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ABSTRACT. We present an example of a zero-dimensional F-space that is not
strongly zero-dimensional.

INTRODUCTION

The question whether zero-dimensionality implies strong zero-dimensionality has
a long history, a summary of which can be found in [4, Section 6.2]. We define a
space to be zero-dimensional if it is a T}-space and its clopen subsets form a base for
the topology. We exploit the fact that zero-dimensional spaces are Tychonoff spaces
to define a space to be strongly zero-dimensional if its Cech-Stone compactification
is zero-dimensional.

There are by now many examples of zero-dimensional spaces that are not strongly
zero-dimensional, even metrizable ones, see [8], but the authors are not aware of an
F-space of this nature. Indeed, a question on MathOverFlow that asks explicitly
for such an example has remained unanswered for five years, see [7]. Recently Ali
Reza Olfati raised this question with the first author in a different context.

The reason that there might not be an F-space example is that there are charac-
terizations of F-spaces that seem to imply strong zero-dimensionality but do not: a
Tychonoff space X is an F-space iff for every continuous function f : X — R there
is another continuous function h : X — R with the property that |f| = f - h; so
h is constant on the sets {x : f(z) > 0} and {z : f(r) < 0} with values 1 and —1
respectively. Although h seems to split X into two clopen pieces it does not, its
existence merely shows that {« : f(z) = 0} has a sizable interior.

In the next section we shall construct a zero-dimensional F-space that is not
strongly zero-dimensional. Its Cech-Stone compactification contains non-trivial
compact connected subsets and these are even connected F-spaces.

1. A ZERO-DIMENSIONAL F-SPACE THAT IS NOT STRONGLY ZERO-DIMENSIONAL

The construction in this section is inspired by an answer, by the second author,
to a question on MathOverFlow, see [1], which in turn was inspired by Dowker’s
example M in [3]. The latter is a subspace of w; x [0, 1]; the example on MathOver-
Flow is a quotient of wy x A, where A is Alexandroff’s split interval.

We replace the ordinal space w; by the Gs-modification of the ordinal space wo,
which we denote (ws)s; likewise (w2 + 1)s denotes the Gs-modification of wy + 1.
We replace A by the split interval over a suitable ordered continuum.

Date: Tuesday 27-07-2021 at 16:17:08 (cest).
2020 Mathematics Subject Classification. Primary 54G05; Secondary 54F45, 54G20.
Key words and phrases. F-space, zero-dimensional, strongly zero-dimensional.

1



2 A. DOW AND K. P. HART

‘We shall use an ordered continuum K with a dense subset D that can be enu-
merated as (do : @ € wa) in such a way that every tail set T,, = {dg : § > a} is
dense in K.

Example 1. If CH fails then we can take K = [0, 1] and, like Dowker did, choose
Ny many distinct cosets of Q, say {Q, : @ € wy}, and enumerate their union D
as (dy : & € wy) in such a way that (d,.q4n : 7 € w) enumerates Q, N (0, 1).

Example 2. For a ZFC example let L be the tree (w} + ws)<“, ordered by

s C t and t(|s|) € wa, or
s <tif ¢t Csands(|t]) €ws, or
(Elk)(s Tk=t[kAs(k) < t(k))
The linear order < has the property that every interval has cardinality Rso.

We let K be the (connected) Dedekind completion of L; the set L itself is the
desired dense set, under any enumeration.

We need the following Lemma, which is a variation of a result of Van Douwen,
see [4, Problem 3.12.20.(c)].

Lemma 1. Let X be a compact Hausdorff space. The product (w2)s x X is C-
embedded in (wa +1)s X X.

Proof. Let f: (w2)s x X — R be continuous.
Take o € wy of cofinality N;. For every € X and n € w one can find S(z,n) < «
and an open set U(z,n) in X such that z € U(z,n) and

fl(B(x,n),a] x U(z,n)] C (flo,z) —27", f(a,z) +27")

By compactness we can take a finite subcover {U(z,n) : © € F,} of the cover
{U(z,n) : x € X}. Let B, = max{fB(z,n) : x € F,}, then for all z € X and
v € (Bn, a] we have ’f(’y,x) - f(a,x)‘ < 2—ntl

Next let 8, = sup{f, : n € w}, then B, < a and f is constant on each horizontal
line (Ba, a] x {z}.

The Pressing-Down Lemma now gives us a single 8 such that f is constant
on (B, ws2) x {z} for all z. Those constant values give us our continuous extension
of fto (wa+1)5 x X. O

Note that the proof also shows that («a)s x X is C-embedded in (a4 1)s x X
whenever a has uncountable cofinality.

Split intervals. Using the continuum K and the dense set {d, : a € wa} we create
a sequence (K, : @ < ws) of ordered compacta, as follows:

Ko, ={{z,i)e Kx2:ifx ¢ {dsg: [ > a} theni=0}
ordered lexicographically. Thus K, is a split interval over K, where all points dg
with S > «a are split in two; if @ = wy then no points are split and K., is just
K itself.
There are obvious maps qo.g : Ko — Kz when o < 3, defined by
Go,8(x,7) = (x,0) when ¢ {d, : v > 5}
Ga,p(dy, 1) = (dy,) when v > 3.

We abbreviate the maps go,o by ga-
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Using remainders. To get to our F-space we let X, = (wx Kg)*, the Cech-Stone
remainder. The maps ¢o,5 induce maps from X, to X3 when a < 8; we denote
these by g.,5 and gq.

We consider the product (w2)s x Xo and the union

X:U{{a}xXa:a<w2}

as well as (wa + 1)5 x Xo and X T = X U ({wa} x X,,).
We shall topologize X in such a way that

(1) X is a zero-dimensional F-space, and
(2) X is C-embedded in X+

The latter condition implies that X is not strongly zero-dimensional as we will have
BX = X T and the latter space contains X,,,, which is one-dimensional.

The topology. We define g : (wy + 1)5 x Xg — X as expected:

q(o,z) = (v, qa ()

We give X the quotient topology determined by q. We show q is a closed map.
To begin note that for each « the set {a} x X, is closed and gets the topology
it already had as a Cech-Stone remainder. Also, if a has countable cofinality then
{a} x Xy is clopen, hence so is {a} x X,,.
Hence to finish the proof that ¢ is closed we let o be of cofinality Ny, take x € X,
and an open set O in (wg + 1)5 X X such that ¢* (o, z) = {a} x q5 () C O. By
compactness there are V open in Xy and 8 < a such that

{a} x g5 (2) € (B0l xV CO

Because q,, : Xg — X, is closed there is an open set U in X, such that g7 [U] C V.
Then (3, a] x g5 [U] is an open subset of (wy + 1)s x Xo. For v € (8, «) we have
do = Q.0 © 4y, hence g5 [U] = q¥ [q5,[U]].

It follows that ¢ [W] = (8, a] x g5 [U], where

w=U{} xa7ulU): B <y <o)
The set W is open and ¢ [W] C O.

Zero-dimensional. Here is where we use that every tail set T,, = {dg : 8 > o}
is dense in K. This implies that each K, and hence each X,, when a < ws, is
zero-dimensional: the family B, of all clopen intervals of the form [min K, (e, Oﬂ,
[(d,1),(e,0)], and [(d, 1), max K|, where d, e € T, is base for the topology of K,.
Also, when one interprets one of the intervals above, I say, in K then it satisfies
ay [qg [I]] = I whenever § < a.

We shall refine the argument used to show that g is a closed map and use notation
ExU = X \ cl(X \U) for the largest open set in X whose intersection with X is
the given open set U.

Let F' and G be disjoint closed subsets of B(w x K,). A standard argument,
see for example [5, Section 3], produces a sequence (Z,, : n € w) finite pairwise
disjoint subfamilies of B, such that the clopen set Ex I separates F' and G, where
I = U{{n} x UZ, : n € w}. The important point is that ExI has the same
property as the members of By: Xo NExI = qf [Q5 [Xo NEx I]] whenever 8 < a.
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Let U be an open neighbourhood of a point {a, ) in X. In case « is of countable
cofinality we can take a clopen neighbourhood of x in X, such that {a} x V C U;
this suffices because {a} x V is clopen in X.

If o has uncountable cofinality then we first take § < a and an open set W in X
such that {a} x go(z) C (8,a] x W C q* [U]. The argument given above now gives
us a clopen subset C' of X, such that ¢~ (z) € C C W and ¢ [q,[C]] = C
whenever v < a. Then CT = (8,a] x C is clopen,

{a} x ga() S CT S q" (U]
and ¢*~ [g[CT]] = CT. Hence q[C*] is clopen and (a,z) € g[CT] C U.

F-space. To see that X is an F-space let f : X — R be continuous. We seek a
continuous function h : X — R such that |f| =h- f.

To this end we first extend f to fT — X — R, while also remembering the
ordinal o with the property that f o q is constant on all horizontal lines that start
at a. Since X, is an F-space we get a continuous function g : X,, — R such
that g(z) - f*(we,2) = |fT(w2,2)|. For all 3 > a we define h on {8} x Xz by
h(B,z) = g(gpw,()), and bt on {B} x Xy by h(B,2) = 9(qu,(z)). Then At is
continuous and At = ho g on (o, ws] X Xo, so that h is continuous as well.

To find h on the rest of X, that is J{{8} x X3 : 8 < a}, we apply [6, Theorem 2.1]
to see that that union is an F-space and hence the desired function exists.

C-embedding. To show that X is C-embedded in X+ we let f : X — R be
continuous. The proof of Lemma 1 produces an o < wy such that f o q is constant
on (o,wg) x {z} for all z € X, which then determines the (unique) extension
g:(w2a+1)s x Xg—>Rof fogq.

We show that g(we,z) = g(ws,y) whenever qu,(r) = qu,(y); for then g de-
termines a continuous extension of f to X*. We assume z # y of course and
take disjoint neighbourhoods U and V of z and y in f(w x Kj). The argument
used in the proof of zero-dimensionality now produces two sequences (Z,, : n € w)
and (7, : n € w) of finite families of clopen intervals in Ky such that the clopen
sets I = J{{n} x UZ, :n €w} and J = J{{n} x UTn : n € w} satisfy

e I €z and J € y (x and y are ultrafilters of closed sets), and

e [CUand JCV.
For each n let E, be the set of points in K that occur as first coordinates of
endpoints of one of the intervals in Z,, and J,. The union, E, of these sets is
countable. Therefore there is a 3 > a such that EN{d, : v > f} = (. This means
that for v > 3 the restriction ¢, [ E is injective.

Because q,, () = qu, (y) the intersection of g, [I] and g, [J] is not compact and
this intersection is contained in F = J{{n} x E, : n € w}.

It follows that for all v > 8 we have q,(z) = g,(y) and therefore

9(v,2) = f(v,ay(2) = f(7,9,(v)) = 9(7, )

and this implies g(ws, z) = g(wa,y), as desired.
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