wi4243AP: Complex Analysis

week 5, Monday

K. P. Hart

Faculty EEMCS TU Delft

Delft, 29 september, 2014

Section 5.2: Sequences of functions Section 5.3: Taylor series for analytic functions

- Convergence
- Power series
- Differentiation and integration

Section 5.3: Taylor series for analytic functions
 Example

Convergence

Convergence Power series Differentiation and integration

Definition

A sequence $\{f_n\}$ of functions converges to a function f (on some domain) if for each individual z in the domain one has

$$\lim_{n\to\infty}f_n(z)=f(z)$$

Definition

 $f_n(z) \to f(z)$ uniformly if for every $\varepsilon > 0$ there is an $N(\varepsilon)$ such that for all $n \ge N(\varepsilon)$ we have

$$\left|f_n(z)-f(z)\right|<\varepsilon$$

for all z in the domain.

Delft University of Technology

ft

Convergence Power series Differentiation and integratic

Standard example

$$D = \{z : |z| < 1\}$$
 and $f_n(z) = z^n$.

- $f_n(z) \rightarrow 0$ for each individual z
- $f_n(z) \rightarrow 0$ not uniformly on D
- $f_n(z) \rightarrow 0$ uniformly on $D_r = \{z : |z| \leqslant r\}$ if r < 1

Uniform convergence: properties

Theorem

If $f_n \to f$ uniformly on some curve C then

$$\lim_{n\to\infty}\int_C f_n(z)\,\mathrm{d} z = \int_C f(z)\,\mathrm{d} z$$

Proof.

By the useful inequality

$$\left|\int_{C} f_{n}(z) \, \mathrm{d} z - \int_{C} f(z) \, \mathrm{d} z\right| \leqslant \int_{C} |f_{n}(z) - f(z)| \, \mathrm{d} z \leqslant M_{n} \cdot L$$

where $M_n = \sup\{|f_n(z) - f(z)| : z \in C\}$ and L is the length of C. Uniform convergence: $M_n \to 0$. Section 5.2: Sequences of functions Section 5.3: Taylor series for analytic functions **Convergence** Power series Differentiation and integration

Uniform convergence: properties

Theorem

If $f'_n \to g$ uniformly and $f_n \to f$ (in just one point) then f' = g.

So

$$\lim_n f'_n = (\lim f_n)'$$

provided $\{f'_n\}$ is known to converge uniformly and $\{f_n\}$ converges somewhere.

Power series

Convergence Power series Differentiation and integration

Special form: a fixed number z_0 and a sequence $\{a_n\}$ of numbers are given. Put $f_n(z) = a_n(z - z_0)^n$, we write

$$\sum_{n=0}^{\infty}a_n(z-z_0)^n$$

for the resulting series.

Convergence Power series Differentiation and integration

Radius of convergence

Theorem

Given a power series $\sum_{n} a_n (z - z_0)^n$ there is an R such that

•
$$\sum_{n} a_n (z - z_0)^n$$
 converges if $|z - z_0| < R$

•
$$\sum_{n} a_n (z - z_0)^n$$
 diverges if $|z - z_0| > R$

In addition: if r < R then the series converges uniformly on $\{z : |z - z_0| \leq r\}.$

- On the boundary $|z z_0| = R$ anything can happen.
- R = 0, $0 < R < \infty$ and $R = \infty$ are all possible.

R is the *radius of convergence* of the series.

Differentiation

Convergence Power series Differentiation and integration

Theorem

Let $\sum_{n} a_n (z - z_0)^n$ be a power series, with radius R, and let $\sum_{n} na_n (z - z_0)^{n-1}$ be its termwise derivative, with radius R'. Then R = R'.

Proof.

If $\sum_{n} na_n(z-z_0)^{n-1}$ converges absolutely then so does $\sum_{n} a_n(z-z_0)^n$, by comparison. So $R \ge R'$.

Differentiation

Convergence Power series Differentiation and integration

Proof.

Conversely: if $\sum_{n} a_n (w - z_0)^n$ converges then so does $\sum_{n} na_n (z - z_0)^{n-1}$ whenever $|z - z_0| < |w - z_0|$. Fix N such that $|a_n (w - z_0)^n| \leq 1$ for $n \geq N$. For those n

$$|na_{n}(z-z_{0})^{n-1}| = \left|a_{n}(w-z_{0})^{n}\frac{1}{z-z_{0}}n\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n}\right| \\ \leqslant \frac{n}{|z-z_{0}|}\left|\frac{z-z_{0}}{w-z_{0}}\right|^{n}$$

Now use that $\sum_{n} nz^{n}$ has radius 1.

TUDelft

Section 5.2: Sequences of functions Section 5.3: Taylor series for analytic functions Convergence Power series Differentiation and integration

Differentiation/Integration

Theorem

If
$$R > 0$$
 and $f(z) = \sum_{n} a_n (z - z_0)^n$ for $|z - z_0| < R$ then
• $f'(z) = \sum_{n} na_n (z - z_0)^{n-1}$.

•
$$\sum_{n} \frac{a_n}{n+1} (z-z_0)^{n+1}$$
 is a primitive function of f

Convergence Power series Differentiation and integration

Differentiation/Integration

• We have
$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$$
 for $|z| < 1$.
• So $\sum_{n=1}^{\infty} nz^{n-1} = \frac{1}{(1-z)^2}$.
• Also, $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ is the derivative of $\sum_{n=1}^{\infty} \frac{1}{n} z^n$.
• So, $\sum_{n=1}^{\infty} \frac{1}{n} z^n = -\log(1-z) + c$ for some c ;
• put in $z = 0$: we get $c = 0$, and so

$$\sum_{n=1}^{\infty} \frac{1}{n} z^n = -\log(1-z)$$
 (|z| < 1)

Derivatives

Convergence Power series Differentiation and integration

If
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
, with $R > 0$, then
• $f(z_0) = a_0$
• $f'(z_0) = 1 \cdot a_1$
• $f''(z_0) = 2 \cdot 1 \cdot a_2$
• $f^{(k)}(z_0) = k! a_k$

and we get

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Main result

Theorem

Let $f : D \to \mathbb{C}$ be analytic, let $z_0 \in D$ and let R be the distance from z_0 to the complement of D (if $D = \mathbb{C}$ then $R = \infty$). Then on the disc $\{z : |z - z_0| < R\}$ we have

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

where

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta = \frac{f^{(n)}(z_0)}{n!}$$

and C is any simple closed contour around z_0 lying inside D.

Delft University of Technology

Take z inside the circle $\{w : |w - z_0| = R\}$ and take R_1 such that $|z - z_0| = r < R_1 < R$. Work on the circle C_1 of radius R_1 around z_0 .

Why?

Apply Cauchy's formula:
$$f(z) = \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta$$
.
Transform $1/(\zeta - z)$:

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^n$$

The modulus, r/R_1 , of the quotient is less than 1 on C_1 , so this series converges *uniformly* on C_1 . We may interchange sum and integral.

Section 5.2: Sequences of functions Section 5.3: Taylor series for analytic functions

f

Example

Why?

$$\begin{aligned} (z) &= \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta \\ &= \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^n \, \mathrm{d}\zeta \\ &= \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} (z - z_0)^n \, \mathrm{d}\zeta \\ &= \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \, \mathrm{d}\zeta \times (z - z_0)^n \end{aligned}$$

Done, by Cauchy's general formula.

What is the radius?

The radius of convergence of the series is the largest R such that f is analytic on $\{z : |z - z_0| < R\}$, possibly $R = \infty$.

For example: the Taylor series of $\arctan z$ centered at 0 has radius 1, because *i* and -i are branch points:

arctan z is analytic on $\{z: |z|<1\}$ but on no larger disc centered at 0.

arctan z

Remember:

$$\arctan z = \frac{1}{2i} \log \left(\frac{1+iz}{1-iz} \right)$$

Also

$$Log(1 + z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n$$

We stick in iz and -iz and subtract the results.

arctan z

$$Log(1 + iz) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (iz)^n$$
$$Log(1 - iz) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (-iz)^n$$

the even-numbered terms drop out; if *n* is odd, say n = 2k + 1, the *n*th terms give

$$\frac{(-1)^{2k+2}}{2k+1}(iz)^{2k+1} - \frac{(-1)^{2k+2}}{2k+1}(-iz)^{2k+1} = \frac{2i^{2k+1}}{2k+1}z^{2k+1}$$

arctan z

Now note that
$$i^{2k+1} = (-1)^k i$$
, so we get

$$\frac{2i(-1)^k}{2k+1}z^{2k+1}$$

and so

arctan
$$z = rac{1}{2i} \sum_{k=0}^{\infty} rac{2i(-1)^k}{2k+1} z^{2k+1} + m\pi$$

for some *m*. If we want $\arctan 0 = 0$ then m = 0 and

arctan
$$z = \sum_{k=0}^{\infty} \frac{(-1)^{2k+1}}{2k+1} z^{2k+1}$$

arctan z

The series also can be obtained by integrating $\frac{1}{1+z^2}$ term-by-term:

arctan
$$z = \int \frac{1}{1+z^2} dz$$

 $= \int \sum_{n=0}^{\infty} (-1)^n z^{2n} dz$
 $= \sum_{n=0}^{\infty} \int (-1)^n z^{2n} dz$
 $= \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} z^{2n+1}$

The integration constant is zero, because $\arctan 0 = 0$.

What to do?

From the book: 5.2, 5.3 Suitable problems: 5.1 - 5.27 Recommended problems: 5.3, 5.7, 5.8, 5.11, 5.12, 5.17.

