Spectral regularization methods for statistical inverse learning problems

G. Blanchard

Universtität Potsdam

van Dantzig seminar, 23/06/2016

Joint work with N. Mücke (U. Potsdam)

2 Inverse learning/regression and relation to kernels

3 Rates for linear spectral regularization methods

4 Beyond the regular spectrum case

1 General regularization and kernel methods

2 Inverse learning/regression and relation to kernels

3 Rates for linear spectral regularization methods

4 Beyond the regular spectrum case

INTRODUCTION: RANDOM DESIGN REGRESSION

► Consider the familiar regression setting on a random design,

 $Y_i = f^*(X_i) + \varepsilon_i,$

where $(X_i, Y_i)_{1 \le i \le n}$ is an i.i.d. sample from P_{XY} on the space $\mathcal{X} \times \mathbb{R}$, • with $\mathbb{E} [\varepsilon_i | X_i] = 0$.

For an estimator \hat{f} we consider the **prediction error** function,

$$\left|\widehat{f}-f^*\right|_{2,X}^2=\mathbb{E}\left[\left(\widehat{f}(X)-f^*(X)\right)^2\right],$$

which we want to be as small as possible (in expectation or with large probability).

We can also be interested in squared reconstruction error

$$\left\|\widehat{f}-f^*\right\|_{\mathcal{H}}^2$$

where $\ensuremath{\mathcal{H}}$ is a certain Hilbert norm of interest for the user.

LINEAR CASE

Very classical is the linear case: X = ℝ^p, f^{*}(x) = ⟨x, β^{*}⟩, and in usual matrix form (X^t_i form the lines of the design matrix X)

$$\mathbf{Y} = \mathbf{X}\beta^* + \varepsilon$$

ordinary least squares solution is

$$\widehat{\beta}_{OLS} = (\mathbf{X}^t \mathbf{X})^{\dagger} \mathbf{X}^t \mathbf{Y}.$$

• Prediction error corresponds to $\mathbb{E}\left|\left\langle \beta^* - \widehat{\beta}, X \right\rangle^2\right|$

• Reconstruction error corresponds to $\left\|\beta^* - \widehat{\beta}\right\|^2$.

EXTENDING THE SCOPE OF LINEAR REGRESSION

- Common strategy to model more complex functions: map input variable x ∈ X to a so-called "feature space" through x̃ = Φ(x)
- typical examples (say with $\mathcal{X} = [0, 1]$) are

 $\widetilde{x} = \Phi(x) = (1, x, x^2, \dots, x^p) \in \mathbb{R}^{p+1};$

 $\widetilde{x} = \Phi(x) = (1, \cos(2\pi x), \sin(2\pi x), \cos(3\pi x), \sin(3\pi x), \ldots) \in \mathbb{R}^{2p+1}.$

 Problem: large number of parameters to estimate require regularization to avoid overfitting.

REGULARIZATION METHODS

- Main idea of regularization is to replace (X^tX)[†] by an approximate inverse, for instance
- Ridge regression/Tikhonov:

$$\widehat{eta}_{\mathsf{Ridge}(\lambda)} = (\mathbf{X}^t \mathbf{X} + \lambda I_p)^{-1} \mathbf{X}^t \mathbf{Y}$$

PCA projection/spectral cut-off: restrict X^tX on its k first eigenvectors

$$\widehat{eta}_{\textit{PCA}(k)} = (\mathbf{X}^t \mathbf{X})^{\dagger}_{|k} \mathbf{X}^t \mathbf{Y}$$

Gradient descent/Landweber Iteration/L² boosting:

$$\widehat{\beta}_{LW(k)} = \widehat{\beta}_{LW(k-1)} + \mathbf{X}^{t} (\mathbf{Y} - \mathbf{X} \widehat{\beta}_{LW(k-1)})$$
$$= \sum_{i=0}^{k} (I - \mathbf{X}^{t} \mathbf{X})^{k} \mathbf{X}^{t} \mathbf{Y},$$

(assuming $\|\mathbf{X}^{t}\mathbf{X}\|_{op} \leq 1$).

GENERAL FORM SPECTRAL LINEARIZATION

General form regularization method:

 $\widehat{\beta}_{Spec(\zeta,\lambda)} = \zeta_{\lambda} (\mathbf{X}^{t} \mathbf{X}) \mathbf{X}^{t} \mathbf{Y}$

for somme well-chosen function $\zeta_{\lambda}: \mathbb{R}_+ \to \mathbb{R}_+$ acting on the spectrum and "approximating" the function $x \mapsto 1/x$.

- ▶ $\lambda > 0$: regularization parameter; $\lambda \rightarrow 0 \Leftrightarrow$ less regularization
- Notation of functional calculus, i.e.

 $\mathbf{X}^{t}\mathbf{X} = \mathbf{Q}^{T} \operatorname{diag}(\lambda_{1}, \dots, \lambda_{p}) \mathbf{Q} \to \zeta(\mathbf{X}^{t}\mathbf{X}) := \mathbf{Q}^{T} \operatorname{diag}(\zeta(\lambda_{1}), \dots, \zeta(\lambda_{p})) \mathbf{Q}$

- Many well-known from the inverse problem literature
- Examples:
 - Tikhonov: $\zeta_{\lambda}(t) = (t + \lambda)^{-1}$

 - Spectral cut-off: ζ_λ(t) = t⁻¹1{t ≥ λ}
 Landweber iteration: ζ_k(t) = Σ^k_{i=0}(1 − t)ⁱ.

COEFFICIENT EXPANSION

A useful trick of functional calculus is the "shift rule":

 $\zeta(\mathbf{X}^{t}\mathbf{X})\mathbf{X}^{t} = \mathbf{X}^{t}\zeta(\mathbf{X}\mathbf{X}^{t}).$

Interpretation:

$$\widehat{\beta}_{Spec(\zeta,\lambda)} = \zeta(\mathbf{X}^{t}\mathbf{X})\mathbf{X}^{t}\mathbf{Y} = \mathbf{X}^{t}\zeta(\mathbf{X}\mathbf{X}^{t})\mathbf{Y} = \sum_{i=1}^{n}\widehat{\alpha}_{i}X_{i},$$

with

$$\widehat{\alpha}_i = \zeta(\boldsymbol{G}) \boldsymbol{Y},$$

and $G = \mathbf{X}\mathbf{X}^t$ is the (n, n) Gram matrix of (X_1, \dots, X_n) .

• This representation is more economical if $p \gg n$.

THE "KERNELIZATION" ANSATZ

- Let Φ be a feature mapping into a (possibly infinite dimensional) Hilbert feature space H.
- ► Representing $\tilde{x} = \Phi(x) \in \mathcal{H}$ explicitly is cumbersome/impossible in practice, but if we can compute quickly the kernel

$$\mathcal{K}(\mathbf{x},\mathbf{x}') := \left\langle \widetilde{\mathbf{x}},\widetilde{\mathbf{x}'} \right\rangle = \left\langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \right\rangle,$$

then kernel Gram matrix $\widetilde{G}_{ij} = \langle \widetilde{x}_i, \widetilde{x}_j \rangle = K(x_i, x_j)$ is accessible.

We can hence directly "kernelize" any classical regularization technique using the implicit representation

$$\widehat{\beta}_{Spec(\zeta,\lambda)} = \sum_{i=1}^{n} \widehat{\alpha}_i \widetilde{X}_i, \qquad \widehat{\alpha}_i = \zeta(\widetilde{G}) \mathbf{Y},$$

• the value of $f(x) = \langle \hat{\beta}, \tilde{x} \rangle$ can then be computed for any *x*:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \widehat{\alpha}_i K(\mathbf{X}_i, \mathbf{x}).$$

REPRODUCING KERNEL METHODS

▶ If \mathcal{H} is a Hilbert feature space, it is useful to identify it as a **space of** real functions on \mathcal{X} of the form $f(x) = \langle w, \Phi(x) \rangle$. The canonical feature mapping is then $\Phi(x) = K(x, .)$ and the "reproducing kernel" property reads

$$f(x) = \langle f, \Phi(x) \rangle = \langle f, K(x, .) \rangle$$
.

• Classical kernels on \mathbb{R}^d include

- Gaussian Kernel $K(x, y) = \exp ||x y||^2 / 2\sigma^2$
- Polynomial Kernel $K(x, y) = (1 + \langle x, y \rangle)^{\rho}$
- Spline kernels, Matérn kernel, inverse quadratic kernel...
- Success of reproducing kernel methods since early 00's is due to their versatility and ease of use: beyond vector spaces, kernels have been constructed on various non-euclidean data (text, genome, graphs, probability distributions...)
- One of the tenets of "learning theory" is a distribution-free point of view; in particular the sampling distribution (of the X_is) is unknown to the user and could be very general.

2 Inverse learning/regression and relation to kernels

3 Rates for linear spectral regularization methods

SETTING: "INVERSE LEARNING" PROBLEM

We refer to "inverse learning" (or inverse regression) for an inverse problem where we have noisy observations at random design points:

 $(X_i, Y_i)_{i=1,...,n}$ i.i.d. : $Y_i = (Af^*)(X_i) + \varepsilon_i$. (ILP)

- the goal is to recover $f^* \in \mathcal{H}_1$.
- early works on closely related subjects: from the splines literature in the 80's (e.g. O'Sullivan '90)

MAIN ASSUMPTION FOR INVERSE LEARNING

Model: $Y_i = (Af^*)(X_i) + \varepsilon_i, i = 1, ..., n$, where $A : \mathcal{H}_1 \to \mathcal{H}_2$. (ILP)

Observe:

- \mathcal{H}_2 should be a space of real-values functions on \mathcal{X} .
- ► the geometrical structure of the "measurement errors" will be dictated by the statistical properties of the sampling scheme – no need to assume or consider any a priori Hilbert structure on H₂
- crucial stuctural assumption is the following:

Assumption

The family of evaluation functionals (S_x) , $x \in \mathcal{X}$, defined by

$$S_x : \mathcal{H}_1 \longrightarrow \mathbb{R}$$

 $f \longmapsto (S_x)(f) := (Af)(x)$

is uniformly bounded, i.e., there exists $\kappa < \infty$ such that for any $x \in \mathcal{X}$

$$|\mathcal{S}_{x}(f)| \leq \kappa \|f\|_{\mathcal{H}_{1}}$$
.

GEOMETRY OF INVERSE LEARNING

- The inverse learning under the previous assumption was essentially considered by Caponnetto et al. (2006).
- ▶ Riesz's theorem implies the existence for any $x \in \mathcal{X}$ of $F_x \in \mathcal{H}_1$:

 $\forall f \in \mathcal{H}_1 : \qquad (Af)(x) = \langle f, F_x \rangle$

- K(x, y) := ⟨F_x, F_y⟩ defines a positive semidefinite kernel on X with associated reproducing kernel Hilbert space (RKHS) denoted H_K.
- as a pure function space, $\mathcal{H}_{\mathcal{K}}$ coincides with Im(A).
- ► assuming A injective, A is in fact an isometric isomorphism between H₁ and H_K.

GEOMETRY OF INVERSE LEARNING

- Main assumption implies that as a function space, *Im*(*A*) is endowed with a natural RKHS structure with a kernel *K* bounded by κ.
- Furthermore this RKHS \mathcal{H}_K is isometric to \mathcal{H}_1 (through A^{-1}).
- Therefore, the inverse learning problem is formally equivalent to the kernel learning problem

$$Y_i = h^*(X_i) + \varepsilon_i, \qquad i = 1, \dots, n$$

where $h^* \in \mathcal{H}_K$, and we measure the quality of an estimator $\hat{h} \in \mathcal{H}_K$ via the RKHS norm $\|\hat{h} - h^*\|_{\mathcal{H}_{\nu}}$

• Indeed, if we put $\hat{f} := A^{-1}\hat{h}$, then

$$\left\|\widehat{f} - f^*\right\|_{\mathcal{H}_1} = \left\|A(\widehat{f} - f^*)\right\|_{\mathcal{H}_K} = \left\|\widehat{h} - h^*\right\|_{\mathcal{H}_K}$$

SETTING, REFORMULATED

 We are actually back to the familiar regression setting on a random design,

 $Y_i = h^*(X_i) + \varepsilon_i,$

where $(X_i, Y_i)_{1 \le i \le n}$ is an i.i.d. sample from \mathbb{P}_{XY} on the space $\mathcal{X} \times \mathbb{R}$, • with $\mathbb{E} [\varepsilon_i | X_i] = 0$.

Noise assumptions:

(BernsteinNoise)
$$\mathbb{E}\left[\varepsilon_{i}^{p}|X_{i}\right] \leq \frac{1}{2}p!M^{p}, p \geq 2$$

- ▶ h^* is assumed to lie in a (known) RKHS \mathcal{H}_K with bounded kernel K.
- The criterion for measuring the quality of an estimator \hat{h} is the **RKHS norm**

$$\left\|\widehat{h}-h^*\right\|_{\mathcal{H}_{\mathcal{K}}}$$

2 Inverse learning/regression and relation to kernels

3 Rates for linear spectral regularization methods

EMPIRICAL AND POPULATION OPERATORS

Define the (random) empirical evaluation operator

 $T_n: h \in \mathcal{H} \mapsto (h(X_1), \dots, h(X_n)) \in \mathbb{R}^n$ (analogue of $\tilde{\mathbf{X}}$)

and its population counterpart the inclusion operator

$$T: h \in \mathcal{H} \mapsto h \in L_2(\mathcal{X}, \mathbb{P}_X);$$

the (random) empirical kernel integral operator

$$T_n^*: (\mathbf{v}_1, \dots, \mathbf{v}_n) \in \mathbb{R}^n \mapsto \frac{1}{n} \sum_{i=1}^n K(X_i, .) \mathbf{v}_i \in \mathcal{H}$$
 (analogue of $\widetilde{\mathbf{X}}^t/n$)

and its population counterpart, the kernel integral operator

$$T^*: f \in L_2(\mathcal{X}, \mathbb{P}_X) \mapsto T^*(f) = \int f(x)k(x, .)d\mathbb{P}_X(x) \in \mathcal{H}.$$

Finally, define the empirical covariance operator S_n = T_n^{*}T_n (analogue of ¹/_nX̃^tX̃) and its population counterpart S = T^{*}T (analogue of E [¹/_nX̃^tX̃] = E [XX^t], uncentered covariance)
 Main intuition: S_n is a (random) approximation of S.

SPECTRAL REGULARIZATION IN KERNEL SPACE

Linear spectral regularization in kernel space is written

 $\widehat{h}_{\zeta} = \zeta(S_n) T_n^* \mathbf{Y}$

recall

 $\zeta(S_n)T_n^* = \zeta(T_n^*T_n)T_n^* = T_n^*\zeta(T_nT_n^*) = T_n^*\zeta(K_n),$ where $K_n = T_nT_n^* : \mathbb{R}^n \to \mathbb{R}^n$ is the (normalized) kernel Gram matrix,

$$K_n(i,j)=\frac{1}{n}K(X_i,X_j).$$

equivalently:

$$\widehat{h}_{\zeta} = \sum_{i=1}^{n} \widehat{\alpha}_{\zeta,i} K(X_i,.)$$

 $\widehat{\alpha}_{\zeta} = \frac{1}{n} \zeta (K_n) \mathbf{Y}.$

with

STRUCTURAL ASSUMPTIONS

- ► Denote (\(\lambda_i\)_{i≥1}\) the sequence of positive eigenvalues of S in nonincreasing order.
- ▶ Source condition for the signal: for *r* > 0, define

SC(r, R): $h^* = S^r h_0$ for some h_0 with $||h_0|| \le R$

or equivalently seen as a Sobolev-type regularity set

$$\mathbf{SC}(\mathbf{r},\mathbf{R}):h^*\in\left\{h\in\mathcal{H}:\sum_{i\geq 1}\lambda_i^{-2\mathbf{r}}h_i^2\leq\mathbf{R}^2\right\}$$

where h_i are the coefficients of *h* in the eigenbasis of *S*.

Ill-posedness:

 $\mathsf{IP}^+(s,\beta): \quad \lambda_i \leq \beta i^{-\frac{1}{s}}$

and

$$\mathbf{IP}^{-}(\boldsymbol{s},\beta'): \quad \lambda_i \geq \beta' i^{-\frac{1}{s}}$$

ERROR/RISK MEASURE

• We are measuring the error (risk) of an estimator \hat{h} in the family of norms

$$\left\| oldsymbol{\mathcal{S}}^{ heta}(\widehat{h} - h^*)
ight\|_{\mathcal{H}_{K}} \qquad (heta \in [0,rac{1}{2}])$$

► Note $\theta = 0$: reconstruction error in \mathcal{H}_1 ; $\theta = 1/2$: prediction error, since

$$\left\| \boldsymbol{S}^{rac{1}{2}}(\widehat{h}-h^{*})
ight\|_{\mathcal{H}_{K}} = \left\| \widehat{h}-h^{*}
ight\|_{L^{2}(\mathbb{P}_{X})}$$

PREVIOUS RESULTS

Error	[1]	[2]	[3]	[4]
$\left\ \widehat{h} - h^* \right\ _{L^2(\mathbb{P}_X)}$	$\left(\frac{1}{\sqrt{n}}\right)^{\frac{2r+1}{2r+2}}$	$\left(\frac{1}{\sqrt{n}}\right)^{\frac{2r+1}{2r+2}}$	$\left(\frac{1}{\sqrt{n}}\right)^{\frac{(2r+1)}{2r+1+s}}$	$\left(\frac{1}{\sqrt{n}}\right)^{\frac{(2r+1)}{2r+1+s}}$
$\left\ \widehat{h} - h^* \right\ _{\mathcal{H}_{\kappa}}$	$\left(\frac{1}{\sqrt{n}}\right)^{\frac{r}{r+1}}$	$\left(\frac{1}{\sqrt{n}}\right)^{\frac{r}{r+1}}$	N/A	N/A
Assumptions	$r \leq \frac{1}{2}$	$r \le q - \frac{1}{2}$	$r \le \frac{1}{2}$	$0 \le r \le q - \frac{1}{2}$
(<i>q</i> : qualification)	-	-	-	+unlabeled data
				if 2 <i>r</i> + <i>s</i> < 1
Method	Tikhonov	General	Tikhonov	General
[1] Smale and Zhau (2007)				

- [1]: Smale and Zhou (2007)
- [2]: Bauer, Pereverzev, Rosasco (2007)
- [3]: Caponnetto, De Vito (2007)
- [4]: Caponnetto and Yao (2010)

Matching lower bound: only for $\left\| \widehat{h} - h^* \right\|_{L^2(\mathbb{P}_X)}$ [2].

Compare to results known for regularization methods under White Noise model: Mair and Ruymgaart (1996), Nussbaum and Pereverzev (1999), Bissantz, Hohage, Munk and Ruymgaart (2007). See also: recent preprint of Dicker, Foster, Hsu (2016)

ASSUMPTIONS ON REGULARIZATION FUNCTION

From now on we assume $\kappa = 1$ for simplicity. Standard assmptions on the regularization family $\zeta_{\lambda} : [0, 1] \to \mathbb{R}$ are:

(i) There exists a constant $D < \infty$ such that

 $\sup_{0<\lambda\leq 1}\sup_{0<t\leq 1}|t\zeta_{\lambda}(t)|\leq D\,,$

(ii) There exists a constant $E < \infty$ such that

 $\sup_{0<\lambda\leq 1}\sup_{0<t\leq 1}\lambda |\zeta_{\lambda}(t)|\leq E\,,$

(iii) Qualification:

 $\forall \lambda \leq 1: \qquad \sup_{0 < t \leq 1} |1 - t\zeta_{\lambda}(t)| t^{\nu} \leq \gamma_{\nu} \lambda^{\nu}.$

holds for $\nu = 0$ and $\nu = q > 0$.

UPPER BOUND ON RATES

Theorem

Assume r, R, s, β are fixed positive constants and let $\mathcal{P}(r, R, s, \beta)$ denote the set of distributions on $\mathcal{X} \times \mathcal{Y}$ satisfying (IP⁺)(s, β), (SC)(r, R) and (BernsteinNoise). Define

 $\widehat{h}_{\lambda_n}^{(n)} = \zeta_{\lambda_n}(S_n)T_n^*\mathbf{Y}$

using a regularization family (ζ_{λ}) satisfying the standard assumptions with qualification $q \ge r + \theta$, and the parameter choice rule

$$\lambda_n = \left(\frac{R^2\sigma^2}{n}\right)^{-\frac{1}{2r+1+s}}$$

it holds for any $\theta \in [0, \frac{1}{2}], \eta \in (0, 1), p \ge 1$:

$$\limsup_{n\to\infty}\sup_{P\in\mathcal{P}(r,R,s,\beta)}\mathbb{E}^{\otimes n}\left(\left\|S^{\theta}(h^*-\widehat{h}^{(n)}_{\lambda_n})\right\|_{\mathcal{H}_{K}}^{p}\right)^{\frac{1}{p}}/R\left(\frac{\sigma^2}{R^2n}\right)^{\frac{(r+\theta)}{2r+1+s}}\leq C.$$

COMMENTS

it follows that the convergence rate obtained is of order

$$C.R\left(\frac{\sigma^2}{R^2n}\right)^{\frac{(r+\theta)}{2r+1+s}}$$

- the "constant" C depends on the various parameters entering in the assumptions, but not on n, R, σ, M!
- ► the result applies to all linear spectral regularization methods but assuming a precise tuning of the regularization constant λ as a function of the assumed regularization parameters of the target – not adaptive.

"WEAK" LOWER BOUND ON RATES

Theorem

Assume r, R, s, β are fixed positive constants and let $\mathcal{P}'(r, R, s, \beta)$ denote the set of distributions on $\mathcal{X} \times \mathcal{Y}$ satisfying (IP⁻)(s, β), (SC)(r, R) and (BernsteinNoise). (We assume this set to be non empty!) Then

$$\limsup_{n\to\infty} \inf_{\widehat{h}} \sup_{P\in\mathcal{P}'(r,R,s,\beta)} P^{\otimes n} \left(\left\| S^{\theta}(h^*-\widehat{h}) \right\|_{\mathcal{H}_{K}} > CR\left(\frac{\sigma^2}{R^2n}\right)^{\frac{(r+\theta)}{2r+1+s}} \right) > 0$$

Proof: Fano's lemma technique

"STRONG" LOWER BOUND ON RATES

Assume additionally "no big jumps in eigenvalues":

 $\inf_{k\geq 1}\frac{\lambda_{2k}}{\lambda_k}>0$

Theorem

Assume r, R, s, β are fixed positive constants and let $\mathcal{P}'(r, R, s, \beta)$ denote the set of distributions on $\mathcal{X} \times \mathcal{Y}$ satisfying (IP⁻)(s, β), (SC)(r, R) and (BernsteinNoise). (We assume this set to be non empty!) Then

$$\liminf_{n\to\infty}\inf_{\widehat{h}}\sup_{P\in\mathcal{P}'(r,R,s,\beta)}P^{\otimes n}\left(\left\|S^{\theta}(h^*-\widehat{h})\right\|_{\mathcal{H}_{K}}>CR\left(\frac{\sigma^2}{R^2n}\right)^{\frac{(r+\theta)}{2r+1+s}}\right)>0$$

Proof: Fano's lemma technique

COMMENTS

- obtained rates are minimax (but not adaptive) in the parameters $R, n, \sigma...$
- ... provided $(IP^{-})(s,\beta) \cap (IP^{+})(s,\alpha)$ is not empty.

STATISTICAL ERROR CONTROL

Error controls were introduced and used by Caponnetto and De Vito (2007), Caponnetto (2007), using Bernstein's inequality for Hilbert space-valued variables (see Pinelis and Sakhanenko; Yurinski).

Theorem (Caponetto, De Vito)

Define

$$\mathcal{N}(\lambda) = \operatorname{Tr}((S + \lambda)^{-1}S),$$

then under assumption (BernsteinNoise) we have the following:

$$\mathbb{P}\left[\left\|(S+\lambda)^{-\frac{1}{2}}(T_n^*\mathbf{Y}-S_nh^*)\right\|\leq 2M\left(\sqrt{\frac{\mathcal{N}(\lambda)}{n}}+\frac{2}{\sqrt{\lambda}n}\right)\log\frac{6}{\delta}\right]\geq 1-\delta.$$

Also, the following holds:

$$\mathbb{P}\left[\left\|(\boldsymbol{S}+\lambda)^{-\frac{1}{2}}(\boldsymbol{S}_n-\boldsymbol{S})\right\|_{HS}\leq 2\left(\sqrt{\frac{\mathcal{N}(\lambda)}{n}}+\frac{2}{\sqrt{\lambda}n}\right)\log\frac{6}{\delta}\right]\geq 1-\delta\,.$$

2 Inverse learning/regression and relation to kernels

3 Rates for linear spectral regularization methods

4 Beyond the regular spectrum case

LIMITATIONS

- In the case of spectrum λ_i ≍ i^{-1/s}, we have shown that general regularization methods (with sufficient qualification) attain minimax rates over source conditions regularity sets.
- Remember λ_i are eigenvalues of kernel integral operator

$$T^*f=\int f(x)k(x,.)d\mathbb{P}_X(x)\,,$$

hence depend on kernel and of sampling distribution!

- The assumption on a sharp power decay of the spectrum seems too strong, especially in the "distribution-free" philosophy:
 - decay rates such as $\lambda_i \simeq i^{-b} (\log i)^c (\log \log i)^d$?
 - spectrum with long plateaus separated by relative gaps?
 - multiscale behavior, shifting or switching between different polynomial-type regimes?

GENERAL SPECTRUM: ASSUMPTIONS

Consider the following weaker assumption on the spectrum:

For any *j* sufficiently large and some $\nu_* \ge \nu^* > 1$,

- ► Related to the notion of one-sided *O*-regular variation
- Allows for a much broader range of behavior of the spectra
- ► Assumption OR[>](v_{*}) still implies that the spectrum is lower bounded by a power function: exponential decay of spectrum is not covered.

► Introduce:
$$\mathcal{F}(t) := \#\{j \in \mathbb{N} : \lambda_j \ge t\}, \qquad \mathcal{G}(t) := \frac{t^{2r+1}}{\mathcal{F}(t)}$$

Put

$$a_n := R\left(\mathcal{G}^{\leftarrow}\left(\frac{\sigma^2}{R^2n}\right)\right)^{r+\theta}$$
,

Theorem

Assume r, R, ν_*, ν^* are fixed positive constants and let $\mathcal{P}(\mathbb{P}_X, r, R)$ denote the set of distributions on $\mathcal{X} \times \mathcal{Y}$ with marginal \mathbb{P}_X and satisfying **(SC)**(r, R) and **(BernsteinNoise)**.

If \mathbb{P}_X satisfies $OR^{>}(\nu_*)$, then a_n is a lower minimax rate of convergence for the norm $\|S^{\theta}(\cdot)\|$.

If \mathbb{P}_X satisfies $OR^{<}(\nu^*)$, the rate a_n is attained by an estimator based on any regularization function of qualification $q \ge r$ for the parameter choice

$$\lambda_n = \mathcal{G}^{\leftarrow} \left(\frac{\sigma^2}{R^2 n} \right) \; .$$

(NB: ν_*, ν^* only influence multiplicative constants in front of rate)

OVERVIEW:

- ► inverse problem setting under random i.i.d. design scheme
- "learning setting": unknown sampling distribution, related discretization error
- ▶ for source condition: Hölder of order *r*;
- ► for ill-posedness: polynomial decay of eigenvalues of order s.
- Same regularization parameter works both in reconstruction error and prediction error.
- Minimax rates (incl. correct dependence on *R*, σ) are attained by general regularization methods (also Conjugate Gradient)
- rates of the form (for $\theta \in [0, \frac{1}{2}]$):

$$\left\| \boldsymbol{S}^{\theta}(\boldsymbol{h}^* - \widehat{\boldsymbol{h}}) \right\|_{\mathcal{H}_{K}} \leq O\left(\boldsymbol{n}^{-rac{(r+\theta)}{2r+1+s}}\right) \,.$$

- ► matches "classical" rates in the white noise model (=sequence model) with $\sigma^{-2} \leftrightarrow n$.
- matching upper/lower bounds beyond polynomial spectrum decay

CONCLUSION/PERSPECTIVES

- We filled gaps in the existing picture for inverse learning methods.
- Adaptivity?
- Ideally attain optimal rates without a priori knowledge of r nor of s!
 - Lepski's method/balancing principle: in progress. Need a good estimator for N(λ)! (Prior work on this: Caponnetto; need some sharper bound)
 - Hold-out principle: only valid for direct problem? But optimal parameter does not depend on risk norm: hope for validity in inverse case.

THANK YOU FOR YOUR ATTENTION!

F. Bauer, S. Pereverzev, and L. Rosasco.

On regularization algorithms in learning theory.

J. Complexity, 23(1):52–72, 2007.

N. Bissantz, T. Hohage, A. Munk, and F. Ruymgaart.

Convergence rates of general regularization methods for statistical inverse problems and applications.

SIAM J. Numer. Analysis, 45(6):2610-2636, 2007.

E. De Vito, L. Rosasco, and A. Caponnetto. Discretization error analysis for Tikhonov regularization. *Analysis and Applications*, 4(1):81–99, 2006.

S. Smale and D. Zhou.

Learning theory estimates via integral operators and their approximation. *Constructive Approximation*, 26(2):153–172, 2007.

A. Caponnetto and Y. Yao.

Cross-validation based Adaptation for Regularization Operators in Learning *Analysis and Applications*, 8(2):161–183 2010.

L. Dicker, D. Foster and D. Hsu

Kernel methods and regularization techniques for nonparametric regression: Minimax optimality and adaptation

ArXiv, 2016.