wi4243AP: Complex Analysis
 week 4, Monday

K. P. Hart
Faculty EEMCS
TU Delft

Delft, 22 september, 2014

Outline

(1) 4.1: Definition and properties

- $f:[a, b] \rightarrow \mathbb{C}$
- $f: \mathbb{C} \rightarrow \mathbb{C}$
- The heart of complex analysis
(2) 4.2: Cauchy's integral theorem
- Cauchy's integral theorem
- Applications

Definition

If $f:[a, b] \rightarrow \mathbb{C}$ then write $f(t)=u(t)+i v(t)$ and define

$$
\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} u(t) \mathrm{d} t+i \int_{a}^{b} v(t) \mathrm{d} t
$$

Useful properties

Linear, real/imaginary part of integral is integral of real/imaginary part, and

$$
\left|\int_{a}^{b} f(t) \mathrm{d} t\right| \leqslant \int_{a}^{b}|f(t)| \mathrm{d} t
$$

Well-known for real-valued functions and
a cute argument for complex-valued functions

Proof of 4.1.3.d

Let $\theta=\operatorname{Arg} \int_{a}^{b} f(t) \mathrm{d} t$, so that $\left|\int_{a}^{b} f(t) \mathrm{d} t\right|=e^{-i \theta} \int_{a}^{b} f(t) \mathrm{d} t$.
But, then $\int_{a}^{b} e^{-i \theta} f(t) \mathrm{d} t$ is real, hence equal to (the integral of) its own real part, so

$$
\begin{aligned}
\left|\int_{a}^{b} f(t) \mathrm{d} t\right| & =\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta} f(t)\right) \mathrm{d} t \\
& \leqslant \int_{a}^{b}\left|e^{-i \theta} f(t)\right| \mathrm{d} t \\
& =\int_{a}^{b}|f(t)| \mathrm{d} t
\end{aligned}
$$

A useful inequality

Along the unit circle we have

$$
\left|e^{2 \alpha \pi i}-1\right| \leqslant 2 \pi|\alpha|
$$

It follows from Problem 3.9.a, but also thus:

$$
\int_{0}^{2 \pi} e^{i \alpha t} \mathrm{~d} t=\frac{1}{i \alpha}\left(e^{2 \alpha \pi i}-1\right)
$$

and

$$
\int_{0}^{2 \pi}\left|e^{i \alpha t}\right| \mathrm{d} t=\int_{0}^{2 \pi} 1 \mathrm{~d} t=2 \pi
$$

Now combine (\dagger) and (\ddagger) (with moduli).

Definition

Given

- a curve C in an open set O in the plane
- a function $f: O \rightarrow \mathbb{C}$
what is $\int_{C} f(z) \mathrm{d} z$?

Definition

First parametrize C : say $z(t)=x(t)+i y(t)(0 \leqslant t \leqslant 1)$
If z is 'sufficiently nice' (piecewise differentiable) then

$$
\int_{C} f(z) \mathrm{d} z=\int_{0}^{1} f(z(t)) z^{\prime}(t) \mathrm{d} t
$$

See page 122 for a complete expansion of this in the real and imaginary parts of f and z.

Orientation

Definition depends on the direction of the parametrization. For $w(t)=x(1-t)+i y(1-t)(0 \leqslant t \leqslant 1)$ is also a parametrization and

$$
\int_{0}^{1} f(w(t)) w^{\prime}(t) \mathrm{d} t=-\int_{0}^{1} f(z(t)) z^{\prime}(t) \mathrm{d} t
$$

Moral: always mention the orientation.

A useful inequality

If $M \geqslant|f(z)|$ for $z \in C$ and L is the length of C then

$$
\left|\int_{C} f(z) \mathrm{d} z\right| \leqslant M L
$$

A useful inequality

Proof:

$$
\begin{aligned}
\left|\int_{a}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t\right| & \leqslant \int_{a}^{b}\left|f(z(t)) z^{\prime}(t)\right| \mathrm{d} t \\
& \leqslant M \int_{a}^{b}\left|z^{\prime}(t)\right| \mathrm{d} t \\
& =M L
\end{aligned}
$$

An important special case

Let $z_{0} \in \mathbb{C}$ and let C be any circle centered at z_{0}, oriented anticlockwise, then

$$
\oint_{C} \frac{1}{z-z_{0}} \mathrm{~d} z=2 \pi i
$$

(we write \oint_{C} if C is a closed curve).

An important special case

- Parametrization of $C: z(t)=z_{0}+r e^{i t}(0 \leqslant t \leqslant 2 \pi)$
- derivative: $z^{\prime}(t)=i r e^{i t}$
- $1 /\left(z-z_{0}\right)=e^{-i t} / r$
- So,

$$
\oint_{C} \frac{1}{z-z_{0}} \mathrm{~d} z=\int_{0}^{2 \pi} \frac{1}{r} e^{-i t} i r e^{i t} \mathrm{~d} t=\int_{0}^{2 \pi} i \mathrm{~d} t=2 \pi i
$$

An almost as important special case

Let $z_{0} \in \mathbb{C}$ and let C be any circle centered at z_{0}, oriented anticlockwise and $n \in \mathbb{Z}(n \neq 1)$, then

$$
\oint_{C} \frac{1}{\left(z-z_{0}\right)^{n}} \mathrm{~d} z=0
$$

An almost as important special case

- Parametrization of $C: z(t)=z_{0}+r e^{i t}(0 \leqslant t \leqslant 2 \pi)$
- derivative: $z^{\prime}(t)=i r e^{i t}$
- $1 /\left(z-z_{0}\right)^{n}=e^{-i n t} / r^{n}$
- So,

$$
\begin{aligned}
\oint_{C} \frac{1}{\left(z-z_{0}\right)^{n}} \mathrm{~d} z & =\int_{0}^{2 \pi} \frac{1}{r^{n}} e^{-i n t} i r e^{i t} \mathrm{~d} t \\
& =\int_{0}^{2 \pi} \frac{i}{r^{n-1}} e^{(1-n) t i} \mathrm{~d} t \\
& =\frac{i}{r^{n-1}}\left[\frac{e^{(1-n) t i}}{(1-n) i}\right]_{0}^{2 \pi}=0
\end{aligned}
$$

The theorem

Theorem (Cauchy)

If f is analytic on and inside a simple closed contour C and if $f^{\prime}(z)$ is continuous on and inside C then

$$
\oint_{C} f(z) d z=0
$$

It follows from Green's Theorem from Vector Calculus and the Cauchy-Riemann equations.

Goursat's version

Actually

Theorem (Cauchy-Goursat)

If f is analytic on and inside a simple closed contour C then

$$
\oint_{C} f(z) \mathrm{d} z=0
$$

In fact: it suffices to prove this for rectangles.

The proof

Let C be a square and assume $\alpha=\oint_{C} f(z) \mathrm{d} z \neq 0$.

Divide the square into four subsquares.

The proof

Then the integrals in the interior cancel, so

$$
\oint_{C} f(z) \mathrm{d} z=\oint_{C_{1}} f(z) \mathrm{d} z+\oint_{C_{2}} f(z) \mathrm{d} z+\oint_{C_{3}} f(z) \mathrm{d} z+\oint_{C_{4}} f(z) \mathrm{d} z
$$

The proof

By the triangle inequality

$$
|\alpha| \leqslant\left|\oint_{C_{1}} f(z) \mathrm{d} z\right|+\left|\oint_{C_{2}} f(z) \mathrm{d} z\right|+\left|\oint_{C_{3}} f(z) \mathrm{d} z\right|+\left|\oint_{C_{4}} f(z) \mathrm{d} z\right|
$$

Therefore, for one of the squares, call it $C^{(1)}$, we have

$$
\left|\oint_{C^{(1)}} f(z) \mathrm{d} z\right| \geqslant \frac{1}{4}|\alpha|
$$

The proof

Inside $C^{(1)}$ we, likewise, find a square, $C^{(2)}$, such that

$$
\left|\oint_{C^{(2)}} f(z) \mathrm{d} z\right| \geqslant \frac{1}{16}|\alpha|
$$

Inside $C^{(2)}$ we, likewise, find a square, $C^{(3)}$, such that

$$
\left|\oint_{C^{(3)}} f(z) \mathrm{d} z\right| \geqslant \frac{1}{4^{3}}|\alpha|
$$

The proof

Inside $C^{(n-1)}$ we, likewise, find a square, $C^{(n)}$, such that

$$
\left|\oint_{C^{(n)}} f(z) \mathrm{d} z\right| \geqslant \frac{1}{4^{n}}|\alpha|
$$

This sequence of squares shrinks down to one point, say z_{0}.

The proof

Near z_{0} we have

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+R(z)
$$

Where $R(z)$ satisfies

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \frac{R(z)}{z-z_{0}}=0 \tag{*}
\end{equation*}
$$

The proof

Exercise

Let R be a rectangle. Prove: $\oint_{R} a \mathrm{~d} z=0$ and $\oint_{R} z \mathrm{~d} z=0$.

It follows that, for every n,

$$
\begin{aligned}
\oint_{C^{(n)}} f(z) \mathrm{d} z & =\oint_{C^{(n)}} f\left(z_{0}\right) \mathrm{d} z+\oint_{C^{(n)}} f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right) \mathrm{d} z+\oint_{C^{(n)}} R(z) \mathrm{d} z \\
& =\oint_{C^{(n)}} R(z) \mathrm{d} z
\end{aligned}
$$

The proof

Let L denote the length of a side of C; the length of a side of $C^{(n)}$ then is $\frac{1}{2^{n}} L$ and its diameter is $\frac{1}{2^{n}} L \sqrt{2}$.
Let $\varepsilon>0$ and choose $\delta>0$ such that $\left|\frac{R(z)}{z-z_{0}}\right|<\varepsilon$ whenever $\left|z-z_{0}\right|<\delta$.
Now let n be such that $C^{(n)}$ lies within δ of z_{0}.
Then

$$
\left|\oint_{C^{(n)}} R(z) \mathrm{d} z\right| \leqslant \varepsilon \frac{1}{2^{n}} L \sqrt{2} \cdot \frac{4 L}{2^{n}}=\frac{\varepsilon L^{2} 4 \sqrt{2}}{4^{n}}
$$

The proof

Now choose ε so small that $\varepsilon L^{2} 4 \sqrt{2}<|\alpha|$ and take n as above. Then

$$
\frac{1}{4^{n}}|\alpha| \leqslant\left|\oint_{C^{(n)}} f(z) \mathrm{d} z\right|=\left|\oint_{C^{(n)}} R(z) \mathrm{d} z\right|<\frac{1}{4^{n}}|\alpha|
$$

Contradiction.

General case

The general case follows by polygonal approximation and continuity.

The integral over the polygon is zero because the integral along each rectangle is.

Independence of path

If f is analytic on a simply connected domain D and $\alpha, \beta \in D$ then for any two paths Γ_{1} and Γ_{2} from α to β we have

$$
\int_{\Gamma_{1}} f(z) \mathrm{d} z=\int_{\Gamma_{2}} f(z) \mathrm{d} z
$$

Γ_{1} and the reverse of Γ_{2} form a closed curve C so

$$
0=\oint_{C} f(z) \mathrm{d} z=\int_{\Gamma_{1}} f(z) \mathrm{d} z-\int_{\Gamma_{2}} f(z) \mathrm{d} z
$$

Primitive functions

Theorem

Let $f: D \rightarrow \mathbb{C}$ be analytic, where D is simply connected. Then there is $F: D \rightarrow \mathbb{C}$ such that $F^{\prime}=f$.

Proof.

Fix $z_{0} \in D$ and define $F(z)=\int_{C} f(w) \mathrm{d} w$, where C is a (piecewise linear) curve from z_{0} to z (and everywhere parallel to the real or imaginary axis).
This is independent of C, by the above.
Proof that $F^{\prime}=f$ is much like in the real case.

Using a primitive of an analytic f

Integrals along curves inside a simply connected domain:

$$
\int_{\gamma} f(z) \mathrm{d} z=F(\beta)-F(\alpha)
$$

α : initial point; β : end point.
See also Example 4.2.3.

Two closed curves, same integral

Theorem

If C_{1} and C_{2} are two simple closed curves and f is analytic between C_{1} and C_{2} then $\oint_{C_{1}} f(z) \mathrm{d} z=\oint_{C_{2}} f(z) \mathrm{d} z$, provided the orientations are the same.

Two closed curves, same integral

C consists of: C_{1} (anticlockwise), then γ (inward), then C_{2} (clockwise), then γ (outward). f analytic inside C so $\oint_{C} f(z) \mathrm{d} z=0$

Two closed curves, same integral

We get

$$
0=\oint_{C_{1}} f(z) \mathrm{d} z+\int_{\gamma} f(z) \mathrm{d} z-\oint_{C_{2}} f(z) \mathrm{d} z-\int_{\gamma} f(z) \mathrm{d} z
$$

Two closed curves, same integral

And so $\oint_{C_{1}} f(z) \mathrm{d} z=\oint_{C_{2}} f(z) \mathrm{d} z$.

The arctangent function

Take the branch of $\arctan z$ on $\mathbb{C} \backslash[-i, i]$ that satisfies $\arctan 1=\frac{\pi}{4}$.
What is $\oint_{C} \arctan z \mathrm{dz}$? Same as $\oint_{D} \arctan z \mathrm{~d} z$.

The arctangent function

Parametrize $D: z(t)=r e^{i t}(0 \leqslant t \leqslant 2 \pi)$; we get

$$
\int_{0}^{2 \pi} \frac{1}{2 i} \log \left(\frac{1+i r e^{i t}}{1-i r e^{i t}}\right) i r e^{i t} \mathrm{~d} t
$$

Too difficult, let's try something else ...

The arctangent function

Take the branch of $\arctan z$ on $\mathbb{C} \backslash[-i, i]$ that satisfies $\arctan 1=\frac{\pi}{4}$.
What is $\oint_{C} \arctan z \mathrm{dz}$? Same as $\oint_{E} \arctan z \mathrm{~d} z$.

The arctangent function

Let E shrink to the branch cut. The integral stays the same, but

- integrals along circular arcs converge to 0
- integral along right-hand line converges to

$$
\int_{-1}^{1} \frac{1}{2 i} \ln \left(\frac{1-t}{1+t}\right) i \mathrm{~d} t
$$

- integral along left-hand line converges to

$$
\int_{1}^{-1} \frac{1}{2 i}\left(\ln \left(\frac{1-t}{1+t}\right)+2 \pi i\right) i \mathrm{~d} t
$$

The arctangent function

So $\int_{C} \arctan z \mathrm{dz}$ is (apparently) equal to

$$
\int_{-1}^{1} \frac{1}{2 i} \ln \left(\frac{1-t}{1+t}\right) i \mathrm{~d} t+\int_{1}^{-1} \frac{1}{2 i}\left(\ln \left(\frac{1-t}{1+t}\right)+2 \pi i\right) i \mathrm{~d} t=-2 \pi i
$$

What to do?

From the book: 4.1, 4.2
Suitable problems: 4.1-4.12
Recommended problems: 4.1, 4.2, 4.3, 4.6, 4.7, 4.9, 4.11 (choice).

