wi4243AP: Complex Analysis week 5, Friday

K. P. Hart
Faculty EEMCS
TU Delft

Delft, 3 october, 2014

Outline

(1) Section 5.4: Laurent series

- Example: $\arctan z$
- An old integral
- An example
(2) Section 5.5: Analytic continuations
- Uniqueness of analytic functions
- Reflection Principle
(3) Section 6.1: Singularities
- Definition
- Classification

A reminder

Theorem

Let $f: D \rightarrow \mathbb{C}$ be analytic, let $z_{0} \in D$ and let R be the distance from z_{0} to the complement of D (if $D=\mathbb{C}$ then $R=\infty$).
Then on the disc $\left\{z:\left|z-z_{0}\right|<R\right\}$ we have

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} \mathrm{~d} \zeta=\frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

and C is any simple closed contour around z_{0} lying inside D.

Main result

Theorem

Let $f: A \rightarrow \mathbb{C}$ be analytic, where $A=\left\{z: R_{1}<\left|z-z_{0}\right|<R_{2}\right\}$ (an annulus). Then for $z \in A$ we have

$$
f(z)=\sum_{k=-\infty}^{\infty} c_{k}\left(z-z_{0}\right)^{k}
$$

where for $k \in \mathbb{Z}$:

$$
c_{k}=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} \mathrm{~d} \zeta
$$

where C is any simple closed contour around z_{0} lying inside A, oriented anticlockwise.

Why?

Take z inside the annulus.
Take r_{1} and r_{2} with $R_{1}<r_{1}<\left|z-z_{0}\right|<r_{2}<R_{2}$

Why?

Consider the simple closed curve C consisting of

- the circle C_{2} of radius r_{2} (anticlockwise),
- the segment γ (inward),
- the circle C_{1} of radius r_{1} (clockwise),
- the segment γ (outward)

Why?

Apply Cauchy's formula:

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \\
& =\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta+\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta
\end{aligned}
$$

because the integrals along γ cancel.
As in the case of Taylor series:

$$
\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta=\sum_{n=0}^{\infty} \frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} \mathrm{~d} \zeta \times\left(z-z_{0}\right)^{n}
$$

Why?

On C_{1} we rewrite $1 /(\zeta-z)=-1 /(z-\zeta)$:

$$
\begin{aligned}
\frac{1}{\zeta-z}=-\frac{1}{z-\zeta} & =-\frac{1}{z-z_{0}+z_{0}-\zeta} \\
& =-\frac{1}{z-z_{0}} \cdot \frac{1}{1-\frac{\zeta-z_{0}}{z-z_{0}}} \\
& =-\frac{1}{z-z_{0}} \cdot \sum_{n=0}^{\infty}\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)^{n}
\end{aligned}
$$

The quotient has modulus $r_{1} / r<1$ on C_{1}, so we get uniform convergence on C_{1}

Why?

We get

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta & =-\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(\zeta)}{z-z_{0}} \sum_{n=0}^{\infty}\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)^{n} \mathrm{~d} \zeta \\
& =-\sum_{n=0}^{\infty} \frac{1}{2 \pi i} \oint_{C_{1}} f(\zeta)\left(\zeta-z_{0}\right)^{n} \mathrm{~d} \zeta \times\left(z-z_{0}\right)^{-(n+1)} \\
& =-\sum_{n=0}^{\infty} \frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{-n}} \mathrm{~d} \zeta \times\left(z-z_{0}\right)^{-(n+1)} \\
& =-\sum_{n=1}^{\infty} \frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{-n+1}} \mathrm{~d} \zeta \times\left(z-z_{0}\right)^{-n}
\end{aligned}
$$

Why?

We add the results: $f(z)$ is the sum of

$$
-\sum_{n=1}^{\infty} \frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{-n+1}} \mathrm{~d} \zeta \times\left(z-z_{0}\right)^{-n}
$$

and

$$
\sum_{n=0}^{\infty} \frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} \mathrm{~d} \zeta \times\left(z-z_{0}\right)^{n}
$$

We reverse the orientation of C_{1} to get rid of the minus-sign.
The integrands $f(\zeta) /\left(\zeta-z_{0}\right)^{n+1}$ are analytic on the whole annulus, so we can replace C_{2} and C_{1} by one and the same simple closed curve. And this gives us the formula we were looking for

$\arctan z$ once more

We know:

$$
\arctan z=\frac{1}{2 i} \log \left(\frac{1+i z}{1-i z}\right)
$$

The following is another branch cut for $\arctan z$ (corresponds to positive real axis):

$\arctan z$ once more

Thus $\arctan z$ has a branch that is analytic on the annulus $\{z: 1<|z|\}$.
What is the Laurent series?
First for $\frac{1}{1+z^{2}}$:

$$
\frac{1}{1+z^{2}}=\frac{1}{z^{2}} \frac{1}{1+\frac{1}{z^{2}}}=\frac{1}{z^{2}} \sum_{n=0}^{\infty}\left(\frac{-1}{z^{2}}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{2 n+2}}
$$

$\arctan z$ once more

Now integrate:

$$
\begin{aligned}
\arctan z & =\int \frac{1}{1+z^{2}} \mathrm{~d} z+c \\
& =\int \sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{2 n+2}} \mathrm{~d} z+c \\
& =\sum_{n=0}^{\infty} \int \frac{(-1)^{n}}{z^{2 n+2}} \mathrm{~d} z+c \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1) z^{2 n+1}}+c
\end{aligned}
$$

$\arctan z$ once more

We have, if $|z|>1$:

$$
\arctan z=c+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1) z^{2 n+1}}
$$

Possible values for c ?

- $\arctan 1=\frac{\pi}{4}+k \pi$ (k integer)
- For $z=1$ the series sums to $-\frac{\pi}{4}$
- So, $c=\frac{\pi}{2}+k \pi$ (k integer)

arctan z once more

Observe that

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1) z^{2 n+1}}=-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left(\frac{1}{z}\right)^{2 n+1}=-\arctan \frac{1}{z}
$$

So, in this case we have $\arctan z=c-\arctan \frac{1}{z}$; plug in $z=1$ to get $c=\frac{\pi}{2}$, so for $|z|>1$:

$$
\arctan z=\frac{\pi}{2}+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1) z^{2 n+1}}
$$

An old integral

Reconsider a problem from week 4 (Monday): What is $\oint_{C} \arctan z \mathrm{~d} z$? Same as $\oint_{D} \arctan z \mathrm{~d} z$.

An old integral

Integrate the Laurent series

$$
\arctan z=\frac{\pi}{2}+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1) z^{2 n+1}}
$$

because $\left|\frac{1}{z}\right|=\frac{1}{r}$, where r is the radius of D and $r>1$ we have uniform convergence, so

$$
\begin{aligned}
\oint_{D} \arctan z \mathrm{~d} z & =\oint_{D} \frac{\pi}{2} \mathrm{~d} z+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)} \oint_{D} \frac{1}{z^{2 n+1}} \mathrm{~d} z \\
& =0-\oint_{D} \frac{1}{z} \mathrm{~d} z=-2 \pi i
\end{aligned}
$$

Some Laurent series

Consider $f(z)=\frac{1}{(z-i)(z+2)}=\frac{1}{2+i}\left(\frac{1}{z-i}-\frac{1}{z+2}\right)$.
f is analytic on three annuli around 0 :

- $\{z:|z|<1\}$
- $\{z: 1<|z|<2\}$
- $\{z: 2<|z|\}$

We make the three Laurent series.

Some Laurent series

First annulus: $\{z:|z|<1\}$. We have

$$
\frac{1}{z-i}=-\frac{1}{i} \frac{1}{1+i z}=-\frac{1}{i} \sum_{n=0}^{\infty}(-i z)^{n}
$$

and

$$
\frac{1}{z+2}=\frac{1}{2} \frac{1}{1+\frac{z}{2}}=\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{z}{2}\right)^{n}
$$

Now add.

Some Laurent series

Second annulus: $\{z: 1<|z|<2\}$. We have

$$
\frac{1}{z-i}=\frac{1}{z} \frac{1}{1-\frac{i}{z}}=\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{i}{z}\right)^{n}=\sum_{n=0}^{\infty} \frac{i^{n}}{z^{n+1}}
$$

and

$$
\frac{1}{z+2}=\frac{1}{2} \frac{1}{1+\frac{z}{2}}=\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{z}{2}\right)^{n}
$$

Now add.

Some Laurent series

Third annulus: $\{z: 2<|z|\}$. We have

$$
\frac{1}{z-i}=\frac{1}{z} \frac{1}{1-\frac{i}{z}}=\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{i}{z}\right)^{n}=\sum_{n=0}^{\infty} \frac{i^{n}}{z^{n+1}}
$$

and

$$
\frac{1}{z+2}=\frac{1}{z} \frac{1}{1+\frac{2}{z}}=\frac{1}{z} \sum_{n=0}^{\infty}\left(-\frac{2}{z}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-2)^{n}}{z^{n+1}}
$$

Now add.

An example

Consider these two power series and their sums:

$$
f_{1}(z)=\sum_{n=0}^{\infty} z^{n} \text { and } f_{2}(z)=\sum_{n=0}^{\infty} \frac{1}{(1-i)^{n+1}}(z-i)^{n}
$$

Their circles of convergence are

$$
\{z:|z|<1\} \text { and }\{z:|z-i|<\sqrt{2}\}
$$

respectively.

An example

We have $f_{1}(z)=\frac{1}{1-z}=f_{2}(z)$ for z in the intersection of the discs.
These functions are analytic continuations of each other.

How unique are analytic functions?

Theorem

Assume f is analytic on a domain D and assume there is a converging sequence $\left\{z_{n}\right\}$ in D with limit $z_{0} \in D$ such that $f\left(z_{n}\right)=0$ for all n. Then $f(z)=0$ on the whole of D.

Proof.

It will follow that all coefficients in the Taylor series at z_{0} are zero.
So $f=0$ on a disc around z_{0}.
By analytic continuation this will propagate through all of D.

$\arctan z$

We know from geometry that $\arctan x=\frac{\pi}{2}-\arctan \frac{1}{x}$ for all positive real x. Hence it holds everywhere.

Therefore we could have found the Laurent series of $\arctan z$, for $|z|>1$ from the Taylor series for $|z|<1$:

$$
\arctan z=\frac{\pi}{2}-\arctan \frac{1}{z}=\frac{\pi}{2}-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left(\frac{1}{z}\right)^{2 n+1}
$$

Reflection Principle

Theorem

Let D be a domain and $f: D \rightarrow \mathbb{C}$ analytic. Let $\bar{D}=\{\bar{z}: z \in D\}$ (the reflection of D in the real axis). Then $\bar{f}: \bar{D} \rightarrow \mathbb{C}$, defined by $\bar{f}(z)=\overline{f(\bar{z})}$, is analytic on \bar{D}.

Proof.

\bar{f} is certainly real differentiable.
$\bar{f}(x, y)=u(x,-y)-i v(x,-y)$; use the Cauchy-Riemann equations.

Special case

If D is symmetric and intersects the real axis and $f: D \rightarrow \mathbb{C}$ is analytic. Then the following are equivalent.

- f is real-valued on the real axis, and
- $f(\bar{z})=\overline{f(z)}$ for all $z \in D$

Use reflection and uniqueness.
This applies to all familiar functions: $e^{z}, \sin z, \tan z, \arctan z$, $\log z, \sqrt{z}, \ldots$

Definition

A singularity of a function is a point at which it is not analytic. We are (very much) interested in isolated singularities:

Definition

z_{0} is an isolated singularity of f if there is an $r>0$ such that f is analytic on $N\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$.

Laurent series

Note that $N\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$ is an annulus, so we have a Laurent series centered at z_{0} :

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}
$$

The negative powers form the principal part.

Removable singularity

Definition

z_{0} is a removable singularity of f if the principal part is zero.

This means that $f\left(z_{0}\right)$ can be defined so that f becomes analytic on $N\left(z_{0}, r\right)$.

Example: $f(z)=\frac{1-\cos z}{z^{2}}$; the Laurent series is

$$
\frac{1}{2}-\frac{1}{4!} z^{2}+\frac{1}{6!} z^{4}+\cdots+\frac{(-1)^{n}}{(2 n+2)!} z^{2 n}+\cdots
$$

Set $f(0)=\frac{1}{2}$ to remove the singularity.

Pole

Definition

z_{0} is a pole of f if the principal part is finite, its order is the largest k such that $b_{k} \neq 0$.

Example: $f(z)=\frac{1-\cos z}{z^{4}}$; the Laurent series is

$$
\frac{1}{2} z^{-2}-\frac{1}{4!}+\frac{1}{6!} z^{2}+\cdots+\frac{(-1)^{n}}{(2 n+2)!} z^{2 n-2}+\cdots
$$

This is a pole of order 2 .

Pole

Note

z_{0} is a pole of f of order k iff k is such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k} f(z)$ exists and is non-zero. (It's the coefficient of $\left(z-z_{0}\right)^{-k}$.)

Example: $f(z)=\frac{1}{\sin z}$; it has a pole of order 1 at 0 , because $\lim _{z \rightarrow 0} \frac{z}{\sin z}=1$.
If $k>1$ then $\lim _{z \rightarrow 0} \frac{z^{k}}{\sin z}=0$;
If $k<1$ then $\lim _{z \rightarrow 0} \frac{z^{k}}{\sin z}=\infty$.

The Laurent series of $(\sin z)^{-1}$

We calculate (part of) the Laurent series of $\frac{1}{\sin z}$.
We know:

$$
\sin z=z-\frac{1}{6} z^{3}+\frac{1}{120} z^{5}+\cdots
$$

and

$$
\frac{1}{\sin z}=\frac{a_{-1}}{z}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\cdots
$$

Now multiply:

$$
1=\sin z \cdot \frac{1}{\sin z}
$$

SO ...

The Laurent series of $(\sin z)^{-1}$

$$
\begin{aligned}
1= & \left(z-\frac{1}{6} z^{3}+\frac{1}{120} z^{5}+\cdots\right)\left(\frac{a_{-1}}{z}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\cdots\right) \\
= & a_{-1}+a_{0} z+\left(a_{1}-\frac{1}{6} a_{-1}\right) z^{2}+\left(a_{2}-\frac{1}{6} a_{0}\right) z^{3} \\
& +\left(a_{3}-\frac{1}{6} a_{1}+\frac{1}{120} a_{-1}\right) z^{4}+\cdots
\end{aligned}
$$

And so: $a_{-1}=1, a_{0}=0, a_{1}=\frac{1}{6} a_{-1}=\frac{1}{6}, a_{2}=0$, $a_{3}=\frac{1}{6} a_{1}-\frac{1}{120} a_{-1}=\frac{7}{360}, \ldots$

The Laurent series of $(\sin z)^{-1}$

We find

$$
\frac{1}{\sin z}=\frac{1}{z}+\frac{1}{6} z+\frac{7}{360} z^{3}+\cdots
$$

Apparently $\frac{1}{\sin z}-\frac{1}{z}$ has a removable singularity at 0 .
The radius of convergence of the resulting power series will be π.

Essential singularity

Definition

z_{0} is an essential singularity if the principal part is infinite.

Example: $f(z)=e^{\frac{1}{z}}$; the Laurent series is

$$
1+\sum_{n=1}^{\infty} \frac{1}{n!z^{n}}
$$

Notice: for every $r>0$ the annulus $\{z: 0<|z|<r\}$ is mapped onto $\mathbb{C} \backslash\{0\}$.

Structural property

Theorem (Casorati-Weierstraß)

If z_{0} is an essential singularity of f then for every $\lambda \in \mathbb{C}$, every $\varepsilon>0$ and every $r>0$ there is a z such that $\left|z-z_{0}\right|<r$ and $|f(z)-\lambda|<\varepsilon$.

Even better

Theorem (Picard)

If z_{0} is an essential singularity of f and $r>0$ then f assumes every complex value on $\left\{z: 0<\left|z-z_{0}\right|<r\right\}$ with one possible exception.

What to do?

From the book: 5.4, 5.5, 6.1
Suitable problems: $5.28-5.40 ; 6.1-6.5$
Recommended problems: 5.28, 5.29, 5.32, 5.36, 5.37, 5.38, 5.40; 6.1, 6.3, 6.5

