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Convergence

Definition

A sequence {fn} of functions converges to a function f (on some
domain) if for each individual z in the domain one has

lim
n→∞

fn(z) = f (z)

Definition

fn(z)→ f (z) uniformly if for every ε > 0 there is an N(ε) such
that for all n > N(ε) we have∣∣fn(z)− f (z)

∣∣ < ε

for all z in the domain.
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Standard example

D = {z : |z | < 1} and fn(z) = zn.

fn(z)→ 0 for each individual z

fn(z)→ 0 not uniformly on D

fn(z)→ 0 uniformly on Dr = {z : |z | 6 r} if r < 1
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Uniform convergence: properties

Theorem

If fn → f uniformly on some curve C then

lim
n→∞

∫
C
fn(z) dz =

∫
C
f (z) dz

Proof.

By the useful inequality∣∣∣∣∫
C
fn(z) dz −

∫
C
f (z) dz

∣∣∣∣ 6 ∫
C
|fn(z)− f (z)| dz 6 Mn · L

where Mn = sup{|fn(z)− f (z)| : z ∈ C} and L is the length of C .
Uniform convergence: Mn → 0.
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Uniform convergence: properties

Theorem

If f ′n → g uniformly and fn → f (in just one point) then f ′ = g.

So
lim
n

f ′n = (lim fn)′

provided {f ′n} is known to converge uniformly and {fn} converges
somewhere.
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Power series

Special form: a fixed number z0 and a sequence {an} of numbers
are given. Put fn(z) = an(z − z0)n, we write

∞∑
n=0

an(z − z0)n

for the resulting series.
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Radius of convergence

Theorem

Given a power series
∑

n an(z − z0)n there is an R such that∑
n an(z − z0)n converges if |z − z0| < R∑
n an(z − z0)n diverges if |z − z0| > R

In addition: if r < R then the series converges uniformly on
{z : |z − z0| 6 r}.

On the boundary — |z − z0| = R — anything can happen.

R = 0, 0 < R <∞ and R =∞ are all possible.

R is the radius of convergence of the series.
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Differentiation

Theorem

Let
∑

n an(z − z0)n be a power series, with radius R, and let∑
n nan(z − z0)n−1 be its termwise derivative, with radius R ′.

Then R = R ′.

Proof.

If
∑

n nan(z − z0)n−1 converges absolutely then so does∑
n an(z − z0)n, by comparison. So R > R ′.
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Differentiation

Proof.

Conversely: if
∑

n an(w − z0)n converges then so does∑
n nan(z − z0)n−1 whenever |z − z0| < |w − z0|.

Fix N such that |an(w − z0)n| 6 1 for n > N. For those n

|nan(z − z0)n−1| =

∣∣∣∣an(w − z0)n
1

z − z0
n

(
z − z0

w − z0

)n∣∣∣∣
6

n

|z − z0|

∣∣∣∣ z − z0

w − z0

∣∣∣∣n
Now use that

∑
n nz

n has radius 1.
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Differentiation/Integration

Theorem

If R > 0 and f (z) =
∑

n an(z − z0)n for |z − z0| < R then

f ′(z) =
∑

n nan(z − z0)n−1.∑
n

an
n+1 (z − z0)n+1 is a primitive function of f
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Differentiation/Integration

We have
∑∞

n=0 z
n = 1

1−z for |z | < 1.

So
∑∞

n=1 nz
n−1 = 1

(1−z)2 .

Also,
∑∞

n=0 z
n = 1

1−z is the derivative of
∑∞

n=1
1
nz

n.

So,
∑∞

n=1
1
nz

n = − Log(1− z) + c for some c ;

put in z = 0: we get c = 0, and so

∞∑
n=1

1

n
zn = − Log(1− z) (|z | < 1)
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Derivatives

If f (z) =
∑∞

n=0 an(z − z0)n, with R > 0, then

f (z0) = a0

f ′(z0) = 1 · a1

f ′′(z0) = 2 · 1 · a2

f (k)(z0) = k!ak

and we get

f (z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n
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Example

Main result

Theorem

Let f : D → C be analytic, let z0 ∈ D and let R be the distance
from z0 to the complement of D (if D = C then R =∞).
Then on the disc {z : |z − z0| < R} we have

f (z) =
∞∑
n=0

an(z − z0)n

where

an =
1

2πi

∮
C

f (ζ)

(ζ − z0)n+1
dζ =

f (n)(z0)

n!

and C is any simple closed contour around z0 lying inside D.
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Why?

z0

R

z
r

R1

Take z inside the circle {w : |w − z0| = R} and take R1 such that
|z − z0| = r < R1 < R. Work on the circle C1 of radius R1

around z0.
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Why?

Apply Cauchy’s formula: f (z) = 1
2πi

∮
C1

f (ζ)
ζ−z dζ.

Transform 1/(ζ − z):

1

ζ − z
=

1

ζ − z0

1

1− z−z0
ζ−z0

=
1

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n

The modulus, r/R1, of the quotient is less than 1 on C1,
so this series converges uniformly on C1.
We may interchange sum and integral.
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Why?

f (z) =
1

2πi

∮
C1

f (ζ)

ζ − z
dζ

=
1

2πi

∮
C1

f (ζ)

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n

dζ

=
∞∑
n=0

1

2πi

∮
C1

f (ζ)

(ζ − z0)n+1
(z − z0)n dζ

=
∞∑
n=0

1

2πi

∮
C1

f (ζ)

(ζ − z0)n+1
dζ × (z − z0)n

Done, by Cauchy’s general formula.
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What is the radius?

The radius of convergence of the series is the largest R such that
f is analytic on {z : |z − z0| < R}, possibly R =∞.

For example: the Taylor series of arctan z centered at 0 has
radius 1, because i and −i are branch points:

arctan z is analytic on {z : |z | < 1} but on no larger disc centered
at 0.
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arctan z

Remember:

arctan z =
1

2i
log

(
1 + iz

1− iz

)
Also

Log(1 + z) =
∞∑
n=1

(−1)n+1

n
zn

We stick in iz and −iz and subtract the results.
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arctan z

Log(1 + iz) =
∞∑
n=1

(−1)n+1

n
(iz)n

Log(1− iz) =
∞∑
n=1

(−1)n+1

n
(−iz)n

the even-numbered terms drop out;
if n is odd, say n = 2k + 1, the nth terms give

(−1)2k+2

2k + 1
(iz)2k+1 − (−1)2k+2

2k + 1
(−iz)2k+1 =

2i2k+1

2k + 1
z2k+1
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arctan z

Now note that i2k+1 = (−1)k i , so we get

2i(−1)k

2k + 1
z2k+1

and so

arctan z =
1

2i

∞∑
k=0

2i(−1)k

2k + 1
z2k+1 + mπ

for some m. If we want arctan 0 = 0 then m = 0 and

arctan z =
∞∑
k=0

(−1)2k+1

2k + 1
z2k+1
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arctan z

The series also can be obtained by integrating 1
1+z2 term-by-term:

arctan z =

∫
1

1 + z2
dz

=

∫ ∞∑
n=0

(−1)nz2n dz

=
∞∑
n=0

∫
(−1)nz2n dz

=
∞∑
n=0

(−1)n

2n + 1
z2n+1

The integration constant is zero, because arctan 0 = 0.
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What to do?

From the book: 5.2, 5.3
Suitable problems: 5.1 - 5.27
Recommended problems: 5.3, 5.7, 5.8, 5.11, 5.12, 5.17.
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