wi4243AP: Complex Analysis

week 4, Monday

K. P. Hart

Faculty EEMCS TU Delft

Delft, 22 september, 2014

Outline

4.1: Definition and properties

- $f:[a,b] \rightarrow \mathbb{C}$
- $f: \mathbb{C} \to \mathbb{C}$
- The heart of complex analysis

4.2: Cauchy's integral theorem Cauchy's integral theorem

Applications

Definition

$$f:[a,b] \to \mathbb{C}$$
$$f:\mathbb{C} \to \mathbb{C}$$
The heart of complex analysis

If $f:[a,b]
ightarrow \mathbb{C}$ then write f(t) = u(t) + iv(t) and define

$$\int_a^b f(t) \, \mathrm{d}t = \int_a^b u(t) \, \mathrm{d}t + i \int_a^b v(t) \, \mathrm{d}t$$

$\begin{array}{l} \boldsymbol{f} : [\boldsymbol{a}, \boldsymbol{b}] \to \mathbb{C} \\ \boldsymbol{f} : \mathbb{C} \to \mathbb{C} \\ \text{The heart of complex analysis} \end{array}$

Useful properties

Linear,

real/imaginary part of integral is integral of real/imaginary part, and

$$\left|\int_{a}^{b} f(t) \, \mathrm{d}t\right| \leqslant \int_{a}^{b} \left|f(t)\right| \, \mathrm{d}t$$

Well-known for real-valued functions and a cute argument for complex-valued functions

$\begin{aligned} &f: [a, b] \to \mathbb{C} \\ &f: \mathbb{C} \to \mathbb{C} \\ & \text{The heart of complex analysis} \end{aligned}$

Proof of 4.1.3.d

Let
$$\theta = \operatorname{Arg} \int_{a}^{b} f(t) dt$$
, so that $\left| \int_{a}^{b} f(t) dt \right| = e^{-i\theta} \int_{a}^{b} f(t) dt$.
But, then $\int_{a}^{b} e^{-i\theta} f(t) dt$ is real, hence equal to (the integral of) own real part, so

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| = \int_{a}^{b} \operatorname{Re}(e^{-i\theta}f(t)) \, \mathrm{d}t$$
$$\leqslant \int_{a}^{b} |e^{-i\theta}f(t)| \, \mathrm{d}t$$
$$= \int_{a}^{b} |f(t)| \, \mathrm{d}t$$

its

 $\begin{aligned} &f: [\pmb{a}, \pmb{b}] \to \mathbb{C} \\ &f: \mathbb{C} \to \mathbb{C} \\ & \text{The heart of complex analysis} \end{aligned}$

A useful inequality

Along the unit circle we have

$$|e^{2lpha\pi i}-1|\leqslant 2\pi|lpha|$$
 $lpha$ real

It follows from Problem 3.9.a, but also thus:

$$\int_0^{2\pi} e^{i\alpha t} \,\mathrm{d}t = \frac{1}{i\alpha} (e^{2\alpha\pi i} - 1) \tag{\dagger}$$

and

$$\int_{0}^{2\pi} |e^{i\alpha t}| \,\mathrm{d}t = \int_{0}^{2\pi} 1 \,\mathrm{d}t = 2\pi \tag{\ddagger}$$

Now combine (\dagger) and (\ddagger) (with moduli).

Definition

 $f : [a, b] \to \mathbb{C}$ $f : \mathbb{C} \to \mathbb{C}$ The heart of complex analysis

Given

- a curve C in an open set O in the plane
- a function $f: O \to \mathbb{C}$

what is $\int_C f(z) dz$?

$\begin{array}{l} f:[a,b] \to \mathbb{C} \\ f:\mathbb{C} \to \mathbb{C} \\ \end{array}$ The heart of complex analysis

Definition

First parametrize C: say z(t) = x(t) + iy(t) ($0 \le t \le 1$) If z is 'sufficiently nice' (piecewise differentiable) then

$$\int_C f(z) \, \mathrm{d}z = \int_0^1 f(z(t)) z'(t) \, \mathrm{d}t$$

See page 122 for a complete expansion of this in the real and imaginary parts of f and z.

Orientation

$\begin{array}{l} f:[a,b] \to \mathbb{C} \\ f:\mathbb{C} \to \mathbb{C} \\ \end{array}$ The heart of complex analysis

Definition depends on the direction of the parametrization. For w(t) = x(1-t) + iy(1-t) $(0 \le t \le 1)$ is also a parametrization and

$$\int_0^1 f(w(t))w'(t)\,\mathrm{d}t = -\int_0^1 f(z(t))z'(t)\,\mathrm{d}t$$

Moral: always mention the orientation.

 $\begin{array}{l} f : [a, b] \to \mathbb{C} \\ f : \mathbb{C} \to \mathbb{C} \\ \end{array}$ The heart of complex analysis

A useful inequality

If $M \geqslant |f(z)|$ for $z \in C$ and L is the length of C then

$$\left|\int_C f(z)\,\mathrm{d} z\right|\leqslant ML$$

 $\begin{array}{l} f : [a, b] \to \mathbb{C} \\ f : \mathbb{C} \to \mathbb{C} \\ \end{array}$ The heart of complex analysis

A useful inequality

Proof:

$$\left| \int_{a}^{b} f(z(t)) z'(t) \, \mathrm{d}t \right| \leq \int_{a}^{b} \left| f(z(t)) z'(t) \right| \, \mathrm{d}t$$
$$\leq M \int_{a}^{b} \left| z'(t) \right| \, \mathrm{d}t$$
$$= ML$$

 $\begin{array}{l} f: [a, b] \to \mathbb{C} \\ f: \mathbb{C} \to \mathbb{C} \\ \end{array} \\ \hline \\ \mbox{The heart of complex analysis} \end{array}$

An important special case

Let $z_0 \in \mathbb{C}$ and let *C* be any circle centered at z_0 , oriented anticlockwise, then

$$\oint_C \frac{1}{z-z_0} \, \mathrm{d}z = 2\pi i$$

(we write \oint_C if C is a closed curve).

An important special case

- Parametrization of C: $z(t) = z_0 + re^{it} \ (0 \leqslant t \leqslant 2\pi)$
- derivative: $z'(t) = ire^{it}$
- $1/(z-z_0) = e^{-it}/r$

So,

$$\oint_C \frac{1}{z - z_0} \, \mathrm{d}z = \int_0^{2\pi} \frac{1}{r} e^{-it} ir e^{it} \, \mathrm{d}t = \int_0^{2\pi} i \, \mathrm{d}t = 2\pi i$$

 $\begin{array}{l} f: [a, b] \to \mathbb{C} \\ f: \mathbb{C} \to \mathbb{C} \\ \end{array} \\ \hline \end{array} \\ \mbox{The heart of complex analysis} \end{array}$

An almost as important special case

Let $z_0 \in \mathbb{C}$ and let *C* be any circle centered at z_0 , oriented anticlockwise and $n \in \mathbb{Z}$ $(n \neq 1)$, then

$$\oint_C \frac{1}{(z-z_0)^n} \,\mathrm{d} z = 0$$

An almost as important special case

- Parametrization of C: $z(t) = z_0 + re^{it}$ $(0 \leqslant t \leqslant 2\pi)$
- derivative: $z'(t) = ire^{it}$ • $1/(z-z_0)^n = e^{-int}/r^n$ So. $\oint_{C} \frac{1}{(z-z_{0})^{n}} dz = \int_{0}^{2\pi} \frac{1}{r^{n}} e^{-int} ire^{it} dt$ $= \int_{0}^{2\pi} \frac{i}{r^{n-1}} e^{(1-n)ti} \,\mathrm{d}t$ $=\frac{i}{r^{n-1}}\left[\frac{e^{(1-n)ti}}{(1-n)i}\right]_{-}^{2\pi}=0$

The theorem

Theorem (Cauchy)

If f is analytic on and inside a simple closed contour C and if f'(z) is continuous on and inside C then

$$\oint_C f(z) \, \mathrm{d} z = 0$$

It follows from Green's Theorem from Vector Calculus and the Cauchy-Riemann equations.

Goursat's version

Actually

Theorem (Cauchy-Goursat)

If f is analytic on and inside a simple closed contour C then

$$\oint_C f(z)\,\mathrm{d} z=0$$

In fact: it suffices to prove this for rectangles.

The proof

Let C be a square and assume $\alpha = \oint_C f(z) dz \neq 0$.

Divide the square into four subsquares.

The proof

Cauchy's integral theorem Applications

$\begin{array}{c} \overleftarrow{C_2} \times \overrightarrow{C_1} \\ \overleftarrow{C_3} \times \overrightarrow{C_4} \end{array}$

Then the integrals in the interior cancel, so

$$\oint_C f(z) \, \mathrm{d}z = \oint_{C_1} f(z) \, \mathrm{d}z + \oint_{C_2} f(z) \, \mathrm{d}z + \oint_{C_3} f(z) \, \mathrm{d}z + \oint_{C_4} f(z) \, \mathrm{d}z$$

The proof

By the triangle inequality $|\alpha| \leq \left| \oint_{C_1} f(z) \, \mathrm{d}z \right| + \left| \oint_{C_2} f(z) \, \mathrm{d}z \right| + \left| \oint_{C_3} f(z) \, \mathrm{d}z \right| + \left| \oint_{C_4} f(z) \, \mathrm{d}z \right|$

Therefore, for one of the squares, call it $C^{(1)}$, we have

$$\left|\oint_{C^{(1)}}f(z)\,\mathrm{d} z\right|\geqslant\frac{1}{4}|\alpha$$

The proof

Inside $C^{(1)}$ we, likewise, find a square, $C^{(2)}$, such that

$$\left|\oint_{\mathcal{C}^{(2)}} f(z) \, \mathrm{d} z\right| \geqslant \frac{1}{16} |\alpha|$$

Inside $C^{(2)}$ we, likewise, find a square, $C^{(3)}$, such that

$$\left|\oint_{\mathcal{C}^{(3)}}f(z)\,\mathrm{d} z\right| \geq \frac{1}{4^3}|\alpha$$

The proof

Inside $C^{(n-1)}$ we, likewise, find a square, $C^{(n)}$, such that

$$\left|\oint_{C^{(n)}}f(z)\,\mathrm{d} z\right| \geq \frac{1}{4^n}|\alpha|$$

This sequence of squares shrinks down to one point, say z_0 .

Cauchy's integral theorem Applications

Near z_0 we have

The proof

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + R(z)$$

Where R(z) satisfies

$$\lim_{z \to z_0} \frac{R(z)}{z - z_0} = 0$$
 (*)

The proof

Exercise

Let R be a rectangle. Prove: $\oint_R a \, dz = 0$ and $\oint_R z \, dz = 0$.

It follows that, for every n,

$$\begin{split} \oint_{C^{(n)}} f(z) \, \mathrm{d}z &= \oint_{C^{(n)}} f(z_0) \, \mathrm{d}z + \oint_{C^{(n)}} f'(z_0)(z - z_0) \, \mathrm{d}z + \oint_{C^{(n)}} R(z) \, \mathrm{d}z \\ &= \oint_{C^{(n)}} R(z) \, \mathrm{d}z \end{split}$$

The proof

Let *L* denote the length of a side of *C*; the length of a side of $C^{(n)}$ then is $\frac{1}{2^n}L$ and its diameter is $\frac{1}{2^n}L\sqrt{2}$. Let $\varepsilon > 0$ and choose $\delta > 0$ such that $|\frac{R(z)}{z-z_0}| < \varepsilon$ whenever $|z-z_0| < \delta$. Now let *n* be such that $C^{(n)}$ lies within δ of z_0 . Then

$$\left|\oint_{C^{(n)}} R(z) \,\mathrm{d}z\right| \leqslant \varepsilon \frac{1}{2^n} L \sqrt{2} \cdot \frac{4L}{2^n} = \frac{\varepsilon L^2 4 \sqrt{2}}{4^n}$$

Now choose ε so small that $\varepsilon L^2 4\sqrt{2} < |\alpha|$ and take n as above. Then

$$\frac{1}{4^n}|\alpha| \leqslant \left|\oint_{\mathcal{C}^{(n)}} f(z) \,\mathrm{d} z\right| = \left|\oint_{\mathcal{C}^{(n)}} R(z) \,\mathrm{d} z\right| < \frac{1}{4^n}|\alpha|$$

Contradiction.

The proof

General case

The general case follows by polygonal approximation and continuity.

The integral over the polygon is zero because the integral along each rectangle is.

TUDelft

Independence of path

If f is analytic on a simply connected domain D and $\alpha, \beta \in D$ then for any two paths Γ_1 and Γ_2 from α to β we have

$$\int_{\Gamma_1} f(z) \, \mathrm{d} z = \int_{\Gamma_2} f(z) \, \mathrm{d} z$$

 Γ_1 and the reverse of Γ_2 form a closed curve C so

$$0 = \oint_C f(z) \, \mathrm{d}z = \int_{\Gamma_1} f(z) \, \mathrm{d}z - \int_{\Gamma_2} f(z) \, \mathrm{d}z$$

Primitive functions

Theorem

Let $f : D \to \mathbb{C}$ be analytic, where D is simply connected. Then there is $F : D \to \mathbb{C}$ such that F' = f.

Proof.

Fix $z_0 \in D$ and define $F(z) = \int_C f(w) \, dw$, where C is a (piecewise linear) curve from z_0 to z (and everywhere parallel to the real or imaginary axis). This is independent of C, by the above. Proof that F' = f is much like in the real case.

Using a primitive of an analytic f

Integrals along curves inside a simply connected domain:

$$\int_{\gamma} f(z) \, \mathrm{d}z = F(\beta) - F(\alpha)$$

 α : initial point; β : end point. See also Example 4.2.3.

Two closed curves, same integral

Theorem

If C_1 and C_2 are two simple closed curves and f is analytic between C_1 and C_2 then $\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz$, provided the orientations are the same.

Cauchy's integral theorem Applications

Two closed curves, same integral

C consists of: C_1 (anticlockwise), then γ (inward), then C_2 (clockwise), then γ (outward). *f* analytic inside *C* so $\oint_C f(z) dz = 0$

Cauchy's integral theorem Applications

Two closed curves, same integral

We get

$$0 = \oint_{C_1} f(z) \, \mathrm{d}z + \int_{\gamma} f(z) \, \mathrm{d}z - \oint_{C_2} f(z) \, \mathrm{d}z - \int_{\gamma} f(z) \, \mathrm{d}z$$

$$\texttt{FUDelft}_{\text{Deturbuty of Technology}}$$

K. P. Hart wi4243AP: Complex Analysis

Cauchy's integral theorem Applications

Two closed curves, same integral

And so $\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz$.

The arctangent function

Take the branch of arctan z on $\mathbb{C} \setminus [-i, i]$ that satisfies arctan $1 = \frac{\pi}{4}$. What is $\oint_C \arctan z \, dz$? Same as $\oint_D \arctan z \, dz$.

The arctangent function

Parametrize D:
$$z(t) = re^{it}$$
 $(0 \le t \le 2\pi)$; we get

$$\int_0^{2\pi} \frac{1}{2i} \log\left(\frac{1+ire^{it}}{1-ire^{it}}\right) ire^{it} \,\mathrm{d}t$$

Too difficult, let's try something else ...

The arctangent function

Take the branch of $\arctan z$ on $\mathbb{C} \setminus [-i, i]$ that satisfies arctan $1 = \frac{\pi}{4}$. What is $\oint_C \arctan z \, dz$? Same as $\oint_E \arctan z \, dz$.

The arctangent function

Let E shrink to the branch cut. The integral stays the same, but

- integrals along circular arcs converge to 0
- integral along right-hand line converges to

$$\int_{-1}^{1} \frac{1}{2i} \ln\left(\frac{1-t}{1+t}\right) i \,\mathrm{d}t$$

• integral along left-hand line converges to

$$\int_{1}^{-1} \frac{1}{2i} \left(\ln \left(\frac{1-t}{1+t} \right) + 2\pi i \right) i \, \mathrm{d}t$$

The arctangent function

So $\int_C \arctan z \, dz$ is (apparently) equal to

$$\int_{-1}^{1} \frac{1}{2i} \ln\left(\frac{1-t}{1+t}\right) i \, \mathrm{d}t + \int_{1}^{-1} \frac{1}{2i} \left(\ln\left(\frac{1-t}{1+t}\right) + 2\pi i\right) i \, \mathrm{d}t = -2\pi i$$

What to do?

Cauchy's integral theorem Applications

From the book: 4.1, 4.2 Suitable problems: 4.1 – 4.12 Recommended problems: 4.1, 4.2, 4.3, 4.6, 4.7, 4.9, 4.11 (choice).

