wi4243AP: Complex Analysis week 7, Friday

K. P. Hart
Faculty EEMCS
TU Delft

Delft, 17 october, 2014

Outline

(1) Section 7.2: Laplace Transform

- Inversion
- An example
(2) From the PDE course
(3) A word of warning

4 Section 6.5: Cauchy Principal Value

- Definition
- Calculations
- How to use it

Bromwich integral

The formula

Assume $|f(t)| \leqslant M e^{\alpha t}$ for some α and let $a>\alpha$. Then

$$
f(t)=\frac{1}{2 \pi i} \lim _{R \rightarrow \infty} \int_{a-i R}^{a+i R} e^{s t} F(s) \mathrm{d} s
$$

the integral is along the vertical straight line $\operatorname{Re} s=a$.

So, e.g.,

$$
\sin t=\frac{1}{2 \pi i} \lim _{R \rightarrow \infty} \int_{a-i R}^{a+i R} e^{s t} \frac{1}{s^{2}+1} \mathrm{~d} s
$$

For what functions does this work?

Sufficient condition

If F is analytic on an annulus of outer radius ∞ and $\lim _{s \rightarrow \infty} F(s)=0$ then

$$
\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \oint_{\Gamma_{R}} e^{s t} F(s) \mathrm{d} s=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{a-i R}^{a+i R} e^{s t} F(s) \mathrm{d} s
$$

Write $M_{R}=\max \{|F(s)|:|s| \geqslant R\}$, so $\lim _{R \rightarrow \infty} M_{R}=0$.

For what functions does this work?

[a+iR,iR] length: a, upper bound for modulus: $e^{a t} M_{R}$
$[-i R, a-i R]$ length: a, upper bound for modulus: $e^{a t} M_{R}$
γ_{R} use Jordan's Lemma, suitably modified:

$$
\left|\int_{\gamma_{R}} e^{s t} F(s) \mathrm{d} s\right| \leqslant \frac{\pi M_{R}}{t}\left(1-e^{-t R}\right)
$$

for details: work problem 7.20

An example

Find the inverse Laplace transform of $F(s)=\arctan \frac{1}{s}$ (principal branch).

Note: $\lim _{s \rightarrow \infty} \arctan \frac{1}{s}=0$.
So, we know

$$
\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \oint_{\Gamma_{R}} e^{s t} \arctan \frac{1}{s} \mathrm{~d} s=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{a-i R}^{a+i R} e^{s t} \arctan \frac{1}{s} \mathrm{~d} s
$$

An example

We deform the contour described above.

The branch cut is $[-i, i]$
We shrink Γ_{R} to a circle C
We calculate

$$
\frac{1}{2 \pi i} \oint_{C} e^{s t} \arctan \frac{1}{s} \mathrm{~d} s
$$

Cauchy-Goursat: this suffices

An example

The function arctan $\frac{1}{s}$ is analytic on the annulus $\{s:|s|>1\}$ and given by the Laurent series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left(\frac{1}{s}\right)^{2 n+1}
$$

this series converges uniformly on C, so

$$
\frac{1}{2 \pi i} \oint_{C} e^{s t} \arctan \frac{1}{s} \mathrm{~d} s=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \frac{1}{2 \pi i} \oint_{C} \frac{e^{s t}}{s^{2 n+1}} \mathrm{~d} s
$$

An example

Cauchy's formula (general version):

$$
\left.\frac{1}{2 \pi i} \oint_{C} \frac{e^{s t}}{s^{2 n+1}} \mathrm{~d} s=\frac{1}{(2 n)!} \frac{\partial^{2 n}}{\partial s^{2 n}} e^{s t}\right]_{s=0}=\frac{t^{2 n}}{(2 n)!}
$$

so we get

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{(2 n+1)!}=\frac{1}{t} \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1)!}=\frac{\sin t}{t}
$$

One-dimensional Klein-Gordon equation

We were busy solving

$$
\frac{\partial^{2} g}{\partial x^{2}}-\frac{1}{c^{2}}\left(\frac{\partial^{2} g}{\partial t^{2}}+\alpha^{2} g\right)=-\delta(x-\xi) \delta(t-\tau)
$$

with $-\infty<x, \xi<\infty$ and $t, \tau>0$ and where c is a positive constant.

Initial conditions: $g(x, 0 \mid \xi, \tau)=g_{t}(x, 0 \mid \xi, \tau)=0$
Boundary conditions: $\lim _{|x| \rightarrow \infty}|g(x, t \mid \xi, \tau)|<\infty$.

What we did thus far, forward

First Laplace $(t \rightarrow s)$:

$$
\frac{\partial^{2} G}{\partial x^{2}}-\left(\frac{s^{2}+a^{2}}{c^{2}}\right) G=-\delta(x-\xi) e^{-s \tau}
$$

then Fourier $(x \rightarrow \omega)$:

$$
\left(-\omega^{2}-\frac{s^{2}+a^{2}}{c^{2}}\right) \mathcal{F}\{G\}=-e^{-s \tau} e^{i \omega \xi}
$$

or

$$
\mathcal{F}\{G\}=\frac{e^{-s \tau} e^{i \omega \xi}}{\omega^{2}+\frac{1}{c^{2}}\left(s^{2}+a^{2}\right)}
$$

What we did thus far, inversion

We already found:

$$
G(x, s \mid \xi, \tau)=\frac{c e^{-s \tau}}{2} \frac{\exp \left(-\frac{|x-\xi|}{c} \sqrt{s^{2}+a^{2}}\right)}{\sqrt{s^{2}+a^{2}}}
$$

The factor $e^{-s \tau}$ brings us to a shifting formula and $\frac{c}{2}$ is just a constant, so we leave these out.

Inversion

Once we calculate we calculate the inverse transform

$$
g(x, t \mid \xi, \tau)=\frac{1}{2 \pi i} \int_{B} e^{s t} \cdot \frac{\exp \left(-\frac{|x-\xi|}{c} \sqrt{s^{2}+a^{2}}\right)}{\sqrt{s^{2}+a^{2}}} \mathrm{~d} s
$$

(where B is some Bromwich line) the Green's function will be

$$
\frac{c}{2} H(t-\tau) \cdot g(x,(t-\tau) \mid \xi, \tau) .
$$

$s^{2}+a^{2}$

We want a branch of $\sqrt{s^{2}+a^{2}}$ that takes on its normal values on the real axis.
We define a branch of

$$
\left(\frac{s-i a}{s+i a}\right)^{\frac{1}{2}}
$$

and multiply this by $s+i a$; having a bilinear transformation makes it easier to determine values near branch cuts.

We take the positive real axis as a branch cut for \sqrt{z} and we define $z^{\frac{1}{2}}=-\sqrt{|z|} e^{\frac{1}{2} \arg z}(0 \leqslant \arg z<2 \pi i)$.
Thus, for us: $(-1)^{\frac{1}{2}}=-i$.
If z approaches 1 from above then $z^{\frac{1}{2}}$ approaches -1 . If z approaches 1 from below then $z^{\frac{1}{2}}$ approaches 1 .

So our definition of $\sqrt{s^{2}+a^{2}}$ is

$$
(s+i a)\left(\frac{s-i a}{s+i a}\right)^{\frac{1}{2}}
$$

Then at $s=0$ the value comes out $-i \cdot a i=a$. This suffices to have $\sqrt{x^{2}+a^{2}}$ positive for all real x.

$s^{2}+a^{2}$

We shall let the Bromwich line approach the imaginary axis. So we need to know what happens to $\sqrt{s^{2}+a^{2}}$ when s approaches $i \omega$ from the right.

On the imaginary axis, say with $s=\omega i$ we have

$$
\frac{s-i a}{s+i a}=\frac{\omega-a}{\omega+a}
$$

which is negative if $-a<\omega<a$ and positive elsewhere.

$\sqrt{s^{2}+a^{2}}$

Black arrow: if s approaches $i \omega$ then $\frac{s-i a}{s+i a}$ approaches (the negative number) $\frac{\omega-a}{\omega+a}$.
Then our $\sqrt{s^{2}+a^{2}}$ approaches

$$
(i \omega+i a) \cdot-i\left(\frac{a-\omega}{a+\omega}\right)^{\frac{1}{2}}
$$

which comes out as the real square root of $a^{2}-\omega^{2}$.
Note: $\omega+a>0$, hence $\omega+a=\sqrt{(\omega+a)^{2}}$.

$s^{2}+a^{2}$

Green and blue arrows: if s approaches $i \omega$ then $\frac{s-i a}{s+i a}$ approaches (the positive number) $\frac{\omega-a}{\omega+a}$ from below, so that $\left(\frac{s-a i}{s+a i}\right)^{\frac{1}{2}}$ approaches

$$
-\sqrt{\frac{\omega-a}{\omega+a}} e^{\pi i}=\sqrt{\frac{\omega-a}{\omega+a}} .
$$

And so $\sqrt{s^{2}+a^{2}}$ approaches

$$
i(\omega+a)\left(\frac{\omega-a}{\omega+a}\right)^{\frac{1}{2}}=\left\{\begin{aligned}
i \sqrt{\omega^{2}-a^{2}} & \text { if } \omega>a \\
-i \sqrt{\omega^{2}-a^{2}} & \text { if } \omega<-a
\end{aligned}\right.
$$

Note: if $\omega<-a$ then $\omega+a=-\sqrt{(\omega+a)^{2}}$

The inverse transform

As the Bromwich line approaches the imaginary axis the integral approaches the sum of three integrals, the first of which is the bit between -ai and ai (parametrized by $\omega \mapsto i \omega$):

$$
\frac{1}{2 \pi i} \int_{-a}^{a} e^{i \omega t} \cdot \frac{\exp \left(-\frac{|x-\xi|}{c} \sqrt{a^{2}-\omega^{2}}\right)}{\sqrt{a^{2}-\omega^{2}}} d i \omega
$$

which equals

$$
\frac{1}{\pi} \int_{0}^{a} \cos \omega t \cdot \frac{\exp \left(-\frac{|x-\xi|}{c} \sqrt{a^{2}-\omega^{2}}\right)}{\sqrt{a^{2}-\omega^{2}}} d \omega
$$

The inverse transform

The other two integrals are

$$
\frac{1}{2 \pi i} \int_{a}^{\infty} e^{i \omega t} \cdot \frac{\exp \left(-i \frac{|x-\xi|}{c} \sqrt{\omega^{2}-a^{2}}\right)}{i \sqrt{\omega^{2}-a^{2}}} d i \omega
$$

and

$$
\frac{1}{2 \pi i} \int_{-\infty}^{-a} e^{i \omega t} \cdot \frac{\exp \left(i \frac{|x-\xi|}{c} \sqrt{\omega^{2}-a^{2}}\right)}{-i \sqrt{\omega^{2}-a^{2}}} \operatorname{di\omega }
$$

respectively.

The inverse transform

These simplify to

$$
\frac{1}{2 \pi i} \int_{a}^{\infty} \frac{\exp \left(i\left(\omega t-\frac{|x-\xi|}{c} \sqrt{\omega^{2}-a^{2}}\right)\right)}{\sqrt{\omega^{2}-a^{2}}} d \omega
$$

and

$$
-\frac{1}{2 \pi i} \int_{a}^{\infty} \frac{\exp \left(-i\left(\omega t-\frac{|x-\xi|}{c} \sqrt{\omega^{2}-a^{2}}\right)\right)}{\sqrt{\omega^{2}-a^{2}}} d \omega
$$

respectively.

The inverse transform

Finally, the sum of these two is

$$
\frac{1}{\pi} \int_{a}^{\infty} \frac{\sin \left(\omega t-\frac{|x-\xi|}{c} \sqrt{\omega^{2}-a^{2}}\right)}{\sqrt{\omega^{2}-a^{2}}} d \omega
$$

This is far from an explicit expression but such an integral representation is better than nothing.

Back to Fourier

From an old exam
Calculate

$$
\int_{-\infty}^{\infty} \frac{\cos \omega x}{x^{2}+25} d x
$$

for $\omega \in \mathbb{R}$.

Bad method

Let $f(z)=\frac{\cos \omega z}{z^{2}+25}$ and integrate along $[-R, R]$ and the semicircle $\gamma_{R}(=\{z:|z|=R, \operatorname{Im} z \geqslant 0\})$.
This is bad because ...

Good method

The integral is the real part of the Fourier transform of $\frac{1}{x^{2}+25}$; also called its Fourier cosine transform.
So, we use $f(z)=\frac{e^{i \omega z}}{z^{2}+25}$ and the curve mentioned on the previous slide.

Finish

The integral along the curve is equal to $2 \pi i \operatorname{Res}(f, 5 i)$, which is equal to $\frac{\pi}{5} e^{-5 \omega}$, provided $\omega>0$.

If $\omega<0$ we go through the lower half plane and we get $-2 \pi i \operatorname{Res}(f,-5 i)$, which is equal to $\frac{\pi}{5} e^{5 \omega}$.

The net result is

$$
\frac{\pi}{5} e^{-5|\omega|}
$$

A Problem and a solution

$\int_{-1}^{1} \frac{1}{x} \mathrm{~d} x$ should have the value 0 , but it does not because its value does not exist.

A solution by Cauchy: define

$$
\mathrm{P} \int_{-1}^{1} \frac{1}{x} \mathrm{~d} x=\lim _{\varepsilon \rightarrow 0}\left(\int_{-1}^{-\varepsilon} \frac{1}{x} \mathrm{~d} x+\int_{\varepsilon}^{1} \frac{1}{x} \mathrm{~d} x\right)
$$

the Principal Value of the integral.

General definition

In general, if f has a singularity at c in the interval $[a, b]$ then

$$
\mathrm{P} \int_{a}^{b} f(x) \mathrm{d} x=\lim _{\varepsilon \rightarrow 0}\left(\int_{a}^{c-\varepsilon} f(x) \mathrm{d} x+\int_{c+\varepsilon}^{b} f(x) \mathrm{d} x\right)
$$

so, first calculate $\int_{a}^{c-\varepsilon} f(x) \mathrm{d} x+\int_{c+\varepsilon}^{b} f(x) \mathrm{d} x$ and then let $\varepsilon \rightarrow 0$.

A useful fact

Theorem (See 6.2.4)

Let f have a pole of order 1 at z_{0} and let γ_{ε} denote the arc parametrized by $t \mapsto z_{0}+\varepsilon e^{i t}(\alpha \leqslant t \leqslant \beta)$.
Then

$$
\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\varepsilon}} f(z) \mathrm{d} z=(\beta-\alpha) i \operatorname{Res}\left(f, z_{0}\right)
$$

The idea is to integrate the Laurent series of f at z_{0}. The power $\left(z-z_{0}\right)^{-1}$ gives

$$
b_{1} \int_{\gamma_{\varepsilon}} \frac{1}{\left(z-z_{0}\right)} \mathrm{d} z=b_{1} \int_{\alpha}^{\beta} i \mathrm{~d} t=b_{1}(\beta-\alpha) i
$$

A useful fact

The 'rest' of f, by which we mean $g(z)=f(z)-\frac{b_{1}}{z-z_{0}}$, is analytic on a neighbourhood of z_{0}. We have

$$
\left|\int_{\gamma_{\varepsilon}} g(z) \mathrm{d} z\right| \leqslant M_{\varepsilon}(\beta-\alpha) \varepsilon
$$

where M_{ε} is the maximum of $|g(z)|$ on γ_{ε} (and $(\beta-\alpha) \varepsilon$ is the length of γ_{ε}).

As $\varepsilon \rightarrow 0$ we have $M_{\varepsilon} \rightarrow\left|g\left(z_{0}\right)\right|$, so that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\varepsilon}} g(z) \mathrm{d} z=0 .
$$

$\int_{0}^{\infty} \frac{\sin x}{x} d x$

Integrating $\frac{\sin z}{z}$ will not help because that function is analytic everywhere: all contour integrals are zero.

Try $\int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x$; its imaginary part is twice what we want (as $\frac{\sin x}{x}$ is even).

As the integral does not exist; we use its principal value.
We take $f(z)=\frac{e^{i z}}{z}$ and a familiar contour.

$P \int_{-\infty}^{\infty} \frac{e^{i x}}{x} \mathrm{~d} x$: the contour

The contour $\Gamma_{\varepsilon, R}$ consists of Interval $[\varepsilon, R]$

Semicircle of radius R (anticlockwise)

Interval $[-R,-\varepsilon]$
Semicircle of radius ε (clockwise)

$P \int_{-\infty}^{\infty} \frac{e^{\omega^{x}}}{x} d x$: continued

- $\oint_{r_{\varepsilon, R}} f(z) \mathrm{d} z=0$
- $\lim _{R \rightarrow \infty} \int_{\gamma_{R}} f(z) \mathrm{d} z=0$
- $\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\varepsilon}} f(z) \mathrm{d} z=-\pi i$
- $\int_{-R}^{-\varepsilon} f(x) \mathrm{d} x+\int_{\varepsilon}^{R} f(x) \mathrm{d} x=2 i \int_{\varepsilon}^{R} \frac{\sin x}{x} \mathrm{~d} x$
(0 is outside the contour)
(Jordan's Lemma)
(useful fact)
($\frac{\cos x}{x}$ is odd)

We find

$$
0=\lim _{\substack{\varepsilon \rightarrow 0 \\ R \rightarrow \infty}} \oint_{\Gamma_{\varepsilon, R}} f(z) \mathrm{d} z=-\pi i+2 i \int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x
$$

so that

$$
\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2}
$$

What to do?

From the book: 7.2, 6.5
Suitable problems: 7.16-7.25; 6.28-6.42.
Recommended problems: 7.22, 7.23, 6.30, 6.32, 6.33, 6.39

