AN F-SPACE (PRELIMINARY VERSION)

ALAN DOW AND KLAAS PIETER HART

ABSTRACT. We present an example of a zero-dimensional F-space that is not strongly zero-dimensional.

INTRODUCTION

The question whether zero-dimensionality implies strong zero-dimensionality has a long history, a summary of which can be found in [4, Section 6.2]. We define a space to be zero-dimensional if it is a T_1 -space and its clopen subsets form a base for the topology. We exploit the fact that zero-dimensional spaces are Tychonoff spaces to define a space to be strongly zero-dimensional if its Čech-Stone compactification is zero-dimensional.

There are by now many examples of zero-dimensional spaces that are not strongly zero-dimensional, even metrizable ones, see [8], but the authors are not aware of an F-space of this nature. Indeed, a question on MathOverFlow that asks explicitly for such an example has remained unanswered for five years, see [7]. Recently Ali Reza Olfati raised this question with the first author in a different context.

The reason that there might not be an F-space example is that there are characterizations of F-spaces that seem to imply strong zero-dimensionality but do not: a Tychonoff space X is an F-space iff for every continuous function $f: X \to \mathbb{R}$ there is another continuous function $h: X \to \mathbb{R}$ with the property that $|f| = f \cdot h$; so h is constant on the sets $\{x: f(x) > 0\}$ and $\{x: f(x) < 0\}$ with values 1 and -1respectively. Although h seems to split X into two clopen pieces it does not, its existence merely shows that $\{x: f(x) = 0\}$ has a sizable interior.

In the next section we shall construct a zero-dimensional F-space that is not strongly zero-dimensional. Its Čech-Stone compactification contains non-trivial compact connected subsets and these are even connected F-spaces.

1. A Zero-Dimensional F-space that is not strongly zero-dimensional

The construction in this section is inspired by an answer, by the second author, to a question on MathOverFlow, see [1], which in turn was inspired by Dowker's example M in [3]. The latter is a subspace of $\omega_1 \times [0, 1]$; the example on MathOverFlow is a quotient of $\omega_1 \times \mathbb{A}$, where \mathbb{A} is Alexandroff's split interval.

We replace the ordinal space ω_1 by the G_{δ} -modification of the ordinal space ω_2 , which we denote $(\omega_2)_{\delta}$; likewise $(\omega_2 + 1)_{\delta}$ denotes the G_{δ} -modification of $\omega_2 + 1$. We replace \mathbb{A} by the split interval over a suitable ordered continuum.

Date: Tuesday 27-07-2021 at 16:17:08 (cest).

²⁰²⁰ Mathematics Subject Classification. Primary 54G05; Secondary 54F45, 54G20.

 $Key\ words\ and\ phrases.\ {\rm F-space,\ zero-dimensional,\ strongly\ zero-dimensional.}$

We shall use an ordered continuum K with a dense subset D that can be enumerated as $\langle d_{\alpha} : \alpha \in \omega_2 \rangle$ in such a way that every tail set $T_{\alpha} = \{ d_{\beta} : \beta > \alpha \}$ is dense in K.

Example 1. If CH fails then we can take K = [0, 1] and, like Dowker did, choose \aleph_2 many distinct cosets of \mathbb{Q} , say $\{\mathbb{Q}_{\alpha} : \alpha \in \omega_2\}$, and enumerate their union D as $\langle d_{\alpha} : \alpha \in \omega_2 \rangle$ in such a way that $\langle d_{\omega \cdot \alpha + n} : n \in \omega \rangle$ enumerates $\mathbb{Q}_{\alpha} \cap (0, 1)$.

Example 2. For a ZFC example let L be the tree $(\omega_2^{\star} + \omega_2)^{<\omega}$, ordered by

$$s \prec t \text{ if } \begin{cases} s \subset t \text{ and } t(|s|) \in \omega_2, \text{ or} \\ t \subset s \text{ and } s(|t|) \in \omega_2^\star, \text{ or} \\ (\exists k)(s \upharpoonright k = t \upharpoonright k \land s(k) < t(k)) \end{cases}$$

The linear order \prec has the property that every interval has cardinality \aleph_2 .

We let K be the (connected) Dedekind completion of L; the set L itself is the desired dense set, under any enumeration.

We need the following Lemma, which is a variation of a result of Van Douwen, see [4, Problem 3.12.20.(c)].

Lemma 1. Let X be a compact Hausdorff space. The product $(\omega_2)_{\delta} \times X$ is C-embedded in $(\omega_2 + 1)_{\delta} \times X$.

Proof. Let $f: (\omega_2)_{\delta} \times X \to \mathbb{R}$ be continuous.

Take $\alpha \in \omega_2$ of cofinality \aleph_1 . For every $x \in X$ and $n \in \omega$ one can find $\beta(x, n) < \alpha$ and an open set U(x, n) in X such that $x \in U(x, n)$ and

 $f[(\beta(x,n),\alpha] \times U(x,n)] \subseteq (f(\alpha,x) - 2^{-n}, f(\alpha,x) + 2^{-n})$

By compactness we can take a finite subcover $\{U(x,n) : x \in F_n\}$ of the cover $\{U(x,n) : x \in X\}$. Let $\beta_n = \max\{\beta(x,n) : x \in F_n\}$, then for all $x \in X$ and $\gamma \in (\beta_n, \alpha]$ we have $|f(\gamma, x) - f(\alpha, x)| < 2^{-n+1}$.

Next let $\beta_{\alpha} = \sup\{\beta_n : n \in \omega\}$, then $\beta_{\alpha} < \alpha$ and f is constant on each horizontal line $(\beta_{\alpha}, \alpha] \times \{x\}$.

The Pressing-Down Lemma now gives us a single β such that f is constant on $(\beta, \omega_2) \times \{x\}$ for all x. Those constant values give us our continuous extension of f to $(\omega_2 + 1)_{\delta} \times X$.

Note that the proof also shows that $(\alpha)_{\delta} \times X$ is *C*-embedded in $(\alpha + 1)_{\delta} \times X$ whenever α has uncountable cofinality.

Split intervals. Using the continuum K and the dense set $\{d_{\alpha} : \alpha \in \omega_2\}$ we create a sequence $\langle K_{\alpha} : \alpha \leq \omega_2 \rangle$ of ordered compacta, as follows:

 $K_{\alpha} = \{ \langle x, i \rangle \in K \times 2 : \text{if } x \notin \{ d_{\beta} : \beta \ge \alpha \} \text{ then } i = 0 \}$

ordered lexicographically. Thus K_{α} is a split interval over K, where all points d_{β} with $\beta \ge \alpha$ are split in two; if $\alpha = \omega_2$ then no points are split and K_{ω_2} is just K itself.

There are obvious maps $q_{\alpha,\beta}: K_{\alpha} \to K_{\beta}$ when $\alpha < \beta$, defined by

$$q_{\alpha,\beta}(x,i) = \langle x,0\rangle \text{ when } x \notin \{d_{\gamma}: \gamma \ge \beta\}$$
$$q_{\alpha,\beta}(d_{\gamma},i) = \langle d_{\gamma},i\rangle \text{ when } \gamma \ge \beta.$$

We abbreviate the maps $q_{0,\alpha}$ by q_{α} .

2

Using remainders. To get to our *F*-space we let $X_{\alpha} = (\omega \times K_{\alpha})^*$, the Čech-Stone remainder. The maps $q_{\alpha,\beta}$ induce maps from X_{α} to X_{β} when $\alpha < \beta$; we denote these by $q_{\alpha,\beta}$ and q_{α} .

We consider the product $(\omega_2)_{\delta} \times X_0$ and the union

$$X = \bigcup \{ \{ \alpha \} \times X_{\alpha} : \alpha < \omega_2 \}$$

as well as $(\omega_2 + 1)_{\delta} \times X_0$ and $X^+ = X \cup (\{\omega_2\} \times X_{\omega_2})$.

We shall topologize X^+ in such a way that

- (1) X is a zero-dimensional F-space, and
- (2) X is C-embedded in X^+

The latter condition implies that X is not strongly zero-dimensional as we will have $\beta X = \beta X^+$ and the latter space contains X_{ω_2} , which is one-dimensional.

The topology. We define $q: (\omega_2 + 1)_{\delta} \times X_0 \to X^+$ as expected:

$$\boldsymbol{q}(\alpha, x) = \langle \alpha, \boldsymbol{q}_{\alpha}(x) \rangle$$

We give X^+ the quotient topology determined by q. We show q is a closed map.

To begin note that for each α the set $\{\alpha\} \times X_{\alpha}$ is closed and gets the topology it already had as a Čech-Stone remainder. Also, if α has countable cofinality then $\{\alpha\} \times X_0$ is clopen, hence so is $\{\alpha\} \times X_{\alpha}$.

Hence to finish the proof that q is closed we let α be of cofinality \aleph_1 , take $x \in X_{\alpha}$ and an open set O in $(\omega_2 + 1)_{\delta} \times X_0$ such that $\mathbf{q}^{\leftarrow}(\alpha, x) = \{\alpha\} \times \mathbf{q}_{\alpha}^{\leftarrow}(x) \subseteq O$. By compactness there are V open in X_0 and $\beta < \alpha$ such that

$$\{\alpha\} \times \boldsymbol{q}_{\alpha}^{\leftarrow}(x) \subseteq (\beta, \alpha] \times V \subseteq O$$

Because $\boldsymbol{q}_{\alpha}: X_0 \to X_{\alpha}$ is closed there is an open set U in X_{α} such that $\boldsymbol{q}_{\alpha}^{\leftarrow}[U] \subseteq V$. Then $(\beta, \alpha] \times \boldsymbol{q}_{\alpha}^{\leftarrow}[U]$ is an open subset of $(\omega_2 + 1)_{\delta} \times X_0$. For $\gamma \in (\beta, \alpha)$ we have $\boldsymbol{q}_{\alpha} = \boldsymbol{q}_{\gamma,\alpha} \circ \boldsymbol{q}_{\gamma}$, hence $\boldsymbol{q}_{\alpha}^{\leftarrow}[U] = \boldsymbol{q}_{\gamma}^{\leftarrow}[\boldsymbol{q}_{\gamma,\alpha}^{\leftarrow}[U]]$.

It follows that $\boldsymbol{q}^{\leftarrow}[W] = (\beta, \alpha] \times \boldsymbol{q}^{\leftarrow}_{\alpha}[U]$, where

$$W = \bigcup \{ \{\gamma\} \times \boldsymbol{q}_{\gamma,\alpha}^{\leftarrow}[U] : \beta < \gamma \leqslant \alpha \}$$

The set W is open and $\boldsymbol{q}^{\leftarrow}[W] \subseteq O$.

Zero-dimensional. Here is where we use that every tail set $T_{\alpha} = \{d_{\beta} : \beta \ge \alpha\}$ is dense in K. This implies that each K_{α} and hence each X_{α} , when $\alpha < \omega_2$, is zero-dimensional: the family \mathcal{B}_{α} of all clopen intervals of the form $[\min K, \langle e, 0 \rangle]$, $[\langle d, 1 \rangle, \langle e, 0 \rangle]$, and $[\langle d, 1 \rangle, \max K]$, where $d, e \in T_{\alpha}$, is base for the topology of K_{α} . Also, when one interprets one of the intervals above, I say, in K_0 then it satisfies $q_{\beta}^{\leftarrow}[q_{\beta}[I]] = I$ whenever $\beta \leq \alpha$.

We shall refine the argument used to show that \boldsymbol{q} is a closed map and use notation Ex $U = \beta X \setminus \operatorname{cl}(X \setminus U)$ for the largest open set in βX whose intersection with X is the given open set U.

Let F and G be disjoint closed subsets of $\beta(\omega \times K_{\alpha})$. A standard argument, see for example [5, Section 3], produces a sequence $\langle \mathcal{I}_n : n \in \omega \rangle$ finite pairwise disjoint subfamilies of \mathcal{B}_{α} such that the clopen set $\operatorname{Ex} I$ separates F and G, where $I = \bigcup \{\{n\} \times \bigcup \mathcal{I}_n : n \in \omega\}$. The important point is that $\operatorname{Ex} I$ has the same property as the members of $\mathcal{B}_{\alpha}: X_0 \cap \operatorname{Ex} I = \mathbf{q}_{\beta}^{-} [\mathbf{q}_{\beta}[X_0 \cap \operatorname{Ex} I]]$ whenever $\beta \leq \alpha$. Let U be an open neighbourhood of a point $\langle \alpha, x \rangle$ in X. In case α is of countable cofinality we can take a clopen neighbourhood of x in X_{α} such that $\{\alpha\} \times V \subseteq U$; this suffices because $\{\alpha\} \times V$ is clopen in X.

If α has uncountable cofinality then we first take $\beta < \alpha$ and an open set W in X_0 such that $\{\alpha\} \times \boldsymbol{q}_{\alpha}(x) \subseteq (\beta, \alpha] \times W \subseteq \boldsymbol{q}^{\leftarrow}[U]$. The argument given above now gives us a clopen subset C of X_0 such that $\boldsymbol{q}^{\leftarrow}(x) \subseteq C \subseteq W$ and $\boldsymbol{q}^{\leftarrow}_{\gamma}[\boldsymbol{q}_{\gamma}[C]] = C$ whenever $\gamma \leq \alpha$. Then $C^+ = (\beta, \alpha] \times C$ is clopen,

$$\{\alpha\} \times \boldsymbol{q}_{\alpha}(x) \subseteq C^{+} \subseteq \boldsymbol{q}^{\leftarrow}[U]$$

and $\boldsymbol{q}^{\leftarrow} \left[\boldsymbol{q}[C^+] \right] = C^+$. Hence $\boldsymbol{q}[C^+]$ is clopen and $\langle \alpha, x \rangle \in \boldsymbol{q}[C^+] \subseteq U$.

F-space. To see that X is an *F*-space let $f : X \to \mathbb{R}$ be continuous. We seek a continuous function $h : X \to \mathbb{R}$ such that $|f| = h \cdot f$.

To this end we first extend f to $f^+ \to X^+ \to \mathbb{R}$, while also remembering the ordinal α with the property that $f \circ q$ is constant on all horizontal lines that start at α . Since X_{ω_2} is an F-space we get a continuous function $g: X_{\omega_2} \to \mathbb{R}$ such that $g(x) \cdot f^+(\omega_2, x) = |f^+(\omega_2, x)|$. For all $\beta > \alpha$ we define h on $\{\beta\} \times X_\beta$ by $h(\beta, x) = g(\mathbf{q}_{\beta,\omega_2}(x))$, and h^+ on $\{\beta\} \times X_0$ by $h(\beta, x) = g(\mathbf{q}_{\omega_2}(x))$. Then h^+ is continuous and $h^+ = h \circ q$ on $(\alpha, \omega_2] \times X_0$, so that h is continuous as well.

To find h on the rest of X, that is $\bigcup \{\{\beta\} \times X_{\beta} : \beta \leq \alpha\}$, we apply [6, Theorem 2.1] to see that that union is an F-space and hence the desired function exists.

C-embedding. To show that X is *C*-embedded in X^+ we let $f : X \to \mathbb{R}$ be continuous. The proof of Lemma 1 produces an $\alpha < \omega_2$ such that $f \circ \boldsymbol{q}$ is constant on $(\alpha, \omega_2) \times \{x\}$ for all $x \in X$, which then determines the (unique) extension $g : (\omega_2 + 1)_{\delta} \times X_0 \to \mathbb{R}$ of $f \circ \boldsymbol{q}$.

We show that $g(\omega_2, x) = g(\omega_2, y)$ whenever $\mathbf{q}_{\omega_2}(x) = \mathbf{q}_{\omega_2}(y)$; for then g determines a continuous extension of f to X^+ . We assume $x \neq y$ of course and take disjoint neighbourhoods U and V of x and y in $\beta(\omega \times K_0)$. The argument used in the proof of zero-dimensionality now produces two sequences $\langle \mathcal{I}_n : n \in \omega \rangle$ and $\langle \mathcal{J}_n : n \in \omega \rangle$ of finite families of clopen intervals in K_0 such that the clopen sets $I = \bigcup \{\{n\} \times \bigcup \mathcal{I}_n : n \in \omega\}$ and $J = \bigcup \{\{n\} \times \bigcup \mathcal{I}_n : n \in \omega\}$ satisfy

- $I \in x$ and $J \in y$ (x and y are ultrafilters of closed sets), and
- $I \subseteq U$ and $J \subseteq V$.

For each *n* let E_n be the set of points in *K* that occur as first coordinates of endpoints of one of the intervals in \mathcal{I}_n and \mathcal{J}_n . The union, *E*, of these sets is countable. Therefore there is a $\beta \ge \alpha$ such that $E \cap \{d_\gamma : \gamma \ge \beta\} = \emptyset$. This means that for $\gamma \ge \beta$ the restriction $q_\gamma \upharpoonright E$ is injective.

Because $\boldsymbol{q}_{\omega_2}(x) = \boldsymbol{q}_{\omega_2}(y)$ the intersection of $q_{\omega_2}[I]$ and $q_{\omega_2}[J]$ is not compact and this intersection is contained in $F = \bigcup \{\{n\} \times E_n : n \in \omega\}$.

It follows that for all $\gamma \ge \beta$ we have $q_{\gamma}(x) = q_{\gamma}(y)$ and therefore

$$g(\gamma, x) = f(\gamma, \boldsymbol{q}_{\gamma}(x)) = f(\gamma, \boldsymbol{q}_{\gamma}(y)) = g(\gamma, y)$$

and this implies $g(\omega_2, x) = g(\omega_2, y)$, as desired.

References

 Fred Dashiell, Is Stone-Čech compactification of 0-dimensional space also 0-dimensional?, https://mathoverflow.net/questions/93719. (version: 2018-10-17).

AN F-SPACE

- [2] Eric K. van Douwen, Kenneth Kunen, and Jan van Mill, There can be C^{*}-embedded dense proper subspaces in βω – ω, Proc. Amer. Math. Soc. 105 (1989), no. 2, 462–470, DOI 10.2307/2046965. MR977925
- [3] C. H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford Ser. (2) 6 (1955), 101–120, DOI 10.1093/qmath/6.1.101. MR86286
- [4] Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR1039321
- Klaas Pieter Hart, The Čech-Stone compactification of the real line, Recent progress in general topology (Prague, 1991), North-Holland, Amsterdam, 1992, pp. 317–352, DOI 10.1016/0887-2333(92)90021-I. MR1229130
- [6] Klaas Pieter Hart, Leon Luo, and Jan van Mill, Unions of F-spaces, Topology Proc. 43 (2014), 293–300. MR3104924
- [7] W. McGovern, Zero-dimensional F-space which is not strongly zero-dimensional, https://mathoverflow.net/questions/239324. (version: 2016-05-20).
- [8] Prabir Roy, Nonequality of dimensions for metric spaces, Trans. Amer. Math. Soc. 134 (1968), 117–132, DOI 10.2307/1994832. MR227960

Department of Mathematics, UNC-Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001

Email address: adow@uncc.edu URL: https://webpages.uncc.edu/adow

FACULTY EEMCS, TU DELFT, POSTBUS 5031, 2600 GA DELFT, THE NETHERLANDS *Email address*: k.p.hart@tudelft.nl *URL*: http://fa.ewi.tudelft.nl/~hart