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A reminder

Theorem

Let f : D → C be analytic, let z0 ∈ D and let R be the distance
from z0 to the complement of D (if D = C then R =∞).
Then on the disc {z : |z − z0| < R} we have

f (z) =
∞∑
n=0

an(z − z0)n

where

an =
1

2πi

∮
C

f (ζ)

(ζ − z0)n+1
dζ =

f (n)(z0)

n!

and C is any simple closed contour around z0 lying inside D.
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Main result

Theorem

Let f : A→ C be analytic, where A = {z : R1 < |z − z0| < R2}
(an annulus). Then for z ∈ A we have

f (z) =
∞∑

k=−∞
ck(z − z0)k

where for k ∈ Z:

ck =
1

2πi

∮
C

f (ζ)

(ζ − z0)k+1
dζ

where C is any simple closed contour around z0 lying inside A,
oriented anticlockwise.
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Why?

z0

R2

R1

z

r

Take z inside the annulus.
Take r1 and r2 with R1 < r1 < |z − z0| < r2 < R2
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Why?

z0

z

r

Consider the simple closed curve C consisting of

the circle C2 of radius r2 (anticlockwise),

the segment γ (inward),

the circle C1 of radius r1 (clockwise),

the segment γ (outward)
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Why?

Apply Cauchy’s formula:

f (z) =
1

2πi

∮
C

f (ζ)

ζ − z
dζ

=
1

2πi

∮
C2

f (ζ)

ζ − z
dζ +

1

2πi

∮
C1

f (ζ)

ζ − z
dζ

because the integrals along γ cancel.

As in the case of Taylor series:

1

2πi

∮
C2

f (ζ)

ζ − z
dζ =

∞∑
n=0

1

2πi

∮
C2

f (ζ)

(ζ − z0)n+1
dζ × (z − z0)n
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Why?

On C1 we rewrite 1/(ζ − z) = −1/(z − ζ):

1

ζ − z
= − 1

z − ζ
= − 1

z − z0 + z0 − ζ

= − 1

z − z0
· 1

1− ζ−z0
z−z0

= − 1

z − z0
·
∞∑
n=0

(
ζ − z0

z − z0

)n

The quotient has modulus r1/r < 1 on C1, so we get uniform
convergence on C1
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Why?

We get

1

2πi

∮
C1

f (ζ)

ζ − z
dζ = − 1

2πi

∮
C1

f (ζ)

z − z0

∞∑
n=0

(
ζ − z0

z − z0

)n

dζ

= −
∞∑
n=0

1

2πi

∮
C1

f (ζ)(ζ − z0)n dζ × (z − z0)−(n+1)

= −
∞∑
n=0

1

2πi

∮
C1

f (ζ)

(ζ − z0)−n
dζ × (z − z0)−(n+1)

= −
∞∑
n=1

1

2πi

∮
C1

f (ζ)

(ζ − z0)−n+1
dζ × (z − z0)−n
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Why?

We add the results: f (z) is the sum of

−
∞∑
n=1

1

2πi

∮
C1

f (ζ)

(ζ − z0)−n+1
dζ × (z − z0)−n

and
∞∑
n=0

1

2πi

∮
C2

f (ζ)

(ζ − z0)n+1
dζ × (z − z0)n

We reverse the orientation of C1 to get rid of the minus-sign.
The integrands f (ζ)/(ζ − z0)n+1 are analytic on the whole
annulus, so we can replace C2 and C1 by one and the same simple
closed curve. And this gives us the formula we were looking for.
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arctan z once more

We know:

arctan z =
1

2i
log

(
1 + iz

1− iz

)
The following is another branch cut for arctan z (corresponds to
positive real axis):

i

−i
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arctan z once more

Thus arctan z has a branch that is analytic on the annulus
{z : 1 < |z |}.
What is the Laurent series?
First for 1

1+z2 :

1

1 + z2
=

1

z2

1

1 + 1
z2

=
1

z2

∞∑
n=0

(
−1

z2

)n

=
∞∑
n=0

(−1)n

z2n+2
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arctan z once more

Now integrate:

arctan z =

∫
1

1 + z2
dz + c

=

∫ ∞∑
n=0

(−1)n

z2n+2
dz + c

=
∞∑
n=0

∫
(−1)n

z2n+2
dz + c

=
∞∑
n=0

(−1)n+1

(2n + 1)z2n+1
+ c
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arctan z once more

We have, if |z | > 1:

arctan z = c +
∞∑
n=0

(−1)n+1

(2n + 1)z2n+1

Possible values for c?

arctan 1 = π
4 + kπ (k integer)

For z = 1 the series sums to −π
4

So, c = π
2 + kπ (k integer)
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arctan z once more

Observe that

∞∑
n=0

(−1)n+1

(2n + 1)z2n+1
= −

∞∑
n=0

(−1)n

2n + 1

(
1

z

)2n+1

= − arctan
1

z

So, in this case we have arctan z = c − arctan 1
z ;

plug in z = 1 to get c = π
2 , so for |z | > 1:

arctan z =
π

2
+
∞∑
n=0

(−1)n+1

(2n + 1)z2n+1

K. P. Hart wi4243AP: Complex Analysis
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An old integral

Reconsider a problem from week 4 (Monday):
What is

∮
C arctan z dz? Same as

∮
D arctan z dz .

i

−iC
D
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An old integral

Integrate the Laurent series

arctan z =
π

2
+
∞∑
n=0

(−1)n+1

(2n + 1)z2n+1

because |1z | = 1
r , where r is the radius of D and r > 1 we have

uniform convergence, so∮
D

arctan z dz =

∮
D

π

2
dz +

∞∑
n=0

(−1)n+1

(2n + 1)

∮
D

1

z2n+1
dz

= 0−
∮
D

1

z
dz = −2πi
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Some Laurent series

Consider f (z) = 1
(z−i)(z+2) = 1

2+i (
1

z−i −
1

z+2 ).

f is analytic on three annuli around 0:

{z : |z | < 1}
{z : 1 < |z | < 2}
{z : 2 < |z |}

We make the three Laurent series.

K. P. Hart wi4243AP: Complex Analysis
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Some Laurent series

First annulus: {z : |z | < 1}. We have

1

z − i
= −1

i

1

1 + iz
= −1

i

∞∑
n=0

(−iz)n

and
1

z + 2
=

1

2

1

1 + z
2

=
1

2

∞∑
n=0

(
−z

2

)n
Now add.
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Some Laurent series

Second annulus: {z : 1 < |z | < 2}. We have

1

z − i
=

1

z

1

1− i
z

=
1

z

∞∑
n=0

(
i

z

)n

=
∞∑
n=0

in

zn+1

and
1

z + 2
=

1

2

1

1 + z
2

=
1

2

∞∑
n=0

(
−z

2

)n
Now add.
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Some Laurent series

Third annulus: {z : 2 < |z |}. We have

1

z − i
=

1

z

1

1− i
z

=
1

z

∞∑
n=0

(
i

z

)n

=
∞∑
n=0

in

zn+1

and
1

z + 2
=

1

z

1

1 + 2
z

=
1

z

∞∑
n=0

(
−2

z

)n

=
∞∑
n=0

(−2)n

zn+1

Now add.
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An example

Consider these two power series and their sums:

f1(z) =
∞∑
n=0

zn and f2(z) =
∞∑
n=0

1

(1− i)n+1
(z − i)n

Their circles of convergence are

{z : |z | < 1} and {z : |z − i | <
√

2}

respectively.
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An example

0

i

We have f1(z) = 1
1−z = f2(z) for z in the intersection of the discs.

These functions are analytic continuations of each other.
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How unique are analytic functions?

Theorem

Assume f is analytic on a domain D and assume there is a
converging sequence {zn} in D with limit z0 ∈ D such that
f (zn) = 0 for all n. Then f (z) = 0 on the whole of D.

Proof.

It will follow that all coefficients in the Taylor series at z0 are zero.
So f = 0 on a disc around z0.
By analytic continuation this will propagate through all of D.

K. P. Hart wi4243AP: Complex Analysis
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arctan z

We know from geometry that arctan x = π
2 − arctan 1

x for all
positive real x . Hence it holds everywhere.

Therefore we could have found the Laurent series of arctan z , for
|z | > 1 from the Taylor series for |z | < 1:

arctan z =
π

2
− arctan

1

z
=
π

2
−
∞∑
n=0

(−1)n

2n + 1

(
1

z

)2n+1

K. P. Hart wi4243AP: Complex Analysis
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Reflection Principle

Theorem

Let D be a domain and f : D → C analytic. Let D̄ = {z̄ : z ∈ D}
(the reflection of D in the real axis). Then f̄ : D̄ → C, defined by
f̄ (z) = f (z̄), is analytic on D̄.

Proof.

f̄ is certainly real differentiable.
f̄ (x , y) = u(x ,−y)− iv(x ,−y); use the Cauchy-Riemann
equations.

K. P. Hart wi4243AP: Complex Analysis
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Special case

If D is symmetric and intersects the real axis and f : D → C is
analytic. Then the following are equivalent.

f is real-valued on the real axis, and

f (z̄) = f (z) for all z ∈ D

Use reflection and uniqueness.

This applies to all familiar functions: ez , sin z , tan z , arctan z ,
Log z ,

√
z , . . .

K. P. Hart wi4243AP: Complex Analysis
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Definition

A singularity of a function is a point at which it is not analytic.
We are (very much) interested in isolated singularities:

Definition

z0 is an isolated singularity of f if there is an r > 0 such that f is
analytic on N(z0, r) \ {z0}.
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Laurent series

Note that N(z0, r) \ {z0} is an annulus, so we have a Laurent
series centered at z0:

f (z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn(z − z0)−n

The negative powers form the principal part.

K. P. Hart wi4243AP: Complex Analysis
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Removable singularity

Definition

z0 is a removable singularity of f if the principal part is zero.

This means that f (z0) can be defined so that f becomes analytic
on N(z0, r).

Example: f (z) = 1−cos z
z2 ; the Laurent series is

1

2
− 1

4!
z2 +

1

6!
z4 + · · · +

(−1)n

(2n + 2)!
z2n + · · ·

Set f (0) = 1
2 to remove the singularity.

K. P. Hart wi4243AP: Complex Analysis
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Pole

Definition

z0 is a pole of f if the principal part is finite, its order is the
largest k such that bk 6= 0.

Example: f (z) = 1−cos z
z4 ; the Laurent series is

1

2
z−2 − 1

4!
+

1

6!
z2 + · · · +

(−1)n

(2n + 2)!
z2n−2 + · · ·

This is a pole of order 2.
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Pole

Note

z0 is a pole of f of order k iff k is such that limz→z0(z − z0)k f (z)
exists and is non-zero. (It’s the coefficient of (z − z0)−k .)

Example: f (z) = 1
sin z ; it has a pole of order 1 at 0, because

limz→0
z

sin z = 1.

If k > 1 then limz→0
zk

sin z = 0;

If k < 1 then limz→0
zk

sin z =∞.
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The Laurent series of (sin z)−1

We calculate (part of) the Laurent series of 1
sin z .

We know:

sin z = z − 1

6
z3 +

1

120
z5 + · · ·

and
1

sin z
=

a−1

z
+ a0 + a1z + a2z

2 + a3z
3 + · · ·

Now multiply:

1 = sin z · 1

sin z
so . . .
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The Laurent series of (sin z)−1

1 = (z − 1

6
z3 +

1

120
z5 + · · · )(

a−1

z
+ a0 + a1z + a2z

2 + a3z
3 + · · · )

= a−1 + a0z + (a1 −
1

6
a−1)z2 + (a2 −

1

6
a0)z3

+ (a3 −
1

6
a1 +

1

120
a−1)z4 + · · ·

And so: a−1 = 1, a0 = 0, a1 = 1
6a−1 = 1

6 , a2 = 0,
a3 = 1

6a1 − 1
120a−1 = 7

360 , . . .
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The Laurent series of (sin z)−1

We find
1

sin z
=

1

z
+

1

6
z +

7

360
z3 + · · ·

Apparently 1
sin z −

1
z has a removable singularity at 0.

The radius of convergence of the resulting power series will be π.
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Essential singularity

Definition

z0 is an essential singularity if the principal part is infinite.

Example: f (z) = e
1
z ; the Laurent series is

1 +
∞∑
n=1

1

n!zn

Notice: for every r > 0 the annulus {z : 0 < |z | < r} is mapped
onto C \ {0}.

K. P. Hart wi4243AP: Complex Analysis
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Structural property

Theorem (Casorati-Weierstraß)

If z0 is an essential singularity of f then for every λ ∈ C,
every ε > 0 and every r > 0 there is a z such that |z − z0| < r and
|f (z)− λ| < ε.

Even better

Theorem (Picard)

If z0 is an essential singularity of f and r > 0 then f assumes every
complex value on {z : 0 < |z − z0| < r} with one possible
exception.

K. P. Hart wi4243AP: Complex Analysis
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What to do?

From the book: 5.4, 5.5, 6.1
Suitable problems: 5.28 – 5.40; 6.1–6.5
Recommended problems: 5.28, 5.29, 5.32, 5.36, 5.37, 5.38, 5.40;
6.1, 6.3, 6.5
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