

Mastermath Exam Set Theory 27-01-2017; 14:00–17:00.

This exam consists of multiple-choice questions, 1–12, and open questions, 13–17. Record your answers to the multiple-choice questions in a readable table on the exam paper.

(2) 1. Given our definitions of ordered pairs, $(x, y) = \{\{x\}, \{x, y\}\}\)$, and natural numbers, $n = \{0, \dots, n-1\}$, which of the following is true:

A. $(0,1) = \{1,2\}$ B. $(0,1) \in \{0,1\}$ C. $(0,1) \subseteq 2$ D. $0 \in (0,1)$

- (2) 2. Which of the following *ordinal* (in)equalities **does not hold**:
 - A. $2017^{\omega} = 2018^{\omega}$
 - B. $\omega \cdot 2017 < \omega \cdot 2018$
 - C. $2017^{\omega} < 2018^{\omega}$
 - D. $\omega + 2017 < \omega + 2018$
- (2) 3. Which of the following *cardinal* (in)equalities **does hold** (in ZFC):
 - A. $2^{\aleph_{2017}} < \aleph_{2018}$ B. $\aleph_{\omega} = \aleph_{\omega}^{\aleph_{2017}}$ C. $\aleph_{\omega_1} < \aleph_{\omega_1}^{\aleph_1}$ D. $\aleph_{\omega} = \prod_{n < \omega} \aleph_n$
- (2) 4. Which of the following **is not** a filter on $\mathbb{N} \times \mathbb{N}$?

A. $\{A \subseteq \mathbb{N} \times \mathbb{N} : \{n : (n, n) \notin A\} \text{ is finite}\}$ B. $\{A \subseteq \mathbb{N} \times \mathbb{N} : \{n : |\{m : (n, m) \notin A\}| < \aleph_0\} \text{ is finite}\}$ C. $\{A \subseteq \mathbb{N} \times \mathbb{N} : \{n : |\{m : (n, m) \notin A\}| = \aleph_0\} \text{ is finite}\}$ D. $\{A \subseteq \mathbb{N} \times \mathbb{N} : \{m : |\{n : (2n, m) \notin A\}| = \aleph_0\} \text{ is finite}\}$

- (2) 5. Assume $2^{\aleph_n} = \aleph_{\omega+2017}$ for $n \ge 2017$. Then the value of $2^{\aleph_{\omega}}$ is
 - A. equal to $\aleph_{\omega+2017}$
 - B. smaller than $\aleph_{\omega+2017}$
 - C. larger than $\aleph_{\omega+2017}$
 - D. still undetermined
- (2) 6. Which of the following statements is provable in ZFC (κ , λ , and μ denote *infinite* cardinals):
 - A. If $\kappa \leq \lambda$ then $\kappa^{\lambda} > \aleph_0^{\lambda}$
 - B. If $\kappa < \lambda$ then $\kappa^{\mu} < \lambda^{\mu}$
 - C. If $\kappa < \lambda$ then $\mu^{\kappa} < \mu^{\lambda}$
 - D. $\aleph_{\alpha+2017}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+2017}$

More problems on the next page.

- (2) 7. Which of the following statements is provably equivalent to the Axiom of Choice in ZF.
 - A. Every set has a linear order
 - B. For all sets X and Y we have $|X| \leq |Y|$ or $|Y| \leq |X|$
 - C. Every filter on $\mathbb N$ can be extended to an ultrafilter
 - D. Every ideal in a ring with 1 can be extended to a maximal ideal
- (2) 8. Let \mathcal{U} be a free ultrafilter on ω . Which of the following families is not an ultrafilter on $\omega \times \omega$.

A. $\{X : \{n : (n,n) \in X\} \in \mathcal{U}\}$

- B. $\{X : (\exists A \in \mathcal{U})(A \times A \subseteq X)\}$
- C. $\{X : \{n : \{m : (n,m) \in X\} \in \mathcal{U}\} \in \mathcal{U}\}\$
- D. $\{X : \{n : (2017, n) \in X\} \in \mathcal{U}\}\$
- (2) 9. Which of the following partition relations is provable in ZFC:
 - A. $5 \to (3,3)^2$

B.
$$\aleph_{2018} \rightarrow (\aleph_{2017})^2_{\aleph_{2017}}$$

- C. $\aleph_{2017} \to (\aleph_{2017}, \aleph_0)^2$
- D. $2^{\aleph_{2017}} \to (3)^2_{\aleph_{2017}}$
- (2) 10. Let κ be a regular uncountable cardinal. Which of the following statements about cub and stationary subsets of κ is not true.
 - A. The intersection of 2017 cub sets is again cub
 - B. The union of fewer than κ many non-stationary sets is non-stationary
 - C. The intersection of a cub and a stationary set is stationary
 - D. The intersection of two stationary sets is again stationary
- (2) 11. Which of the following statements about weakly compact cardinals is true
 - A. Every weakly compact cardinal is measurable
 - B. The set of inaccessible cardinals below a weakly compact cardinal is closed and unbounded
 - C. If κ is weakly compact then $\kappa \to (\kappa)^{<\omega}$
 - D. Every weakly compact cardinal has the tree property
- (2) 12. Which of the following statements about the measurable cardinal κ is true.
 - A. Every σ -complete ultrafilter on κ is κ -complete
 - B. $\{\lambda < \kappa : \lambda \text{ is weakly compact}\}\$ is stationary in κ
 - C. Every ultrafilter on κ is $\sigma\text{-complete}$
 - D. The cardinal κ^+ is also measurable

More problems on the next page.

- 13. In this problem we do not assume the Axiom of Choice. Recall that a set A is finite if there are $n \in \mathbb{N}$ and a bijection $f: n \to A$. Define A to be DD-finite if there is a function $\sigma: A \to A$ such that the only σ -invariant subsets of A are \emptyset and A itself. Note: X is σ -invariant if $\sigma[X] \subseteq X$.
- (6) a. Prove (by induction) that every $n \in \mathbb{N}$ is DD-finite.

Now assume A is nonempty and DD-finite, witnessed by $\sigma : A \to A$. Define σ^n for $k \in \mathbb{N}$ by letting σ^0 be the identity map and, recursively, $\sigma^{k+1} = \sigma \circ \sigma^k$.

- (4) b. Prove: if $x \in A$ then $\{\sigma^k(x) : k \ge 1\} = A$.
- (6) c. Prove that A is finite. *Hint*: Take some $x \in A$ and prove there is an $n \in \mathbb{N}$ such that $A = \{\sigma^k(x) : k < n\}$.
 - 14. The first non-trivial instance of the Erdős-Rado theorem states

$$(2^{\aleph_0})^+ \to (\aleph_1)^2_{\aleph_0}$$

- (6) a. Explain what this statement means
- (10) b. Prove the statement
 - 15. Let L denote the set of Limit ordinals in ω_1 . For every $\alpha \in L$ we choose an increasing sequence $\langle a(\alpha, n) : n < \omega \rangle$ of ordinals that converges to α .
- (6) a. Prove: there is an n such that for every ordinal $\eta < \omega_1$ the set $\{\alpha \in L : a(\alpha, n) \ge \eta\}$ stationary. *Hint*: First show that for every η there is an $n = n(\eta)$ such that $\{\alpha \in L : a(\alpha, n) \ge \eta\}$ is stationary; then show that there is one n that works for all η simultaneously.

Define: $f: L \to \omega_1$ by $f(\alpha) = a(\alpha, n)$.

- (6) b. Prove: for every $\eta < \omega_1$ there are a stationary set S and $\beta \ge \eta$ such that f is constant on S with value β .
- (6) c. Prove that there is a pairwise disjoint family \mathcal{S} of stationary subsets of ω_1 such that $|\mathcal{S}| = \aleph_1$.
- (8) 16. Let κ be a weakly compact cardinal and let (X, \prec) be a linearly ordered set of cardinality κ . Prove: X has a subset, H, of cardinality κ that is well-ordered by \prec or \succ
- (8) 17. Let κ be the first measurable cardinal. Let \mathcal{D} be a normal ultrafilter on κ and let $j: V \to M$ be the corresponding elementary embedding. Prove that $j(\kappa)$ is measurable in M and that κ is not measurable in M.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$\text{Grade} = \frac{\text{Total} + 10}{10}$$

and rounded in the standard way.