# wi4243AP: Complex Analysis week 5, Friday

K. P. Hart

Faculty EEMCS TU Delft

Delft, 3 october, 2014



### Outline

- Section 5.4: Laurent series
  - Example: arctan z
  - An old integral
  - An example
- Section 5.5: Analytic continuations
  - Uniqueness of analytic functions
  - Reflection Principle
- Section 6.1: Singularities
  - Definition
  - Classification



### A reminder

#### **Theorem**

Let  $f: D \to \mathbb{C}$  be analytic, let  $z_0 \in D$  and let R be the distance from  $z_0$  to the complement of D (if  $D = \mathbb{C}$  then  $R = \infty$ ).

Then on the disc  $\{z : |z - z_0| < R\}$  we have

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

where

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta = \frac{f^{(n)}(z_0)}{n!}$$

and C is any simple closed contour around  $z_0$  lying inside D.



### Main result

#### Theorem

Let  $f: A \to \mathbb{C}$  be analytic, where  $A = \{z: R_1 < |z - z_0| < R_2\}$  (an annulus). Then for  $z \in A$  we have

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z - z_0)^k$$

where for  $k \in \mathbb{Z}$ :

$$c_k = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} \,\mathrm{d}\zeta$$

where C is any simple closed contour around  $z_0$  lying inside A, oriented anticlockwise

JIIL



Take z inside the annulus.

Take  $r_1$  and  $r_2$  with  $R_1 < r_1 < |z - z_0| < r_2 < R_2$ 





Consider the simple closed curve C consisting of

- the circle  $C_2$  of radius  $r_2$  (anticlockwise),
- ullet the segment  $\gamma$  (inward),
- the circle  $C_1$  of radius  $r_1$  (clockwise),
- the segment  $\gamma$  (outward)



Apply Cauchy's formula:

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta$$
$$= \frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta$$

because the integrals along  $\gamma$  cancel.

As in the case of Taylor series:

$$\frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \, \mathrm{d}\zeta \times (z - z_0)^n$$
TuDelf

**Delft University of Technology** 

On  $C_1$  we rewrite  $1/(\zeta - z) = -1/(z - \zeta)$ :

$$\frac{1}{\zeta - z} = -\frac{1}{z - \zeta} = -\frac{1}{z - z_0 + z_0 - \zeta}$$

$$= -\frac{1}{z - z_0} \cdot \frac{1}{1 - \frac{\zeta - z_0}{z - z_0}}$$

$$= -\frac{1}{z - z_0} \cdot \sum_{n=0}^{\infty} \left(\frac{\zeta - z_0}{z - z_0}\right)^n$$

The quotient has modulus  $r_1/r < 1$  on  $\mathit{C}_1$ , so we get uniform convergence on  $\mathit{C}_1$ 



We get

$$\frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta = -\frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{z - z_0} \sum_{n=0}^{\infty} \left(\frac{\zeta - z_0}{z - z_0}\right)^n d\zeta 
= -\sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{C_1} f(\zeta) (\zeta - z_0)^n d\zeta \times (z - z_0)^{-(n+1)} 
= -\sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{(\zeta - z_0)^{-n}} d\zeta \times (z - z_0)^{-(n+1)} 
= -\sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{(\zeta - z_0)^{-n+1}} d\zeta \times (z - z_0)^{-n}$$



We add the results: f(z) is the sum of

$$-\sum_{n=1}^{\infty} \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{(\zeta-z_0)^{-n+1}} d\zeta \times (z-z_0)^{-n}$$

and

$$\sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \times (z - z_0)^n$$

We reverse the orientation of  $C_1$  to get rid of the minus-sign. The integrands  $f(\zeta)/(\zeta-z_0)^{n+1}$  are analytic on the whole annulus, so we can replace  $C_2$  and  $C_1$  by one and the same simple closed curve. And this gives us the formula we were looking for T

We know:

$$\arctan z = \frac{1}{2i} \log \left( \frac{1+iz}{1-iz} \right)$$

The following is another branch cut for arctan z (corresponds to positive real axis):





Thus  $\arctan z$  has a branch that is analytic on the annulus  $\{z: 1 < |z|\}.$ 

What is the Laurent series?

First for  $\frac{1}{1+z^2}$ :

$$\frac{1}{1+z^2} = \frac{1}{z^2} \frac{1}{1+\frac{1}{z^2}} = \frac{1}{z^2} \sum_{n=0}^{\infty} \left(\frac{-1}{z^2}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{2n+2}}$$



Now integrate:

$$\arctan z = \int \frac{1}{1+z^2} dz + c$$

$$= \int \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{2n+2}} dz + c$$

$$= \sum_{n=0}^{\infty} \int \frac{(-1)^n}{z^{2n+2}} dz + c$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)z^{2n+1}} + c$$



We have, if |z| > 1:

$$\arctan z = c + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)z^{2n+1}}$$

Possible values for c?

- $\arctan 1 = \frac{\pi}{4} + k\pi \ (k \text{ integer})$
- For z=1 the series sums to  $-\frac{\pi}{4}$
- So,  $c = \frac{\pi}{2} + k\pi$  (k integer)



Observe that

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)z^{2n+1}} = -\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \left(\frac{1}{z}\right)^{2n+1} = -\arctan\frac{1}{z}$$

So, in this case we have  $\arctan z = c - \arctan \frac{1}{z}$ ; plug in z=1 to get  $c=\frac{\pi}{2}$ , so for |z|>1:

$$\arctan z = \frac{\pi}{2} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)z^{2n+1}}$$



# An old integral

Reconsider a problem from week 4 (Monday): What is  $\oint_C \arctan z \, dz$ ? Same as  $\oint_D \arctan z \, dz$ .





# An old integral

Integrate the Laurent series

$$\arctan z = \frac{\pi}{2} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)z^{2n+1}}$$

because  $|\frac{1}{z}| = \frac{1}{r}$ , where r is the radius of D and r > 1 we have uniform convergence, so

$$\oint_{D} \arctan z \, dz = \oint_{D} \frac{\pi}{2} \, dz + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)} \oint_{D} \frac{1}{z^{2n+1}} \, dz$$
$$= 0 - \oint_{D} \frac{1}{z} \, dz = -2\pi i$$



Consider 
$$f(z) = \frac{1}{(z-i)(z+2)} = \frac{1}{2+i} (\frac{1}{z-i} - \frac{1}{z+2}).$$

f is analytic on three annuli around 0:

- $\{z: |z| < 1\}$
- $\{z: 1 < |z| < 2\}$
- $\{z: 2 < |z|\}$

We make the three Laurent series.



First annulus:  $\{z : |z| < 1\}$ . We have

$$\frac{1}{z-i} = -\frac{1}{i} \frac{1}{1+iz} = -\frac{1}{i} \sum_{n=0}^{\infty} (-iz)^n$$

and

$$\frac{1}{z+2} = \frac{1}{2} \frac{1}{1+\frac{z}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{z}{2}\right)^n$$

Now add.



Second annulus:  $\{z: 1 < |z| < 2\}$ . We have

$$\frac{1}{z-i} = \frac{1}{z} \frac{1}{1-\frac{i}{z}} = \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{i}{z}\right)^n = \sum_{n=0}^{\infty} \frac{i^n}{z^{n+1}}$$

and

$$\frac{1}{z+2} = \frac{1}{2} \frac{1}{1+\frac{z}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{z}{2}\right)^n$$

Now add.



Third annulus:  $\{z: 2 < |z|\}$ . We have

$$\frac{1}{z-i} = \frac{1}{z} \frac{1}{1-\frac{i}{z}} = \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{i}{z}\right)^n = \sum_{n=0}^{\infty} \frac{i^n}{z^{n+1}}$$

and

$$\frac{1}{z+2} = \frac{1}{z} \frac{1}{1+\frac{2}{z}} = \frac{1}{z} \sum_{n=0}^{\infty} \left(-\frac{2}{z}\right)^n = \sum_{n=0}^{\infty} \frac{(-2)^n}{z^{n+1}}$$

Now add.



### An example

Consider these two power series and their sums:

$$f_1(z) = \sum_{n=0}^{\infty} z^n$$
 and  $f_2(z) = \sum_{n=0}^{\infty} \frac{1}{(1-i)^{n+1}} (z-i)^n$ 

Their circles of convergence are

$$\{z: |z| < 1\}$$
 and  $\{z: |z - i| < \sqrt{2}\}$ 

respectively.



# An example



We have  $f_1(z) = \frac{1}{1-z} = f_2(z)$  for z in the intersection of the discs. These functions are *analytic continuations* of each other.



# How unique are analytic functions?

#### Theorem

Assume f is analytic on a domain D and assume there is a converging sequence  $\{z_n\}$  in D with limit  $z_0 \in D$  such that  $f(z_n) = 0$  for all n. Then f(z) = 0 on the whole of D.

#### Proof.

It will follow that all coefficients in the Taylor series at  $z_0$  are zero. So f=0 on a disc around  $z_0$ .

By analytic continuation this will propagate through all of D.



#### arctan z

We know from geometry that  $\arctan x = \frac{\pi}{2} - \arctan \frac{1}{x}$  for all positive real x. Hence it holds everywhere.

Therefore we could have found the Laurent series of arctan z, for |z| > 1 from the Taylor series for |z| < 1:

$$\arctan z = \frac{\pi}{2} - \arctan \frac{1}{z} = \frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \left(\frac{1}{z}\right)^{2n+1}$$



# Reflection Principle

#### Theorem

Let D be a domain and  $f: D \to \mathbb{C}$  analytic. Let  $\bar{D} = \{\bar{z}: z \in D\}$  (the reflection of D in the real axis). Then  $\bar{f}: \bar{D} \to \mathbb{C}$ , defined by  $\bar{f}(z) = \overline{f(\bar{z})}$ , is analytic on  $\bar{D}$ .

#### Proof.

 $ar{f}$  is certainly real differentiable.

$$\bar{f}(x,y) = u(x,-y) - iv(x,-y)$$
; use the Cauchy-Riemann equations.



# Special case

If D is symmetric and intersects the real axis and  $f:D\to\mathbb{C}$  is analytic. Then the following are equivalent.

- f is real-valued on the real axis, and
- $f(\bar{z}) = \overline{f(z)}$  for all  $z \in D$

Use reflection and uniqueness.

This applies to all familiar functions:  $e^z$ ,  $\sin z$ ,  $\tan z$ ,  $\arctan z$ ,  $\log z$ ,  $\sqrt{z}$ , ...



### Definition

A singularity of a function is a point at which it is not analytic. We are (very much) interested in *isolated* singularities:

#### Definition

 $z_0$  is an isolated singularity of f if there is an r > 0 such that f is analytic on  $N(z_0, r) \setminus \{z_0\}$ .



### Laurent series

Note that  $N(z_0, r) \setminus \{z_0\}$  is an annulus, so we have a Laurent series centered at  $z_0$ :

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^{-n}$$

The negative powers form the principal part.



# Removable singularity

#### Definition

 $z_0$  is a removable singularity of f if the principal part is zero.

This means that  $f(z_0)$  can be defined so that f becomes analytic on  $N(z_0, r)$ .

Example:  $f(z) = \frac{1-\cos z}{z^2}$ ; the Laurent series is

$$\frac{1}{2} - \frac{1}{4!}z^2 + \frac{1}{6!}z^4 + \dots + \frac{(-1)^n}{(2n+2)!}z^{2n} + \dots$$

Set  $f(0) = \frac{1}{2}$  to remove the singularity.



### Pole

#### Definition

 $z_0$  is a pole of f if the principal part is finite, its *order* is the *largest* k such that  $b_k \neq 0$ .

Example:  $f(z) = \frac{1-\cos z}{z^4}$ ; the Laurent series is

$$\frac{1}{2}z^{-2} - \frac{1}{4!} + \frac{1}{6!}z^2 + \dots + \frac{(-1)^n}{(2n+2)!}z^{2n-2} + \dots$$

This is a pole of order 2.



### Pole

#### Note

 $z_0$  is a pole of f of order k iff k is such that  $\lim_{z\to z_0}(z-z_0)^k f(z)$  exists and is non-zero. (It's the coefficient of  $(z-z_0)^{-k}$ .)

Example:  $f(z) = \frac{1}{\sin z}$ ; it has a pole of order 1 at 0, because  $\lim_{z\to 0} \frac{z}{\sin z} = 1$ .

If k > 1 then  $\lim_{z \to 0} \frac{z^k}{\sin z} = 0$ ;

If k < 1 then  $\lim_{z \to 0} \frac{z^k}{\sin z} = \infty$ .



# The Laurent series of $(\sin z)^{-1}$

We calculate (part of) the Laurent series of  $\frac{1}{\sin z}$ . We know:

$$\sin z = z - \frac{1}{6}z^3 + \frac{1}{120}z^5 + \cdots$$

and

$$\frac{1}{\sin z} = \frac{a_{-1}}{z} + a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \cdots$$

Now multiply:

$$1 = \sin z \cdot \frac{1}{\sin z}$$

SO ...



# The Laurent series of $(\sin z)^{-1}$

 $a_3 = \frac{1}{6}a_1 - \frac{1}{120}a_{-1} = \frac{7}{260}, \dots$ 

$$1 = (z - \frac{1}{6}z^{3} + \frac{1}{120}z^{5} + \cdots)(\frac{a_{-1}}{z} + a_{0} + a_{1}z + a_{2}z^{2} + a_{3}z^{3} + \cdots)$$

$$= a_{-1} + a_{0}z + (a_{1} - \frac{1}{6}a_{-1})z^{2} + (a_{2} - \frac{1}{6}a_{0})z^{3}$$

$$+ (a_{3} - \frac{1}{6}a_{1} + \frac{1}{120}a_{-1})z^{4} + \cdots$$



And so:  $a_{-1} = 1$ ,  $a_0 = 0$ ,  $a_1 = \frac{1}{6}a_{-1} = \frac{1}{6}$ ,  $a_2 = 0$ ,

# The Laurent series of $(\sin z)^{-1}$

We find

$$\frac{1}{\sin z} = \frac{1}{z} + \frac{1}{6}z + \frac{7}{360}z^3 + \cdots$$

Apparently  $\frac{1}{\sin z} - \frac{1}{z}$  has a removable singularity at 0.

The radius of convergence of the resulting power series will be  $\pi$ .



# **Essential singularity**

#### Definition

 $z_0$  is an essential singularity if the principal part is infinite.

Example:  $f(z) = e^{\frac{1}{z}}$ ; the Laurent series is

$$1 + \sum_{n=1}^{\infty} \frac{1}{n! z^n}$$

Notice: for every r > 0 the annulus  $\{z : 0 < |z| < r\}$  is mapped onto  $\mathbb{C} \setminus \{0\}$ .



### Structural property

### Theorem (Casorati-Weierstraß)

If  $z_0$  is an essential singularity of f then for every  $\lambda \in \mathbb{C}$ , every  $\varepsilon > 0$  and every r > 0 there is a z such that  $|z - z_0| < r$  and  $|f(z) - \lambda| < \varepsilon$ .

Even better

### Theorem (Picard)

If  $z_0$  is an essential singularity of f and r>0 then f assumes every complex value on  $\{z: 0<|z-z_0|< r\}$  with one possible exception.



### What to do?

From the book: 5.4, 5.5, 6.1

Suitable problems: 5.28 - 5.40; 6.1-6.5

Recommended problems: 5.28, 5.29, 5.32, 5.36, 5.37, 5.38, 5.40;

6.1, 6.3, 6.5

