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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

Definition

If f : [a, b]→ C then write f (t) = u(t) + iv(t) and define∫ b

a
f (t)dt =

∫ b

a
u(t)dt + i

∫ b

a
v(t) dt
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

Useful properties

Linear,
real/imaginary part of integral is integral of real/imaginary part,
and ∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣ 6 ∫ b

a

∣∣f (t)
∣∣dt

Well-known for real-valued functions and
a cute argument for complex-valued functions
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

Proof of 4.1.3.d

Let θ = Arg
∫ b
a f (t) dt, so that

∣∣∣∫ b
a f (t) dt

∣∣∣ = e−iθ
∫ b
a f (t) dt.

But, then
∫ b
a e−iθf (t)dt is real, hence equal to (the integral of) its

own real part, so∣∣∣∣∫ b

a
f (t) dt

∣∣∣∣ =

∫ b

a
Re
(
e−iθf (t)

)
dt

6
∫ b

a

∣∣e−iθf (t)
∣∣ dt

=

∫ b

a

∣∣f (t)
∣∣ dt
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f : [a, b] → C
f : C → C
The heart of complex analysis

A useful inequality

Along the unit circle we have

|e2απi − 1| 6 2π|α| α real

It follows from Problem 3.9.a, but also thus:∫ 2π

0
e iαt dt =

1

iα
(e2απi − 1) (†)

and ∫ 2π

0
|e iαt |dt =

∫ 2π

0
1 dt = 2π (‡)

Now combine (†) and (‡) (with moduli).
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

Definition

Given

a curve C in an open set O in the plane

a function f : O → C

what is
∫
C f (z) dz?
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

Definition

First parametrize C : say z(t) = x(t) + iy(t) (0 6 t 6 1)
If z is ‘sufficiently nice’ (piecewise differentiable) then∫

C
f (z) dz =

∫ 1

0
f
(
z(t)

)
z ′(t)dt

See page 122 for a complete expansion of this in the real and
imaginary parts of f and z .
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

Orientation

Definition depends on the direction of the parametrization.
For w(t) = x(1− t) + iy(1− t) (0 6 t 6 1) is also a
parametrization and∫ 1

0
f
(
w(t)

)
w ′(t)dt = −

∫ 1

0
f
(
z(t)

)
z ′(t)dt

Moral: always mention the orientation.
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4.1: Definition and properties
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f : [a, b] → C
f : C → C
The heart of complex analysis

A useful inequality

If M >
∣∣f (z)

∣∣ for z ∈ C and L is the length of C then∣∣∣∣∫
C
f (z)dz

∣∣∣∣ 6 ML
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

A useful inequality

Proof: ∣∣∣∣∫ b

a
f
(
z(t)

)
z ′(t)dt

∣∣∣∣ 6 ∫ b

a

∣∣f (z(t)
)
z ′(t)

∣∣dt
6 M

∫ b

a

∣∣z ′(t)
∣∣dt

= ML
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

An important special case

Let z0 ∈ C and let C be any circle centered at z0, oriented
anticlockwise, then ∮

C

1

z − z0
dz = 2πi

(we write
∮
C if C is a closed curve).
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4.1: Definition and properties
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f : [a, b] → C
f : C → C
The heart of complex analysis

An important special case

Parametrization of C : z(t) = z0 + re it (0 6 t 6 2π)

derivative: z ′(t) = ire it

1/(z − z0) = e−it/r

So, ∮
C

1

z − z0
dz =

∫ 2π

0

1

r
e−it ire it dt =

∫ 2π

0
i dt = 2πi
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

An almost as important special case

Let z0 ∈ C and let C be any circle centered at z0, oriented
anticlockwise and n ∈ Z (n 6= 1), then∮

C

1

(z − z0)n
dz = 0
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

f : [a, b] → C
f : C → C
The heart of complex analysis

An almost as important special case

Parametrization of C : z(t) = z0 + re it (0 6 t 6 2π)

derivative: z ′(t) = ire it

1/(z − z0)n = e−int/rn

So, ∮
C

1

(z − z0)n
dz =

∫ 2π

0

1

rn
e−int ire it dt

=

∫ 2π

0

i

rn−1
e(1−n)ti dt

=
i

rn−1

[
e(1−n)ti

(1− n)i

]2π

0

= 0
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Cauchy’s integral theorem
Applications

The theorem

Theorem (Cauchy)

If f is analytic on and inside a simple closed contour C and if f ′(z)
is continuous on and inside C then∮

C
f (z)dz = 0

It follows from Green’s Theorem from Vector Calculus and the
Cauchy-Riemann equations.

K. P. Hart wi4243AP: Complex Analysis



4.1: Definition and properties
4.2: Cauchy’s integral theorem

Cauchy’s integral theorem
Applications

Goursat’s version

Actually

Theorem (Cauchy-Goursat)

If f is analytic on and inside a simple closed contour C then∮
C
f (z)dz = 0

In fact: it suffices to prove this for rectangles.
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4.1: Definition and properties
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Cauchy’s integral theorem
Applications

The proof

Let C be a square and assume α =
∮
C f (z) dz 6= 0.

C

Divide the square into four subsquares.
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4.1: Definition and properties
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Cauchy’s integral theorem
Applications

The proof

C3 C4

C2 C1

Then the integrals in the interior cancel, so∮
C
f (z)dz =

∮
C1

f (z) dz +

∮
C2

f (z) dz +

∮
C3

f (z) dz +

∮
C4

f (z)dz
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4.1: Definition and properties
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Cauchy’s integral theorem
Applications

The proof

By the triangle inequality
|α| 6

∣∣∮
C1

f (z) dz
∣∣+
∣∣∮

C2
f (z)dz

∣∣+
∣∣∮

C3
f (z)dz

∣∣+
∣∣∮

C4
f (z) dz

∣∣
Therefore, for one of the squares, call it C (1), we have∣∣∣∣∮

C (1)
f (z) dz

∣∣∣∣ > 1

4
|α|

K. P. Hart wi4243AP: Complex Analysis
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Cauchy’s integral theorem
Applications

The proof

Inside C (1) we, likewise, find a square, C (2), such that∣∣∣∣∮
C (2)

f (z) dz

∣∣∣∣ > 1

16
|α|

Inside C (2) we, likewise, find a square, C (3), such that∣∣∣∣∮
C (3)

f (z) dz

∣∣∣∣ > 1

43
|α|
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4.1: Definition and properties
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Cauchy’s integral theorem
Applications

The proof

Inside C (n−1) we, likewise, find a square, C (n), such that∣∣∣∣∮
C (n)

f (z) dz

∣∣∣∣ > 1

4n
|α|

This sequence of squares shrinks down to one point, say z0.
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Cauchy’s integral theorem
Applications

The proof

Near z0 we have

f (z) = f (z0) + f ′(z0)(z − z0) + R(z)

Where R(z) satisfies

lim
z→z0

R(z)

z − z0
= 0 (∗)

K. P. Hart wi4243AP: Complex Analysis



4.1: Definition and properties
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Cauchy’s integral theorem
Applications

The proof

Exercise

Let R be a rectangle. Prove:
∮
R a dz = 0 and

∮
R z dz = 0.

It follows that, for every n,∮
C (n)

f (z)dz =

∮
C (n)

f (z0) dz +

∮
C (n)

f ′(z0)(z − z0) dz +

∮
C (n)

R(z) dz

=

∮
C (n)

R(z) dz
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Cauchy’s integral theorem
Applications

The proof

Let L denote the length of a side of C ; the length of a side of C (n)

then is 1
2n L and its diameter is 1

2n L
√

2.

Let ε > 0 and choose δ > 0 such that | R(z)
z−z0
| < ε whenever

|z − z0| < δ.
Now let n be such that C (n) lies within δ of z0.
Then ∣∣∣∣∮

C (n)
R(z)dz

∣∣∣∣ 6 ε
1

2n
L
√

2 · 4L

2n
=
εL24
√

2

4n
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

Cauchy’s integral theorem
Applications

The proof

Now choose ε so small that εL24
√

2 < |α| and take n as above.
Then

1

4n
|α| 6

∣∣∣∣∮
C (n)

f (z) dz

∣∣∣∣ =

∣∣∣∣∮
C (n)

R(z) dz

∣∣∣∣ < 1

4n
|α|

Contradiction.
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Cauchy’s integral theorem
Applications

General case

The general case follows by polygonal approximation and
continuity.

The integral over the polygon is zero because the integral along
each rectangle is.
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Cauchy’s integral theorem
Applications

Independence of path

If f is analytic on a simply connected domain D and α, β ∈ D then
for any two paths Γ1 and Γ2 from α to β we have∫

Γ1

f (z) dz =

∫
Γ2

f (z) dz

Γ1 and the reverse of Γ2 form a closed curve C so

0 =

∮
C
f (z)dz =

∫
Γ1

f (z)dz −
∫

Γ2

f (z)dz

K. P. Hart wi4243AP: Complex Analysis
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Cauchy’s integral theorem
Applications

Primitive functions

Theorem

Let f : D → C be analytic, where D is simply connected. Then
there is F : D → C such that F ′ = f .

Proof.

Fix z0 ∈ D and define F (z) =
∫
C f (w) dw , where C is a

(piecewise linear) curve from z0 to z (and everywhere parallel to
the real or imaginary axis).
This is independent of C , by the above.
Proof that F ′ = f is much like in the real case.
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Cauchy’s integral theorem
Applications

Using a primitive of an analytic f

Integrals along curves inside a simply connected domain:∫
γ
f (z) dz = F (β)− F (α)

α: initial point; β: end point.
See also Example 4.2.3.
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Cauchy’s integral theorem
Applications

Two closed curves, same integral

Theorem

If C1 and C2 are two simple closed curves and f is analytic between
C1 and C2 then

∮
C1

f (z) dz =
∮
C2

f (z) dz , provided the
orientations are the same.

C1

C2

K. P. Hart wi4243AP: Complex Analysis



4.1: Definition and properties
4.2: Cauchy’s integral theorem

Cauchy’s integral theorem
Applications

Two closed curves, same integral

C1

C2 γ

C consists of: C1 (anticlockwise), then γ (inward), then C2

(clockwise), then γ (outward). f analytic inside C so∮
C f (z)dz = 0

K. P. Hart wi4243AP: Complex Analysis



4.1: Definition and properties
4.2: Cauchy’s integral theorem

Cauchy’s integral theorem
Applications

Two closed curves, same integral

C1

C2 γ

We get

0 =

∮
C1

f (z)dz +

∫
γ
f (z) dz −

∮
C2

f (z)dz −
∫
γ
f (z) dz
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4.1: Definition and properties
4.2: Cauchy’s integral theorem

Cauchy’s integral theorem
Applications

Two closed curves, same integral

C1

C2 γ

And so
∮
C1

f (z)dz =
∮
C2

f (z) dz .

K. P. Hart wi4243AP: Complex Analysis



4.1: Definition and properties
4.2: Cauchy’s integral theorem

Cauchy’s integral theorem
Applications

The arctangent function

Take the branch of arctan z on C \ [−i , i ] that satisfies
arctan 1 = π

4 .
What is

∮
C arctan z dz? Same as

∮
D arctan z dz .

i

−iC
D

K. P. Hart wi4243AP: Complex Analysis
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4.2: Cauchy’s integral theorem

Cauchy’s integral theorem
Applications

The arctangent function

Parametrize D: z(t) = re it (0 6 t 6 2π); we get∫ 2π

0

1

2i
log

(
1 + ire it

1− ire it

)
ire it dt

Too difficult, let’s try something else . . .

K. P. Hart wi4243AP: Complex Analysis
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Cauchy’s integral theorem
Applications

The arctangent function

Take the branch of arctan z on C \ [−i , i ] that satisfies
arctan 1 = π

4 .
What is

∮
C arctan z dz? Same as

∮
E arctan z dz .

C

E
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Cauchy’s integral theorem
Applications

The arctangent function

Let E shrink to the branch cut. The integral stays the same, but

integrals along circular arcs converge to 0

integral along right-hand line converges to∫ 1

−1

1

2i
ln

(
1− t

1 + t

)
i dt

integral along left-hand line converges to∫ −1

1

1

2i

(
ln

(
1− t

1 + t

)
+ 2πi

)
i dt
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4.2: Cauchy’s integral theorem

Cauchy’s integral theorem
Applications

The arctangent function

So
∫
C arctan z dz is (apparently) equal to∫ 1

−1

1

2i
ln

(
1− t

1 + t

)
i dt +

∫ −1

1

1

2i

(
ln

(
1− t

1 + t

)
+ 2πi

)
i dt = −2πi
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Cauchy’s integral theorem
Applications

What to do?

From the book: 4.1, 4.2
Suitable problems: 4.1 – 4.12
Recommended problems: 4.1, 4.2, 4.3, 4.6, 4.7, 4.9, 4.11 (choice).
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