nor closed.

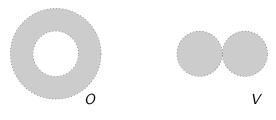


# Examples



### Connectedness

- An open set *U* is connected if any two points can be connected by an arc within *U*.
- The open set  $O = \{z : 1 < |z| < 2\}$  is connected.
- The open set  $V = \{z : |z 1| < 1 \text{ or } |z + 1| < 1\}$  is not: no arc from -1 to 1 stays inside V.

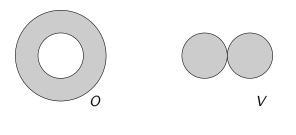




#### Domains

- A connected open set is often called an open domain
- Adding all limit points yields its closure; a closed domain

The closure of O is a closed domain, that of V is not.





# Simply connected

An open domain is simply connected if every closed curve can be shrunk to a point, inside the domain.





Mapping properties Exponential and trigonometric functions

#### How to draw pictures

Graphs of complex functions are part of four-dimensional space.

This makes sketching them somewhat difficult.

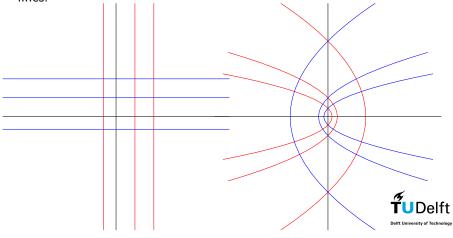
Usually we draw pictures of images of figures to see how a complex functions works.



Mapping properties Exponential and trigonometric functions

# Example: $w = z^2$

One thing one can do: sketch images of horizontal and vertical lines.

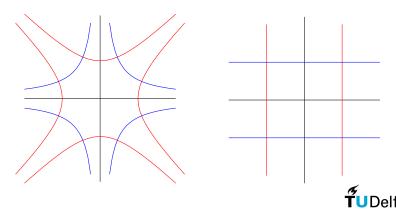


K. P. Hart wi4243AP/wi4244AP: Complex Analysis

Mapping properties Exponential and trigonometric functions

# Example: $w = z^2$

#### Or: draw preimages of horizontal and vertical lines



Delft University of Technology

Mapping properties Exponential and trigonometric functions

# **Exponential** function

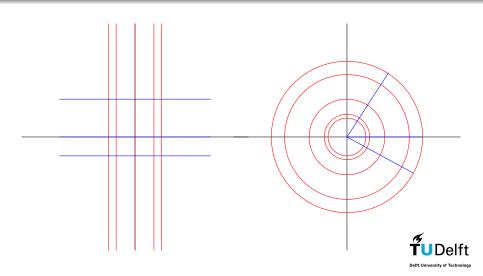
#### We define

$$e^z = e^{x+iy} = e^x(\cos y + i \sin y)$$



Mapping properties Exponential and trigonometric functions

# Mapping behaviour



Mapping properties Exponential and trigonometric functions

# sin z and cos z

Use Euler's formulas:

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$$
 and  $\sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$ 

We use

$$e^{iz} = (\cos x + i \sin x)e^{-y}$$

and

$$e^{-iz} = (\cos x - i \sin x)e^y$$

to get ...



Mapping properties Exponential and trigonometric functions

#### sin z and cos z

 $\ldots$  the following identities

$$\cos z = \frac{1}{2}(\cos x e^{-y} + \cos x e^{y}) + \frac{i}{2}(\sin x e^{-y} - \sin x e^{y})$$
$$= \cos x \cosh y - i \sin x \sinh y$$

and

$$\sin z = \frac{1}{2i} (\cos x e^{-y} - \cos x e^{y}) + \frac{i}{2i} (\sin x e^{-y} + \sin x e^{y})$$
$$= \sin x \cosh y + i \cos x \sinh y$$



# Definition

As in the case of real functions: f is differentiable at  $z_0$  if

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$$

exists, and we denote that limit by  $f'(z_0)$  of course.



# Examples

 $\bar{z}$  is nowhere differentiable

$$\lim_{z \to z_0} \frac{\overline{z} - \overline{z}_0}{z - z_0} = \lim_{(x, y) \to (x_0, y_0)} \frac{(x - x_0) - i(y - y_0)}{(x - x_0) + i(y - y_0)}$$

does not exist:

- 1 along the horizontal line  $y = y_0$ ;
- -1 along the vertical line  $x = x_0$ .



# Examples

#### $|z|^2$ is differentiable at 0 (the limit is zero) but nowhere else:

$$\frac{|z|^2 - |z_0|^2}{z - z_0} = \frac{z\overline{z} - z_0\overline{z} + z_0\overline{z} - z_0\overline{z}_0}{z - z_0}$$
$$= \frac{\overline{z}(z - z_0) + z_0(\overline{z} - \overline{z}_0)}{z - z_0}$$
$$= \overline{z} - z_0 \frac{\overline{z} - \overline{z}_0}{z - z_0}$$

now use the same argument as for  $z \mapsto \overline{z}$ : now the limits are  $\overline{z}_0 + z_0$  (horizontally) and  $\overline{z}_0 - z_0$  (vertically)





#### If all is as it should be we should have

$$\lim_{z \to z_0} \frac{e^z - e^{z_0}}{z - z_0} = e^{z_0}$$

$$\lim_{z \to z_0} \frac{e^z - e^{z_0}}{z - z_0} = e^{z_0} \lim_{z \to z_0} \frac{e^{z - z_0} - 1}{z - z_0}$$

so we ask

$$\lim_{z\to 0}\frac{e^z-1}{z}\stackrel{?}{=}1$$



#### $e^{z}$ , the hard way

Well, ..., if we write z = x + iy we get, after some rewriting:

$$\frac{e^{z} - 1}{z} = \frac{(e^{x} \cos y - 1) + ie^{x} \sin y}{x + iy}$$
$$= \frac{((e^{x} \cos y - 1) + ie^{x} \sin y)(x - iy)}{x^{2} + y^{2}}$$
$$= \frac{x(e^{x} \cos y - 1) + ye^{x} \sin y}{x^{2} + y^{2}}$$
$$+ i\frac{xe^{x} \sin y - y(e^{x} \cos y - 1)}{x^{2} + y^{2}}$$

and now let  $x, y \rightarrow 0$ 



#### $e^{z}$ , the hard way

How to tackle such a limit?

Taylor to the rescue:

•  $e^x \approx 1 + x + \frac{1}{2}x^2$ •  $\cos y \approx 1 - \frac{1}{2}y^2$ •  $\sin y \approx y - \frac{1}{6}y^3$ 

Stick this into the fractions and, ..., done.



# Real differentiability

Consider a complex function f as a function from  $\mathbb{R}^2$  to  $\mathbb{R}^2$ ; then it is real differentiable at  $(x_0, y_0)$  if there is a  $2 \times 2$ -matrix A such that

$$f(x,y) - f(x_0,y_0) = A \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} + R(x,y)$$

where  $\lim_{z \to z_0} \frac{\|R(x,y)\|}{\|z-z_0\|} = 0$ Remember  $A = \begin{pmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{pmatrix}$ 

where f = u + iv.



# Complex differentiability

Complex differentiability can be restated in a similar fashion

$$f(z) - f(z_0) = f'(z_0)(z - z_0) + R(z)$$

where  $\lim_{z\to z_0} \frac{R(z)}{z-z_0} = 0$ .

If  $f'(z_0) = a + ib$  then  $f'(z_0)(z - z_0)$  can be expanded as

$$(a(x - x_0) - b(y - y_0)) + i(b(x - x_0) + a(y - y_0))$$

we can recast this as a matrix multiplication.



## Complex versus Real

Complex:

$$f(z) - f(z_0) \approx \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

Real:

$$f(z) - f(z_0) \approx \begin{pmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{pmatrix} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

The crucial point is the shape of the matrix in the complex case. This leads to  $\ldots$ 



Cauchy-Riemann equations

f is complex differentiable at  $z_0$  if it is real differentiable there and

$$u_x(x_0,y_0) = v_y(x_0,y_0)$$
 and  $v_x(x_0,y_0) = -u_y(x_0,y_0)$ 

these are the Cauchy-Riemann equations.

The function  $\bar{z}$  is real differentiable with

$$u_x = 1$$
,  $u_y = 0$ ,  $v_x = 0$  and  $v_y = -1$ 

and so nowhere complex differentiable.



#### e<sup>z</sup>, the easy way

With  $f(z) = e^z$  we have  $u(x, y) = e^x \cos y$  and  $v(x, y) = e^x \sin y$ . Clearly f is real differentiable and the matrix of derivatives at  $z_0$  is

$$\begin{pmatrix} e^{x_0} \cos y_0 & -e^{x_0} \sin y_0 \\ e^{x_0} \sin y_0 & e^{x_0} \cos y_0 \end{pmatrix}$$

This is of the right form and it represents multiplication by  $e^{z_0}$ .



## What to do?

From the book: Sections 1.4; 2.1, 2.3 and 2.4 Suitable exercises: 1.42 – 1.46; 2.1 – 2.4, 2.12 – 2.22 Recommended exercises: 1.43, 1.44, 1.45; 2.2, 2.3, 2.15, 2.19, 2.22

