wi4243AP: Complex Analysis
 week 4, Friday

K. P. Hart
Faculty EEMCS
TU Delft

Delft, 26 september, 2014

Outline

(1) Back to Monday
(2) Section 4.2

- Example 4.2.4
- Fresnel integrals
(3) Section 4.3
- Cauchy's integral formula
- Higher-order derivatives
- More good stuff

Modulus of the arctangent

We had the branch of $\arctan z$ on $\mathbb{C} \backslash[-i, i]$ that satisfies $\arctan 1=\frac{\pi}{4}$.
And we were were talking about $\oint_{E} \arctan z \mathrm{~d} z$.

Modulus of the arctangent

We wanted to estimate the modulus of the part of the integral along (part of) the circle $\{z:|z-i|=\varepsilon\}$.
For that we needed to know the modulus of $\arctan z$.
Remember

$$
\arctan z=\frac{1}{2 i} \log \left(\frac{1+i z}{1-i z}\right)=\frac{1}{2 i} \ln \left|\frac{1+i z}{1-i z}\right|+\frac{i}{2 i} \arg \left(\frac{1+i z}{1-i z}\right)
$$

The easy bit: we took the branch of \log with $0<\arg w<2 \pi$, so

$$
\left|\frac{1}{2 i} \arg \left(\frac{1+i z}{1-i z}\right)\right| \leqslant \pi
$$

Modulus of the arctangent

For the other part (assume $|z-i|=\varepsilon$):

$$
\ln \left|\frac{1+i z}{1-i z}\right|=\ln |1+i z|-\ln |1-i z|=\ln \varepsilon-\ln |z+i|
$$

As ε is about to go to 0 we assume $\varepsilon<\frac{1}{2}$; then $\frac{3}{2}<|z+i|<\frac{5}{2}<e$ and so

$$
|\ln | \frac{1+i z}{1-i z}||\leqslant|\ln \varepsilon|+1
$$

The integral

So, if $|z-i|=\varepsilon$ then

$$
|\arctan z| \leqslant \frac{1}{2}|\ln \varepsilon|+\frac{1}{2}+\pi
$$

and so the modulus of the integral along the circle is bounded by

$$
\pi \varepsilon|\ln \varepsilon|+\pi \varepsilon+\frac{\pi^{2}}{2} \varepsilon
$$

Poisson integral: $\int_{-\infty}^{\infty} e^{-x^{2}} \cos 2 b x d x$

Use $f(z)=e^{-z^{2}}$, analytic everywhere.
Contour: Γ_{a}, rectangle with vertices $-a, a, a+b i$ and $-a+b i$.
Cauchy-Coursat:

$$
\oint_{\Gamma_{a}} f(z) \mathrm{d} z=0
$$

Poisson integral: $\int_{-\infty}^{\infty} e^{-x^{2}} \cos 2 b x d x$

The integral along Γ_{a} splits into four integrals: along top and bottom:

and along the two sides.

Poisson integral: $\int_{-\infty}^{\infty} e^{-x^{2}} \cos 2 b x d x$

- Along the sides $\left(\Gamma_{2}\right.$ and $\left.\Gamma_{4}\right): z= \pm a+i t(0 \leqslant t \leqslant b)$
- Function value: $e^{-(\pm a+i t)^{2}}=e^{-a^{2}} \cdot e^{t^{2}} \cdot e^{\mp 2 i a t}$
- Modulus: $e^{-a^{2}} \cdot e^{t^{2}} \leqslant e^{-a^{2}} \cdot e^{b^{2}}$
- Length of side: b

Poisson integral: $\int_{-\infty}^{\infty} e^{-x^{2}} \cos 2 b x d x$

By last week's useful inequality:

$$
\left|\int_{\Gamma_{2}} f(z) \mathrm{d} z\right| \leqslant e^{-a^{2}} \cdot e^{b^{2}} \cdot b
$$

and so $\lim _{a \rightarrow \infty} \int_{\Gamma_{2}} f(z) \mathrm{d} z=0$ (also for Γ_{4}).

Poisson integral: $\int_{-\infty}^{\infty} e^{-x^{2}} \cos 2 b x d x$

Along the top:

$$
e^{-(x+b i)^{2}}=e^{-x^{2}} \cdot e^{b^{2}} \cdot e^{-2 i b x}=e^{-x^{2}} \cdot e^{b^{2}}(\cos 2 b x-i \sin 2 b x)
$$

The integral becomes, using $\int_{a}^{-a}=-\int_{-a}^{a}$:

$$
-e^{b^{2}} \int_{-a}^{a} e^{-x^{2}} \cos 2 b x \mathrm{~d} x+i e^{b^{2}} \int_{-a}^{a} e^{-x^{2}} \sin 2 b x \mathrm{~d} x
$$

Imaginary part is zero: the function is odd.

Poisson integral: $\int_{-\infty}^{\infty} e^{-x^{2}} \cos 2 b x d x$

Put it all together: $0=\lim _{a \rightarrow \infty} \oint_{\Gamma_{a}} f(z) \mathrm{d} z$ gives us

$$
\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x-e^{b^{2}} \int_{-\infty}^{\infty} e^{-x^{2}} \cos 2 b x \mathrm{~d} x=0
$$

or

$$
\int_{-\infty}^{\infty} e^{-x^{2}} \cos 2 b x \mathrm{~d} x=e^{-b^{2}} \int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x=e^{-b^{2}} \sqrt{\pi}
$$

(as everyone knows ...)

A contour

Let's calculate $\int_{0}^{\infty} \cos x^{2} \mathrm{~d} x$ and $\int_{0}^{\infty} \sin x^{2} \mathrm{~d} x$.
We use $f(z)=e^{i z^{2}}$ and the contour Γ_{R} composed of

The interval $[0, R]$
The arc γ_{R} from R to $R e^{i \frac{\pi}{4}}$ The line segment from $R e^{i \frac{\pi}{4}}$ to 0 So, $\oint_{\Gamma_{R}} f(z) \mathrm{d} z=0$

Split the integral

The integral $\oint_{\Gamma_{R}} f(z) \mathrm{d} z$ is the sum of

- $\int_{0}^{R} \cos x^{2}+i \sin x^{2} \mathrm{~d} x$
- $\int_{\gamma_{R}} f(z) \mathrm{d} z$
- $\int_{R}^{0} e^{i(\alpha t)^{2}} \mathrm{~d} \alpha t$, where $\alpha=e^{i \frac{\pi}{4}}=\frac{1}{2} \sqrt{2}+i \frac{1}{2} \sqrt{2}$

The last integral is equal to $-\alpha \int_{0}^{R} e^{-t^{2}} \mathrm{~d} t$

The arc, part I

Consider $\int_{\gamma_{R}} f(z) \mathrm{d} z$.
The useful inequality yields

$$
\left|\int_{\gamma_{R}} f(z) \mathrm{d} z\right| \leqslant 1 \cdot R \cdot \frac{\pi}{4}
$$

Because $|f(z)|$ attains its maximum, 1 , on γ_{R} at R.
The useful inequality is no panacea.

The arc, part II

Consider $\int_{\gamma_{R}} f(z) \mathrm{d} z$ (again).
Parametrize $\gamma_{R}: z(t)=R e^{i \theta}$ (with $0 \leqslant \theta \leqslant \frac{\pi}{4}$).
So, using that $\left(R e^{i \theta}\right)^{2}=R^{2}(\cos 2 \theta+i \sin 2 \theta)$,

$$
\begin{aligned}
\left|\int_{\gamma_{R}} f(z) \mathrm{d} z\right| & =\left|\int_{0}^{\frac{\pi}{4}} e^{i R^{2} \cos 2 \theta} \cdot e^{-R^{2} \sin 2 \theta} i R e^{i \theta} \mathrm{~d} \theta\right| \\
& \leqslant R \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \sin 2 \theta} \mathrm{~d} \theta
\end{aligned}
$$

An (over)estimate

Now work on $\int_{0}^{\frac{\pi}{4}} e^{-R^{2} \sin 2 \theta} \mathrm{~d} \theta$.
On the interval $\left[0, \frac{\pi}{4}\right]$ we have

$$
\sin 2 \theta \geqslant \frac{4}{\pi} \theta
$$

hence

$$
\int_{0}^{\frac{\pi}{4}} e^{-R^{2} \sin 2 \theta} \mathrm{~d} \theta \leqslant \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \frac{4}{\pi} \theta} \mathrm{~d} \theta
$$

An (over)estimate

We have

$$
\int_{0}^{\frac{\pi}{4}} e^{-R^{2} \sin 2 \theta} \mathrm{~d} \theta \leqslant \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \frac{4}{\pi} \theta} \mathrm{~d} \theta=\frac{\pi}{4 R^{2}}\left(1-e^{-R^{2}}\right)
$$

So that

$$
\left|\int_{\gamma_{R}} f(z) \mathrm{d} z\right| \leqslant \frac{\pi}{4 R}\left(1-e^{-R^{2}}\right)
$$

and so

$$
\lim _{R \rightarrow \infty} \int_{\gamma_{R}} f(z) \mathrm{d} z=0
$$

The answers

We put it all together:

$$
0=\lim _{R \rightarrow \infty} \oint_{\Gamma_{R}} f(z) \mathrm{d} z=\int_{0}^{\infty} \cos x^{2}+i \sin x^{2} \mathrm{~d} x-\alpha \int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x
$$

and so

$$
\int_{0}^{\infty} \cos x^{2} \mathrm{~d} x=\int_{0}^{\infty} \sin x^{2} \mathrm{~d} x=\frac{1}{2} \sqrt{2} \int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{1}{4} \sqrt{2 \pi}
$$

The formula

Theorem (Cauchy integral formula)

Let f be analytic in some open set, C a contour and z inside C. Then

$$
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta
$$

Note: the integrand is analytic everywhere in the open set, except at z. So, integral independent of contour (around z).

Why it is true

Use only circles around z and subtract and add $f(z)$ in the integral:

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta & =\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)-f(z)+f(z)}{\zeta-z} \mathrm{~d} \zeta \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)-f(z)}{\zeta-z} \mathrm{~d} \zeta+\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\zeta-z} \mathrm{~d} \zeta \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)-f(z)}{\zeta-z} \mathrm{~d} \zeta+f(z)
\end{aligned}
$$

By 'the heart of complex analysis'.

Losing the first integral

Remember: because $(f(\zeta)-f(z)) /(\zeta-z)$ is analytic (except at z)

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)-f(z)}{\zeta-z} \mathrm{~d} \zeta
$$

is independent of the radius of C.
If the radius r is small enough then
$\left|(f(\zeta)-f(z)) /(\zeta-z)-f^{\prime}(z)\right|<1$ for all ζ on C.
By our useful inequality:

$$
\left|\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)-f(z)}{\zeta-z} \mathrm{~d} \zeta\right| \leqslant \frac{1}{2 \pi} \cdot\left(\left|f^{\prime}(z)\right|+1\right) \cdot 2 \pi r=\left(\left|f^{\prime}(z)\right|+1\right) \cdot r
$$

The integral must be zero.

Leibniz rules

Differentiate both sides of Cauchy's formula:

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\mathrm{d}}{\mathrm{~d} z} \frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{\partial}{\partial z} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{(\zeta-z)^{2}} \mathrm{~d} \zeta
\end{aligned}
$$

Yes, this is legitimate, see page 138.

Leibniz rules

Given a curve γ and a continuous $f: \gamma \rightarrow \mathbb{C}$ one can define

$$
h(z)=\int_{\gamma} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta
$$

The argument in the book actually establishes that h is analytic off γ and

$$
h^{\prime}(z)=\int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{2}} \mathrm{~d} \zeta
$$

This is an important method of generating analytic functions.

The General Formula

Keep differentiating:

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(\zeta)}{(\zeta-z)^{n+1}} \mathrm{~d} \zeta
$$

This only uses

$$
\frac{\partial^{n}}{\partial z^{n}} \frac{1}{\zeta-z}=\frac{n!}{(\zeta-z)^{n+1}}
$$

Some consequences

Theorem

If f is differentiable on an open set then it is, at once, infinitely often differentiable.

Theorem (Cauchy's Estimate)

If $M(r)=\max \left\{|f(z)|:\left|z-z_{0}\right|=r\right\}$ then

$$
\frac{\left|f^{(k)}\left(z_{0}\right)\right|}{k!} \leqslant \frac{M(r)}{r^{k}}
$$

for all k.

Example 4.3.2 done right

Given $|f(z)| \leqslant 1 /(1-|z|)$ give an estimate for $\left|f^{(n)}(0)\right|$.
Use the circle with radius $n /(n+1)$; on the circle we have $1-|\zeta|=1 /(n+1)$, hence $|f(\zeta)| \leqslant n+1$.

Apply Cauchy's estimate:

$$
\frac{\left|f^{(n)}(0)\right|}{n!} \leqslant \frac{n+1}{\left(\frac{n}{n+1}\right)^{n}}=(n+1)\left(\frac{n+1}{n}\right)^{n}
$$

Done!

Morera's theorem

Theorem

If f is continuous on a simply connected domain D and

$$
\oint_{C} f(z) \mathrm{d} z=0
$$

for all closed curves in D then f is analytic.
It has a differentiable primitive, hence f itself is (infinitely often) differentiable.

Gauss' mean value theorem

Theorem

If f is analytic on and inside the circle $\left|z-z_{0}\right|=r$ then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) \mathrm{d} \theta
$$

Simply rewrite Cauchy's formula by substituting $z=z_{0}+r e^{i \theta}$. It also works for the real and imaginary parts, i.e., for harmonic functions.

Liouville's theorem

Theorem

If f is an entire function (analytic on all of \mathbb{C}) and bounded (there is B such that $|f(z)| \leqslant B$ for all z), then f is constant.

Apply the useful inequality to

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \oint_{C_{R}} \frac{f(\zeta)}{(\zeta-z)^{2}} \mathrm{~d} \zeta
$$

(C_{R} is the circle given by $|\zeta-z|=R$).
$M \leqslant B R^{-2}$ and $L=2 \pi R$, so $\left|f^{\prime}(z)\right| \leqslant B / R$ for all R; now let $R \rightarrow \infty$.

Extra: Fundamental Theorem of Algebra

Theorem

Let p be a non-constant complex polynomial. Then $p(z)=0$ has a solution in \mathbb{C}.

It follows that a polynomial of degree n has n zeros, counting multiplicities; e.g., $z^{10}=0$ has ten solutions (all 0).

Extra: Fundamental Theorem of Algebra

We assume $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ (with $n \geqslant 1$) and that $p(z)=0$ has no solutions.

- Observe that $\lim _{z \rightarrow \infty} p(z) z^{-n}=1$
- fix R so large that $\left|p(z) z^{-n}\right| \geqslant \frac{1}{2}$ whenever $|z| \geqslant R$ and $\frac{1}{2} R^{n} \geqslant|p(0)|+1$.
- So, if $|z| \geqslant R$ then $|p(z)| \geqslant|p(0)|+1$.
- Pick z_{0} such that $\left|p\left(z_{0}\right)\right|$ is the minimum of $|p(z)|$ on the closed and bounded set $\{z:|z| \leqslant R\}$.

Extra: Fundamental Theorem of Algebra

We have R and z_{0} such that

- If $|z| \leqslant R$ then $\left|p\left(z_{0}\right)\right| \leqslant|p(z)|$
- If $|z| \geqslant R$ then $\left|p\left(z_{0}\right)\right| \leqslant|p(0)|<|p(0)|+1 \leqslant|p(z)|$
- So, $\left|p\left(z_{0}\right)\right|$ is the global minimum of $|p(z)|$ on \mathbb{C}
- By assumption $p\left(z_{0}\right) \neq 0$
- For all z we have $\left|\frac{1}{p(z)}\right| \leqslant\left|\frac{1}{p\left(z_{0}\right)}\right|$

We see that $\frac{1}{p(z)}$ is entire (because p is) and bounded, but not constant; a contradiction.

Maximum Modulus theorem

Theorem

If f is analytic on a domain D then the maximum value of $|f(z)|$, if any, occurs on the boundary of D. (Unless f is constant.)

By the mean value theorem: if $\left|f\left(z_{0}\right)\right|$ is a (local) maximum in the interior then, as soon as $N\left(z_{0} ; r\right) \subseteq D$

$$
\left|f\left(z_{0}\right)\right| \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+r e^{i \theta}\right)\right| \mathrm{d} \theta \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}\right)\right| \mathrm{d} \theta=\left|f\left(z_{0}\right)\right|
$$

This implies $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{0}+r e^{i \theta}\right)\right|$ for all θ and all such r. Apply Exercise 2.21.b: f is constant on a disc around z_{0}.

Maximum Modulus theorem

Theorem

If u is harmonic on a domain D then the maximum value of $|u(x, y)|$, if any, occurs on the boundary of D. (Unless u is constant.)

Find a complex conjugate v and consider $f=e^{u+i v}$.
Then $|f(z)|=e^{u(x, y)} \ldots$

What to do?

From the book: 4.2, 4.3
Suitable problems: 4.11-4.34
Recommended problems: 4.11 (choice), 4.14, 4.16, 4.17, 4.21, 4.22, 4.25, 4.30

