wi4243AP: Complex Analysis week 8, Monday

K. P. Hart
Faculty EEMCS
TU Delft

Delft, 20 october, 2014

Outline

(1) A question from www.wisfaq.nl
(2) My favourite formula
(3) A moving string/belt

The question

http://www.wisfaq.nl/show3archive.asp?id=60954\&j=2009 I have following integral

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\sqrt{x}\left(x^{2}+1\right)}
$$

Sing points in the upper half plane are $x=i$ (pole order 1) and $x=0$ (pole order $1 / 2$).
I can rewrite the integral:

$$
\int_{+} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}(f, i)=\int_{-R}^{-\varepsilon} \ldots+\int_{\gamma_{\varepsilon}} \ldots+\int_{\varepsilon}^{R} \ldots+\int_{\gamma_{R}}
$$

The question

The second and fourth integral (on the right-hand side) tend 0 (can be proved via an estimate, I did that WAS OK.
If I want to calculate the given integral then I have

$$
2 \pi i \operatorname{Res}(f, i)=\frac{\pi}{\sqrt{i}}=\int_{-\infty}^{0} \frac{\mathrm{~d} x}{\sqrt{x}\left(x^{2}+1\right)}+\int_{0}^{\infty} \frac{\mathrm{d} x}{\sqrt{x}\left(x^{2}+1\right)}
$$

My problem now is: How do I get the desired integral $\int_{0}^{\infty} \mathrm{d} x / \sqrt{x}\left(x^{2}+1\right)$

Well ...?

Answer

- $\sqrt{i}=\frac{1}{2} \sqrt{2}+\frac{i}{2} \sqrt{2}$ and so $\pi / \sqrt{i}=\frac{\pi}{2} \sqrt{2}-i \frac{\pi}{2} \sqrt{2}$
- For $x<0$ we have $\sqrt{x}=i \sqrt{|x|}$ so $\int_{-\infty}^{0}$ becomes $-i \int_{0}^{\infty}$

We get

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\sqrt{x}\left(x^{2}+1\right)}=\frac{\pi \sqrt{2}}{2}
$$

One of Euler's best

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

A useful function and contour

We use

$$
f(z)=\frac{\pi}{z^{2}} \frac{\cos \pi z}{\sin \pi z}
$$

and large squares for contours.
Γ_{N} is the square with vertices $(\pm 1 \pm i)\left(N+\frac{1}{2}\right)$.

Here's Γ_{3}

The contour Γ_{3}

Pole of order 3 at 0

Poles of order 1
at all nonzero integers

Residues

The residues at nozero n are easy:

$$
\operatorname{Res}(f, n)=\frac{\pi}{n^{2}} \frac{\cos \pi n}{\pi \cos \pi n}
$$

Pole of order 1 , so we substitute n in

$$
\frac{\pi}{z^{2}} \frac{\cos \pi z}{(\sin \pi z)^{\prime}}
$$

Residues

We calculate a few terms of the Laurent series of $\frac{\cos z}{\sin z}$:

$$
\left(\frac{a_{-1}}{z}+a_{0}+a_{1} z+\cdots\right)\left(z-\frac{1}{6} z^{3}+\cdots\right)=1-\frac{1}{2} z^{2}+\cdots
$$

or

$$
a_{-1}+a_{0} z+\left(a_{1}-\frac{1}{6} a_{-1}\right) z^{2}+\cdots=1-\frac{1}{2} z^{2}+\cdots
$$

so: $a_{-1}=1, a_{0}=0, a_{1}=-\frac{1}{2}+\frac{1}{6} a_{-1}=-\frac{1}{3}$.

Residues

We find

$$
f(z)=\frac{\pi}{z^{3}}-\frac{\pi^{2}}{3} \frac{1}{z}+\cdots
$$

and so

$$
\operatorname{Res}(f, 0)=-\frac{\pi^{2}}{3}
$$

The integrals

We find that, for every N,

$$
2 \pi i \oint_{\Gamma_{N}} f(z) \mathrm{d} z=-\frac{1}{3} \pi^{2}+2 \sum_{n=1}^{N} \frac{1}{n^{2}}
$$

Now we show

$$
\lim _{N \rightarrow \infty} \oint_{\Gamma_{N}} f(z) \mathrm{d} z=0
$$

Estimates

Length of $\Gamma_{N}: 4 \times(2 N+1)=8 N+4$.
On Γ_{N} we have $\frac{1}{z^{2}} \leqslant \frac{1}{N^{2}}$.
Remember:
$|\cos z|=\sqrt{\sinh ^{2} y+\cos ^{2} x}$
and
$|\sin z|=\sqrt{\sinh ^{2} y+\sin ^{2} x}$

Estimates

If $x= \pm\left(N+\frac{1}{2}\right)$ then

$$
|\operatorname{cotan} \pi z|=\frac{\sqrt{\sinh ^{2} \pi y}}{\sqrt{\sinh ^{2} \pi y+1}} \leqslant 1
$$

Estimates

If $y= \pm\left(N+\frac{1}{2}\right)$ then

$$
\begin{aligned}
|\operatorname{cotan} \pi z| & =\frac{\sqrt{\sinh ^{2} \pi\left(N+\frac{1}{2}\right)+\cos ^{2} \pi x}}{\sqrt{\sinh ^{2} \pi\left(N+\frac{1}{2}\right)+\sin ^{2} \pi x}} \\
& \leqslant \frac{\sqrt{\sinh ^{2} \pi\left(N+\frac{1}{2}\right)+1}}{\sqrt{\sinh ^{2} \pi\left(N+\frac{1}{2}\right)}} \\
& \leqslant 2
\end{aligned}
$$

(when $N \geqslant 1$).

Finishing up

Everything combined:

$$
\left|\oint_{\Gamma_{N}} f(z) \mathrm{d} z\right| \leqslant \frac{(8 N+4) \times \pi \times 2}{N^{2}}
$$

which suffices to have the limit be equal to zero.

A differential equation

A string or belt runs on two wheels one unit apart at a speed of v units.
The function $w(x, t)$ describes the lateral displacement of the string at position $x(0<x<1)$ and time $t(t>0)$.
It satisfies the following (partial) differential equation

$$
\frac{\partial^{2} w}{\partial t^{2}}+2 v \frac{\partial^{2} w}{\partial x \partial t}+\left(v^{2}-1\right) \frac{\partial^{2} w}{\partial x^{2}}=0
$$

If $v=0$ then we have the wave equation.

Boundary conditions

We impose boundary conditions:

$$
w(0, t)=0 \text { and } w(1, t)=f(t)
$$

One wheel is stable, the other one wiggles a bit.
We start at rest:

$$
w(x, 0)=0 \text { and } w_{t}(x, 0)=0 \text { and } w_{x}(x, 0)=0
$$

Apply Laplace transform

Transform the equation:

$$
\begin{aligned}
s^{2} W(x, s)-s \cdot w(x, 0)- & w_{t}(x, 0)+2 v\left(s W_{x}(x, s)-w_{x}(x, 0)\right) \\
& +\left(v^{2}-1\right) W_{x x}(x, s)=0
\end{aligned}
$$

this can be rewritten as

$$
W_{x x}+\frac{2 v s}{v^{2}-1} W_{x}+\frac{s^{2}}{v^{2}-1} W=0
$$

Note: linear with constant coefficients

Solve the differential equation

Characteristic equation:

$$
\lambda^{2}+\frac{2 v s}{v^{2}-1} \lambda+\frac{s^{2}}{v^{2}-1}=0
$$

with solutions

$$
\lambda_{1}=\frac{-s}{v+1} \text { and } \lambda_{2}=\frac{-s}{v-1}
$$

Hence

$$
W(x, s)=C_{1}(s) e^{\lambda_{1} x}+C_{2}(s) e^{\lambda_{2} x}
$$

The 'constants' C_{1} and C_{2} depend on s.

C_{1} and C_{2}

$W(0, s)=0$, hence $C_{1}(s)+C_{2}(s)=0$.
$W(1, s)=F(s)$ (transform of f), hence $C_{1}(s)\left(e^{\lambda_{1}}-e^{\lambda_{2}}\right)=F(s)$
and so $C_{1}(s)=\frac{F(s)}{e^{\lambda_{1}}-e^{\lambda_{2}}}$.
We get

$$
W(x, s)=F(s) \cdot \underbrace{\frac{\exp \left(\frac{-s x}{v+1}\right)-\exp \left(\frac{-s x}{v-1}\right)}{\exp \left(\frac{-s}{v+1}\right)-\exp \left(\frac{-s}{v-1}\right)}}_{H(x, s)}
$$

If we can find the inverse transform, $h(x, t)$, of $H(x, s)$ then we are done:

$$
w(x, t)=f(t) * h(x, t)=\int_{0}^{t} f(\tau) h(x, t-\tau) \mathrm{d} \tau
$$

Inversion

Unfortunately $H(x, s)$ has many singularities: the solutions to

$$
\exp \left(\frac{-s}{v+1}\right)=\exp \left(\frac{-s}{v-1}\right)
$$

or

$$
\exp \left(\frac{2 s}{v^{2}-1}\right)=1
$$

these are $s_{n}=\left(v^{2}-1\right) n \pi i$, with $n \in \mathbb{Z}$.
$s_{0}=0$ is a removable singularity, all others are poles of order 1 .

Inversion formula

We know that

$$
h(x, t)=\frac{1}{2 \pi i} \lim _{R \rightarrow \infty} \int_{1-i R}^{1+i R} H(x, s) e^{s t} \mathrm{~d} s
$$

As we have infinitely many singularities we have no annulus; we can try a trick like with my favorite formula.

Inversion formula

The contour Γ_{3}

Removable
singularity at 0

Poles of order 1
at $\left(v^{2}-1\right) n \pi i$

Slight problem

The integrals along the three other sides do not converge to 0 . What is true is that $H(x, s)$ is bounded on those rectangles, provided the horizontals are at $\pm\left(n+\frac{1}{2}\right)\left(v^{2}-1\right) \pi i$:
So, we divide by s^{2} :

$$
W(x, s)=\left(s^{2} F(s)-s f(0)-f^{\prime}(0)\right) \frac{H(x, s)}{s^{2}}+\left(s f(0)+f^{\prime}(0)\right) \frac{H(x, s)}{s^{2}}
$$

This makes inversion possible, at the cost of a more complicated convolution.
Note that 0 is now a pole of order 2 .

Residues

We have

$$
H(x, s)=\frac{\exp \left(\frac{-s X}{v+1}\right)-\exp \left(\frac{-s X}{v-1}\right)}{\exp \left(\frac{-s}{v+1}\right)-\exp \left(\frac{-s}{v-1}\right)}
$$

At $s_{n}=\left(v^{2}-1\right) n \pi i$ we have $\frac{s_{n}}{v+1}=(v-1) n \pi i$ and $\frac{s_{n}}{v-1}=(v+1) n \pi i$ and so

$$
\operatorname{Res}\left(H(x, s), s_{n}\right)=\frac{\exp (-x(v-1) n \pi i)-\exp (-x(v+1) n \pi i)}{-\frac{1}{v+1} \exp (-(v-1) n \pi i)+\frac{1}{v-1} \exp (-(v+1) n \pi i)}
$$

Residues

The denominator becomes $\left(e^{n \pi i}=(-1)^{n}\right)$:

$$
(-1)^{n} e^{-v n \pi i}\left(-\frac{1}{v+1}+\frac{1}{v-1}\right)=\frac{(-1)^{n} 2 e^{-v n \pi i}}{v^{2}-1}
$$

We find

$$
\begin{aligned}
\operatorname{Res}\left(\frac{H(x, s)}{s^{2}} e^{s t}, s_{n}\right) & =\frac{\exp (-x(v-1) n \pi i)-\exp (-x(v+1) n \pi i)}{(-1)^{n+1} 2 n^{2} \pi^{2}\left(v^{2}-1\right) e^{-v n \pi i}} e^{s_{n} t} \\
& =\frac{(-1)^{n+1} e^{v n \pi i} e^{s_{n} t}\left(e^{-x(v-1) n \pi i}-e^{-x(v+1) n \pi i}\right)}{2 n^{2} \pi^{2}\left(v^{2}-1\right)}
\end{aligned}
$$

where $e^{s_{n} t}=e^{t\left(v^{2}-1\right) n \pi i}$

Residues

Finally, at 0 the residu that we need is the partial derivative $\frac{\partial}{\partial s} H(x, s) e^{s t}$ evaluated at 0 . This comes out as

$$
\frac{x}{v^{2}-1}\left(v-x v+t\left(v^{2}-1\right)\right)
$$

Now collect everything in one giant sum.

The final form

We get the inverse transform of $H(x, s) / s^{2}$:

$$
\begin{aligned}
& \frac{x}{v^{2}-1}\left(v-x v+t\left(v^{2}-1\right)\right)- \\
& \qquad \sum_{n \neq 0} \frac{(-1)^{n} e^{v n \pi i} e^{s_{n} t}\left(e^{-x(v-1) n \pi i}-e^{-x(v+1) n \pi i}\right)}{2 n^{2} \pi^{2}\left(v^{2}-1\right)}
\end{aligned}
$$

For more details see the original paper (link on BlackBoard).

What to do?

Now go forth and study!

