wi4243AP/wi4244AP: Complex Analysis week 2, Friday

K. P. Hart
Faculty EEMCS
TU Delft

Delft, 12 September, 2014

Outline

(1) 1.4: Topological definitions
(2) 2.1: Functions of a complex variable

- Mapping properties
- Exponential and trigonometric functions
(3) 2.3: Differentiability
(4) 2.4: Cauchy-Riemann equations

Monday's Example

$(i, 0, \infty) \mapsto(1+i, 0,1-i)$.
First: $(i, 0, \infty) \mapsto(1,0, \infty)$, via $z \mapsto z / i$.
Second: $(1+i, 0,1-i) \mapsto(1,0, \infty)$, via

$$
w \mapsto \frac{(w-0)(1+i-(1-i))}{(w-(1-i))(1+i-0)}=\frac{2 i w}{(1+i) w-2}
$$

and take its inverse: $z \mapsto \frac{-2 z}{-(1+i) z+2 i}$.
Finally take the composition: $z \mapsto \frac{2 i z}{(i-1) z+2 i}$

Monday's Example

There was an error on the board: the point that is mapped to ∞ is actually

$$
\frac{-2 i}{-1+i}=-1+i
$$

Here is the correct picture

And so

You should now really be able to do Problem 1 on each of last year's exams (they're on Blackboard).

Notation

- $N\left(z_{0}, \varepsilon\right)$, the ε-neighbourhood of z_{0}; it is $\left\{z:\left|z-z_{0}\right|<\varepsilon\right\}$
- $N^{\prime}\left(z_{0}, \varepsilon\right)$, the reduced/deleted ε-neighbourhood of z_{0}; it is $N\left(z_{0}, \varepsilon\right) \backslash\left\{z_{0}\right\}=\left\{z: 0<\left|z-z_{0}\right|<\varepsilon\right\}$

Kinds of points

Let S be a set in \mathbb{C} and z a point in \mathbb{C}; we say z is

- an interior point of S if there is $\varepsilon>0$ such that $N(z, \varepsilon) \subseteq S$
- a boundary point of S if for every $\varepsilon>0$ the set $N(z, \varepsilon)$ contains points of S and its complement
- a limit or accumulation point of S if for every $\varepsilon>0$ the set $N^{\prime}(z, \varepsilon)$ contains points of S

For example: consider the set $\{z:|z| \leqslant 1\}$. The point $\frac{1}{3}+\frac{1}{3} i$ is an interior point; $\frac{3}{5}+\frac{4}{5} i$ is a boundary point and also an accumulation point; $1+i$ is none of the above, it is an exterior point.

Open and closed sets

Let S be a set in \mathbb{C}, we say S is

- open if every point of S is also an interior point of S
- closed if its complement $\mathbb{C} \backslash S$ is open

Rule-of-thumb: sets defined by strict inequalities are open; sets defined using \leqslant are closed; sets defined using both are neither open nor closed.

Examples

- $S=\{z:|z|<1\}$ is open: if $z \in S$ put $\varepsilon=1-|z|$, then $N(z, \varepsilon) \subseteq S$
- $D=\{z:|z| \leqslant 1\}$ is closed:
if $z \notin D$ put $\varepsilon=|z|-1$, then $N(z, \varepsilon) \subseteq \mathbb{C} \backslash D$
- $L=\{z:|z|<1, \operatorname{Re} z \geqslant 0\}$ is neither open nor closed:
- not open: $\frac{1}{2} i \in L$ is not an interior point
- not closed: $\frac{4}{5}+\frac{3}{5} i \notin L$ but it is not an interior point of $\mathbb{C} \backslash L$

Connectedness

- An open set U is connected if any two points can be connected by an arc within U.
- The open set $O=\{z: 1<|z|<2\}$ is connected.
- The open set $V=\{z:|z-1|<1$ or $|z+1|<1\}$ is not: no arc from -1 to 1 stays inside V.

Domains

- A connected open set is often called an open domain
- Adding all limit points yields its closure; a closed domain The closure of O is a closed domain, that of V is not.

Simply connected

An open domain is simply connected if every closed curve can be shrunk to a point, inside the domain.

How to draw pictures

Graphs of complex functions are part of four-dimensional space.
This makes sketching them somewhat difficult.
Usually we draw pictures of images of figures to see how a complex functions works.

Example: $w=z^{2}$

One thing one can do: sketch images of horizontal and vertical lines.

Example: $w=z^{2}$

Or: draw preimages of horizontal and vertical lines

Exponential function

We define

$$
e^{z}=e^{x+i y}=e^{x}(\cos y+i \sin y)
$$

1.4: Topological definitions a complex variable
2.3: Differentiability 2.4: Cauchy-Riemann equations

Mapping behaviour

$\sin z$ and $\cos z$

Use Euler's formulas:

$$
\cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right) \text { and } \sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)
$$

We use

$$
e^{i z}=(\cos x+i \sin x) e^{-y}
$$

and

$$
e^{-i z}=(\cos x-i \sin x) e^{y}
$$

to get...

$\sin z$ and $\cos z$

... the following identities

$$
\begin{aligned}
\cos z & =\frac{1}{2}\left(\cos x e^{-y}+\cos x e^{y}\right)+\frac{i}{2}\left(\sin x e^{-y}-\sin x e^{y}\right) \\
& =\cos x \cosh y-i \sin x \sinh y
\end{aligned}
$$

and

$$
\begin{aligned}
\sin z & =\frac{1}{2 i}\left(\cos x e^{-y}-\cos x e^{y}\right)+\frac{i}{2 i}\left(\sin x e^{-y}+\sin x e^{y}\right) \\
& =\sin x \cosh y+i \cos x \sinh y
\end{aligned}
$$

Definition

As in the case of real functions: f is differentiable at z_{0} if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists, and we denote that limit by $f^{\prime}\left(z_{0}\right)$ of course.

Examples

\bar{z} is nowhere differentiable

$$
\lim _{z \rightarrow z_{0}} \frac{\bar{z}-\bar{z}_{0}}{z-z_{0}}=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\left(x-x_{0}\right)-i\left(y-y_{0}\right)}{\left(x-x_{0}\right)+i\left(y-y_{0}\right)}
$$

does not exist:
1 along the horizontal line $y=y_{0}$;
-1 along the vertical line $x=x_{0}$.

Examples

$|z|^{2}$ is differentiable at 0 (the limit is zero) but nowhere else:

$$
\begin{aligned}
\frac{|z|^{2}-\left|z_{0}\right|^{2}}{z-z_{0}} & =\frac{z \bar{z}-z_{0} \bar{z}+z_{0} \bar{z}-z_{0} \bar{z}_{0}}{z-z_{0}} \\
& =\frac{\bar{z}\left(z-z_{0}\right)+z_{0}\left(\bar{z}-\bar{z}_{0}\right)}{z-z_{0}} \\
& =\bar{z}-z_{0} \frac{\bar{z}-\bar{z}_{0}}{z-z_{0}}
\end{aligned}
$$

now use the same argument as for $z \mapsto \bar{z}$: now the limits are $\bar{z}_{0}+z_{0}$ (horizontally) and $\bar{z}_{0}-z_{0}$ (vertically)

If all is as it should be we should have

$$
\lim _{z \rightarrow z_{0}} \frac{e^{z}-e^{z_{0}}}{z-z_{0}}=e^{z_{0}}
$$

for all z_{0}.
Note

$$
\lim _{z \rightarrow z_{0}} \frac{e^{z}-e^{z_{0}}}{z-z_{0}}=e^{z_{0}} \lim _{z \rightarrow z_{0}} \frac{e^{z-z_{0}}-1}{z-z_{0}}
$$

so we ask

$$
\lim _{z \rightarrow 0} \frac{e^{z}-1}{z} \stackrel{?}{=} 1
$$

e^{z}, the hard way

Well, \ldots, if we write $z=x+i y$ we get, after some rewriting:

$$
\begin{aligned}
\frac{e^{z}-1}{z}= & \frac{\left(e^{x} \cos y-1\right)+i e^{x} \sin y}{x+i y} \\
= & \frac{\left(\left(e^{x} \cos y-1\right)+i e^{x} \sin y\right)(x-i y)}{x^{2}+y^{2}} \\
= & \frac{x\left(e^{x} \cos y-1\right)+y e^{x} \sin y}{x^{2}+y^{2}} \\
& \quad+i \frac{x e^{x} \sin y-y\left(e^{x} \cos y-1\right)}{x^{2}+y^{2}}
\end{aligned}
$$

and now let $x, y \rightarrow 0$

e^{z}, the hard way

How to tackle such a limit?

Taylor to the rescue:

- $e^{x} \approx 1+x+\frac{1}{2} x^{2}$
- $\cos y \approx 1-\frac{1}{2} y^{2}$
- $\sin y \approx y-\frac{1}{6} y^{3}$

Stick this into the fractions and, ..., done.

Real differentiability

Consider a complex function f as a function from \mathbb{R}^{2} to \mathbb{R}^{2}; then it is real differentiable at $\left(x_{0}, y_{0}\right)$ if there is a 2×2-matrix A such that

$$
f(x, y)-f\left(x_{0}, y_{0}\right)=A\binom{x-x_{0}}{y-y_{0}}+R(x, y)
$$

where $\lim _{z \rightarrow z_{0}} \frac{\|R(x, y)\|}{\left\|z-z_{0}\right\|}=0$
Remember

$$
A=\left(\begin{array}{ll}
u_{x}\left(x_{0}, y_{0}\right) & u_{y}\left(x_{0}, y_{0}\right) \\
v_{x}\left(x_{0}, y_{0}\right) & v_{y}\left(x_{0}, y_{0}\right)
\end{array}\right)
$$

where $f=u+i v$.

Complex differentiability

Complex differentiability can be restated in a similar fashion

$$
f(z)-f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+R(z)
$$

where $\lim _{z \rightarrow z_{0}} \frac{R(z)}{z-z_{0}}=0$.
If $f^{\prime}\left(z_{0}\right)=a+i b$ then $f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)$ can be expanded as

$$
\left(a\left(x-x_{0}\right)-b\left(y-y_{0}\right)\right)+i\left(b\left(x-x_{0}\right)+a\left(y-y_{0}\right)\right)
$$

we can recast this as a matrix multiplication.

Complex versus Real

Complex:

$$
f(z)-f\left(z_{0}\right) \approx\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right)\binom{x-x_{0}}{y-y_{0}}
$$

Real:

$$
f(z)-f\left(z_{0}\right) \approx\left(\begin{array}{ll}
u_{x}\left(x_{0}, y_{0}\right) & u_{y}\left(x_{0}, y_{0}\right) \\
v_{x}\left(x_{0}, y_{0}\right) & v_{y}\left(x_{0}, y_{0}\right)
\end{array}\right)\binom{x-x_{0}}{y-y_{0}}
$$

The crucial point is the shape of the matrix in the complex case. This leads to ...

Cauchy-Riemann equations

f is complex differentiable at z_{0} if it is real differentiable there and

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \text { and } v_{x}\left(x_{0}, y_{0}\right)=-u_{y}\left(x_{0}, y_{0}\right)
$$

these are the Cauchy-Riemann equations.
The function \bar{z} is real differentiable with

$$
u_{x}=1, u_{y}=0, v_{x}=0 \text { and } v_{y}=-1
$$

and so nowhere complex differentiable.

e^{z}, the easy way

With $f(z)=e^{z}$ we have $u(x, y)=e^{x} \cos y$ and $v(x, y)=e^{x} \sin y$.
Clearly f is real differentiable and the matrix of derivatives at z_{0} is

$$
\left(\begin{array}{rr}
e^{x_{0}} \cos y_{0} & -e^{x_{0}} \sin y_{0} \\
e^{x_{0}} \sin y_{0} & e^{x_{0}} \cos y_{0}
\end{array}\right)
$$

This is of the right form and it represents multiplication by $e^{z_{0}}$.

What to do?

From the book: Sections 1.4; 2.1, 2.3 and 2.4
Suitable exercises: $1.42-1.46 ; 2.1-2.4,2.12-2.22$
Recommended exercises: 1.43, 1.44, 1.45; 2.2, 2.3, 2.15, 2.19, 2.22

