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INTRODUCTION: RANDOM DESIGN REGRESSION

I Consider the familiar regression setting on a random design,

Yi = f ∗(Xi ) + εi ,

where (Xi ,Yi )1≤i≤n is an i.i.d. sample from PXY on the space X × R,
I with E [εi |Xi ] = 0.
I For an estimator f̂ we consider the prediction error function,∥∥∥f̂ − f ∗

∥∥∥2

2,X
= E

[(
f̂ (X )− f ∗(X )

)2
]
,

which we want to be as small as possible (in expectation or with
large probability).

I We can also be interested in squared reconstruction error∥∥∥f̂ − f ∗
∥∥∥2

H

where H is a certain Hilbert norm of interest for the user.
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LINEAR CASE

I Very classical is the linear case: X = Rp, f ∗(x) = 〈x , β∗〉, and in
usual matrix form (X t

i form the lines of the design matrix X)

Y = Xβ∗ + ε

I ordinary least squares solution is

β̂OLS = (XtX)†XtY.

I Prediction error corresponds to E
[〈
β∗ − β̂,X

〉2
]

I Reconstruction error corresponds to
∥∥∥β∗ − β̂∥∥∥2

.
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EXTENDING THE SCOPE OF LINEAR REGRESSION

I Common strategy to model more complex functions:
map input variable x ∈ X to a so-called “feature space” through
x̃ = Φ(x)

I typical examples (say with X = [0,1]) are

x̃ = Φ(x) = (1, x , x2, . . . , xp) ∈ Rp+1;

x̃ = Φ(x) = (1, cos(2πx), sin(2πx), cos(3πx), sin(3πx), . . .) ∈ R2p+1.

I Problem: large number of parameters to estimate require
regularization to avoid overfitting.
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REGULARIZATION METHODS

I Main idea of regularization is to replace (XtX)† by an approximate
inverse, for instance

I Ridge regression/Tikhonov:

β̂Ridge(λ) = (XtX + λIp)−1XtY

I PCA projection/spectral cut-off: restrict XtX on its k first
eigenvectors

β̂PCA(k) = (XtX)†|k XtY

I Gradient descent/Landweber Iteration/L2 boosting:

β̂LW (k) = β̂LW (k−1) + Xt (Y− Xβ̂LW (k−1))

=
k∑

i=0

(I − XtX)k XtY ,

(assuming
∥∥XtX

∥∥
op ≤ 1).
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GENERAL FORM SPECTRAL LINEARIZATION

I General form regularization method:

β̂Spec(ζ,λ) = ζλ(XtX)XtY

for somme well-chosen function ζλ : R+ → R+ acting on the
spectrum and “approximating” the function x 7→ 1/x .

I λ > 0: regularization parameter; λ→ 0⇔ less regularization
I Notation of functional calculus, i.e.

XtX = QTdiag(λ1, . . . , λp)Q → ζ(XtX) := QTdiag(ζ(λ1), . . . , ζ(λp))Q

I Many well-known from the inverse problem literature
I Examples:

I Tikhonov: ζλ(t) = (t + λ)−1

I Spectral cut-off: ζλ(t) = t−11{t ≥ λ}
I Landweber iteration: ζk (t) =

∑k
i=0(1− t)i .
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COEFFICIENT EXPANSION

I A useful trick of functional calculus is the “shift rule”:

ζ(XtX)Xt = Xtζ(XXt ) .

I Interpretation:

β̂Spec(ζ,λ) = ζ(XtX)XtY = Xtζ(XXt )Y =
n∑

i=1

α̂iXi ,

with
α̂i = ζ(G)Y ,

and G = XXt is the (n,n) Gram matrix of (X1, . . . ,Xn) .
I This representation is more economical if p � n.
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THE “KERNELIZATION” ANSATZ

I Let Φ be a feature mapping into a (possibly infinite dimensional)
Hilbert feature space H .

I Representing x̃ = Φ(x) ∈ H explicitly is cumbersome/impossible in
practice, but if we can compute quickly the kernel

K (x , x ′) :=
〈

x̃ , x̃ ′
〉

= 〈Φ(x),Φ(x ′)〉 ,

then kernel Gram matrix G̃ij =
〈
x̃i , x̃j

〉
= K (xi , xj ) is accessible.

I We can hence directly “kernelize” any classical regularization
technique using the implicit representation

β̂Spec(ζ,λ) =
n∑

i=1

α̂i X̃i , α̂i = ζ(G̃)Y ,

I the value of f (x) =
〈
β̂, x̃

〉
can then be computed for any x :

f (x) =
n∑

i=1

α̂iK (Xi , x) .
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REPRODUCING KERNEL METHODS

I If H is a Hilbert feature space, it is useful to identify it as a space of
real functions on X of the form f (x) = 〈w ,Φ(x)〉. The canonical
feature mapping is then Φ(x) = K (x , .) and the “reproducing kernel”
property reads

f (x) = 〈f ,Φ(x)〉 = 〈f ,K (x , .)〉 .

I Classical kernels on Rd include
I Gaussian Kernel K (x , y) = exp−‖x − y‖2 /2σ2

I Polynomial Kernel K (x , y) = (1 + 〈x , y〉)p

I Spline kernels, Matérn kernel, inverse quadratic kernel. . .
I Success of reproducing kernel methods since early 00’s is due to

their versatility and ease of use: beyond vector spaces, kernels
have been constructed on various non-euclidean data (text, genome,
graphs, probability distributions. . . )

I One of the tenets of “learning theory” is a distribution-free point of
view; in particular the sampling distribution (of the Xis) is unknown to
the user and could be very general.
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SETTING: “INVERSE LEARNING” PROBLEM

I We refer to “inverse learning” (or inverse regression) for an inverse
problem where we have noisy observations at random design
points:

(Xi ,Yi )i=1,...,n i.i.d. : Yi = (Af ∗)(Xi ) + εi . (ILP)

I the goal is to recover f ∗ ∈ H1.
I early works on closely related subjects: from the splines literature in

the 80’s (e.g. O’Sullivan ’90)
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MAIN ASSUMPTION FOR INVERSE LEARNING

Model: Yi = (Af ∗)(Xi ) + εi , i = 1, . . . ,n, where A : H1 → H2. (ILP)

Observe:
I H2 should be a space of real-values functions on X .
I the geometrical structure of the “measurement errors” will be

dictated by the statistical properties of the sampling scheme – no
need to assume or consider any a priori Hilbert structure on H2

I crucial stuctural assumption is the following:

Assumption

The family of evaluation functionals (Sx ), x ∈ X , defined by

Sx : H1 −→ R
f 7−→ (Sx )(f ) := (Af )(x)

is uniformly bounded, i.e., there exists κ <∞ such that for any x ∈ X

|Sx (f )| ≤ κ ‖f‖H1
.
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GEOMETRY OF INVERSE LEARNING

I The inverse learning under the previous assumption was essentially
considered by Caponnetto et al. (2006).

I Riesz’s theorem implies the existence for any x ∈ X of Fx ∈ H1:

∀f ∈ H1 : (Af )(x) = 〈f ,Fx〉

I K (x , y) := 〈Fx ,Fy 〉 defines a positive semidefinite kernel on X with
associated reproducing kernel Hilbert space (RKHS) denoted HK .

I as a pure function space, HK coincides with Im(A).
I assuming A injective, A is in fact an isometric isomorphism

between H1 and HK .
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GEOMETRY OF INVERSE LEARNING

I Main assumption implies that as a function space, Im(A) is endowed
with a natural RKHS structure with a kernel K bounded by κ.

I Furthermore this RKHS HK is isometric to H1 (through A−1).
I Therefore, the inverse learning problem is formally equivalent to the

kernel learning problem

Yi = h∗(Xi ) + εi , i = 1, . . . ,n

where h∗ ∈ HK , and we measure the quality of an estimator ĥ ∈ HK

via the RKHS norm
∥∥∥ĥ − h∗

∥∥∥
HK

I Indeed, if we put f̂ := A−1ĥ, then∥∥∥f̂ − f ∗
∥∥∥
H1

=
∥∥∥A(̂f − f ∗)

∥∥∥
HK

=
∥∥∥ĥ − h∗

∥∥∥
HK
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SETTING, REFORMULATED

I We are actually back to the familiar regression setting on a random
design,

Yi = h∗(Xi ) + εi ,

where (Xi ,Yi )1≤i≤n is an i.i.d. sample from PXY on the space X × R,
I with E [εi |Xi ] = 0.
I Noise assumptions:

(BernsteinNoise) E
[
εp

i |Xi
]
≤ 1

2
p!Mp, p ≥ 2

I h∗ is assumed to lie in a (known) RKHS HK with bounded kernel K .
I The criterion for measuring the quality of an estimator ĥ is the RKHS

norm ∥∥∥ĥ − h∗
∥∥∥
HK

.
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EMPIRICAL AND POPULATION OPERATORS

I Define the (random) empirical evaluation operator

Tn : h ∈ H 7→ (h(X1), . . . ,h(Xn)) ∈ Rn (analogue of X̃)

and its population counterpart the inclusion operator

T : h ∈ H 7→ h ∈ L2(X ,PX );

I the (random) empirical kernel integral operator

T ∗n : (v1, . . . , vn) ∈ Rn 7→ 1
n

n∑
i=1

K (Xi , .)vi ∈ H (analogue of X̃t/n)

and its population counterpart, the kernel integral operator

T ∗ : f ∈ L2(X ,PX ) 7→ T ∗(f ) =

∫
f (x)k(x , .)dPX (x) ∈ H.

I finally, define the empirical covariance operator Sn = T ∗n Tn

(analogue of 1
n X̃t X̃) and its population counterpart S = T ∗T

(analogue of E
[

1
n X̃t X̃

]
= E

[
XX t

]
, uncentered covariance)

I Main intuition: Sn is a (random) approximation of S.
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SPECTRAL REGULARIZATION IN KERNEL SPACE

I Linear spectral regularization in kernel space is written

ĥζ = ζ(Sn)T ∗n Y

I recall
ζ(Sn)T ∗n = ζ(T ∗n Tn)T ∗n = T ∗n ζ(TnT ∗n ) = T ∗n ζ(Kn) ,

where Kn = TnT ∗n : Rn → Rn is the (normalized) kernel Gram
matrix,

Kn(i , j) =
1
n

K (Xi ,Xj ) .

I equivalently:

ĥζ =
n∑

i=1

α̂ζ,iK (Xi , .)

with
α̂ζ =

1
n
ζ (Kn) Y.
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STRUCTURAL ASSUMPTIONS

I Denote (λi )i≥1 the sequence of positive eigenvalues of S in
nonincreasing order.

I Source condition for the signal: for r > 0, define

SC(r ,R) : h∗ = Sr h0 for some h0 with ‖h0‖ ≤ R

or equivalently seen as a Sobolev-type regularity set

SC(r ,R) : h∗ ∈

h ∈ H :
∑
i≥1

λ−2r
i h2

i ≤ R2

 ,

where hi are the coefficients of h in the eigenbasis of S.
I Ill-posedness:

IP+(s, β) : λi ≤ βi−
1
s

and
IP−(s, β′) : λi ≥ β′i−

1
s
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ERROR/RISK MEASURE

I We are measuring the error (risk) of an estimator ĥ in the family of
norms ∥∥∥Sθ(ĥ − h∗)

∥∥∥
HK

(θ ∈ [0,
1
2

])

I Note θ = 0: reconstruction error in H1; θ = 1/2: prediction error,
since ∥∥∥S

1
2 (ĥ − h∗)

∥∥∥
HK

=
∥∥∥ĥ − h∗

∥∥∥
L2(PX )

.
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PREVIOUS RESULTS

Error [1] [2] [3] [4]∥∥∥ĥ − h∗
∥∥∥

L2(PX )

(
1√
n

) 2r+1
2r+2

(
1√
n

) 2r+1
2r+2

(
1√
n

) (2r+1)
2r+1+s

(
1√
n

) (2r+1)
2r+1+s

∥∥∥ĥ − h∗
∥∥∥
HK

(
1√
n

) r
r+1

(
1√
n

) r
r+1

N/A N/A

Assumptions r ≤ 1
2 r ≤ q − 1

2 r ≤ 1
2 0 ≤ r ≤ q − 1

2
(q: qualification) +unlabeled data

if 2r + s < 1

Method Tikhonov General Tikhonov General
[1]: Smale and Zhou (2007)
[2]: Bauer, Pereverzev, Rosasco (2007)
[3]: Caponnetto, De Vito (2007)
[4]: Caponnetto and Yao (2010)

Matching lower bound: only for
∥∥∥ĥ − h∗

∥∥∥
L2(PX )

[2].

Compare to results known for regularization methods under White Noise
model: Mair and Ruymgaart (1996), Nussbaum and Pereverzev (1999),
Bissantz, Hohage, Munk and Ruymgaart (2007).
See also: recent preprint of Dicker, Foster, Hsu (2016)
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ASSUMPTIONS ON REGULARIZATION FUNCTION

From now on we assume κ = 1 for simplicity. Standard assmptions on
the regularization family ζλ : [0,1]→ R are:

(i) There exists a constant D <∞ such that

sup
0<λ≤1

sup
0<t≤1

|tζλ(t)| ≤ D ,

(ii) There exists a constant E <∞ such that

sup
0<λ≤1

sup
0<t≤1

λ |ζλ(t)| ≤ E ,

(iii) Qualification:

∀λ ≤ 1 : sup
0<t≤1

|1− tζλ(t)| tν ≤ γνλν .

holds for ν = 0 and ν = q > 0.
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UPPER BOUND ON RATES

Theorem
Assume r ,R, s, β are fixed positive constants and let P(r ,R, s, β) denote
the set of distributions on X × Y satisfying (IP+)(s, β), (SC)(r ,R) and
(BernsteinNoise). Define

ĥ(n)
λn

= ζλn (Sn)T ∗n Y

using a regularization family (ζλ) satisfying the standard assumptions
with qualification q ≥ r + θ, and the parameter choice rule

λn =

(
R2σ2

n

)− 1
2r+1+s

.

it holds for any θ ∈ [0, 1
2 ], η ∈ (0,1),p ≥ 1:

lim sup
n→∞

sup
P∈P(r ,R,s,β)

E⊗n
(∥∥∥Sθ(h∗ − ĥ(n)

λn
)
∥∥∥p

HK

) 1
p /

R
(
σ2

R2n

) (r+θ)
2r+1+s

≤ C.
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COMMENTS

I it follows that the convergence rate obtained is of order

C.R
(
σ2

R2n

) (r+θ)
2r+1+s

I the “constant” C depends on the various parameters entering in the
assumptions, but not on n,R, σ,M!

I the result applies to all linear spectral regularization methods but
assuming a precise tuning of the regularization constant λ as a
function of the assumed regularization parameters of the target – not
adaptive.
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“WEAK” LOWER BOUND ON RATES

Assume additionally “no big jumps in eigenvalues”:

inf
k≥1

λ2k

λk
> 0

Theorem
Assume r ,R, s, β are fixed positive constants and let P ′(r ,R, s, β) denote
the set of distributions on X × Y satisfying (IP−)(s, β), (SC)(r ,R) and
(BernsteinNoise). (We assume this set to be non empty!) Then

lim sup
n→∞

inf
ĥ

sup
P∈P′(r ,R,s,β)

P⊗n

 ∥∥∥Sθ(h∗ − ĥ)
∥∥∥
HK

> CR
(
σ2

R2n

) (r+θ)
2r+1+s

 > 0

Proof: Fano’s lemma technique
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“STRONG” LOWER BOUND ON RATES

Assume additionally “no big jumps in eigenvalues”:

inf
k≥1

λ2k

λk
> 0

Theorem
Assume r ,R, s, β are fixed positive constants and let P ′(r ,R, s, β) denote
the set of distributions on X × Y satisfying (IP−)(s, β), (SC)(r ,R) and
(BernsteinNoise). (We assume this set to be non empty!) Then

lim inf
n→∞

inf
ĥ

sup
P∈P′(r ,R,s,β)

P⊗n

 ∥∥∥Sθ(h∗ − ĥ)
∥∥∥
HK

> CR
(
σ2

R2n

) (r+θ)
2r+1+s

 > 0

Proof: Fano’s lemma technique
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COMMENTS

I obtained rates are minimax (but not adaptive) in the parameters
R,n, σ. . .

I . . . provided (IP−)(s, β)∩ (IP+)(s, α) is not empty.
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STATISTICAL ERROR CONTROL

Error controls were introduced and used by Caponnetto and De Vito
(2007), Caponnetto (2007), using Bernstein’s inequality for Hilbert
space-valued variables (see Pinelis and Sakhanenko; Yurinski).

Theorem (Caponetto, De Vito)

Define
N (λ) = Tr( (S + λ)−1S ) ,

then under assumption (BernsteinNoise) we have the following:

P

[∥∥∥(S + λ)−
1
2 (T ∗n Y− Snh∗)

∥∥∥ ≤ 2M

(√
N (λ)

n
+

2√
λn

)
log

6
δ

]
≥ 1− δ .

Also, the following holds:

P

[∥∥∥(S + λ)−
1
2 (Sn − S)

∥∥∥
HS
≤ 2

(√
N (λ)

n
+

2√
λn

)
log

6
δ

]
≥ 1− δ .
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LIMITATIONS

I In the case of spectrum λi � i−1/s, we have shown that general
regularization methods (with sufficient qualification) attain minimax
rates over source conditions regularity sets.

I Remember λi are eigenvalues of kernel integral operator

T ∗f =

∫
f (x)k(x , .)dPX (x) ,

hence depend on kernel and of sampling distribution!
I The assumption on a sharp power decay of the spectrum seems too

strong, especially in the “distribution-free” philosophy:
I decay rates such as λi � i−b(log i)c(log log i)d ?
I spectrum with long plateaus separated by relative gaps?
I multiscale behavior, shifting or switching between different

polynomial-type regimes?
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GENERAL SPECTRUM: ASSUMPTIONS

Consider the following weaker assumption on the spectrum:

For any j sufficiently large and some ν∗ ≥ ν∗ > 1,

OR<(ν∗)
λ2j

λj
≤ 2−ν

∗
;

OR>(ν∗)
λ2j

λj
≥ 2−ν∗ .

I Related to the notion of one-sided O-regular variation
I Allows for a much broader range of behavior of the spectra
I Assumption OR>(ν∗) still implies that the spectrum is lower bounded

by a power function: exponential decay of spectrum is not covered.

G. Blanchard Rates for statistical inverse learning van Dantzig seminar 24/06/2016 33 / 38



I Introduce: F(t) := #{j ∈ N : λj ≥ t} , G(t) :=
t2r+1

F(t)
I Put

an := R
(
G←

(
σ2

R2n

))r+θ

,

Theorem
Assume r ,R, ν∗, ν∗ are fixed positive constants and let P(PX , r ,R) denote
the set of distributions on X × Y with marginal PX and satisfying
(SC)(r ,R) and (BernsteinNoise).
If PX satisfies OR>(ν∗), then an is a lower minimax rate of convergence
for the norm

∥∥Sθ(·)
∥∥.

If PX satisfies OR<(ν∗), the rate an is attained by an estimator based on
any regularization function of qualification q ≥ r for the parameter choice

λn = G←
(
σ2

R2n

)
.

(NB: ν∗, ν∗ only influence multiplicative constants in front of rate)
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OVERVIEW:

I inverse problem setting under random i.i.d. design scheme
I “learning setting”: unknown sampling distribution, related

discretization error
I for source condition: Hölder of order r ;
I for ill-posedness: polynomial decay of eigenvalues of order s .
I Same regularization parameter works both in reconstruction error

and prediction error.
I Minimax rates (incl. correct dependence on R, σ) are attained by

general regularization methods (also Conjugate Gradient)
I rates of the form (for θ ∈ [0, 1

2 ]):∥∥∥Sθ(h∗ − ĥ)
∥∥∥
HK

≤ O
(

n−
(r+θ)

2r+1+s

)
.

I matches “classical” rates in the white noise model (=sequence
model) with σ−2 ↔ n .

I matching upper/lower bounds beyond polynomial spectrum decay
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CONCLUSION/PERSPECTIVES

I We filled gaps in the existing picture for inverse learning methods.
I Adaptivity?
I Ideally attain optimal rates without a priori knowledge of r nor of s!

I Lepski’s method/balancing principle: in progress. Need a good
estimator for N (λ)! (Prior work on this: Caponnetto; need some
sharper bound)

I Hold-out principle: only valid for direct problem? But optimal parameter
does not depend on risk norm: hope for validity in inverse case.
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THANK YOU FOR YOUR ATTENTION!
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