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1. Introduction

B. and Vandekerkhove (2013) Scandinavian J. Statist.

Mixture of probability densities:

X ∼
{

f (· − a), with probability p
f (· − b), with probability 1 − p

,

where f is a probability density, symmetric around 0.

X has probability density

g = p · f (· − a) + (1 − p) · f (· − b).

Identifiability and estimation results:
[1] Bordes, Mottelet, Vandekerkhove (2006) Ann. Statist.
[2] Hunter, Wang, Hettmansperger (2006) Ann. Statist.
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B., Ngueyep Tzoumpe, Vandekerkhove (2015) Bernoulli, on line

Mixture of regression models

Y =

{
a(X ) + ε, with probability π(X )
b(X ) + ε, with probability 1 − π(X )

,

where ε centered with symmetric probability density (conditional on X ).
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Figure : Display of the original PET-radiotherapy data from Bowen et al. (2012)
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2. Mixture of symmetric probability densities

We observe X1, . . . ,Xn i.i.d. having common probability density function (p.d.f.)

g(x) = p · f (x − a) + (1− p) · f (x − b), x ∈ R,

where p ∈ (0, 1), a, b ∈ R and f : R→ R+ is a symmetric p.d.f. around 0 axis.

Denote by θ = (p, a, b) the scalar parameter.

Goal: recover θ and the function f in our semiparametric model, from g = Kθf .

Previously,
[1] Bordes, Mottelet, Vandekerkhove (2006) Ann. Statist.
[2] Hunter, Wang, Hettmansperger (2006) Ann. Statist.
work with c.d.f

Gθ,F (x) = p · F (x − a) + (1− p) · F (x − b).

Write G = KθF , i.e. inverse problem with partially known operator.
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Identifiability

They prove the identifiability of θ over the set Θ = [0, 1
2
)×R2\∆, ∆ = {(x , x) : x ∈ R}

and F c.d.f. of a symmetric distribution: If

Gθ1,F1 (x) = Gθ2,F2 (x), x ∈ R

then θ1 = θ2 and F1 ≡ F2.

Iterative inversion procedure:
Recall that Gθ,F (x + b) = p · F (x − a + b) + (1− p) · F (x) giving

F (x) =
1

1− p
G(x + b)− p

1− p
F (x − a + b)

=
1

1− p
G(x + b)− p

(1− p)2
G(x − a + 2b) +

p2

(1− p)2
F (x − 2a + 2b)

= ... =: K−1
θ G(x),

for p
1−p

< 1.
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Key fact: F is the cdf of a symmetric distribution

iff

F (x) = SF (x), for all x , with SF (x) = 1− F (−x).

Estimation is based on the fact that

G(x) = [KtSK
−1
t G ](x), for all x , iff t = θ.

Therefore, a contrast can be build

T (t) =

∫
(G − KtSK

−1
t G)2dG

and

θ = arg inf
t

∫
(G − KtSK

−1
t G)2dG .
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The procedure:
-truncate the iterative algorithm at N, K−1

t,N ;
-estimate the contrast

TN(t) =

∫
(G − Kt,NSK

−1
t,NG)2dG ;

by T̂N,n;
-minimize that estimator to get θ̂:

θ̂ = arg inf
t
T̂N,n(t).

Main results: n1/4−α(θ̂ − θ) = o(1) a.s. and ‖F̂n − F‖∞ = oa.s.(n
−1/4+α), for some

α > 0.
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Contrast function

We go to Fourier domain: f ∗(u) =
∫
R e iux f (x)dx .

Key fact: f symmetric iff f ∗ ∈ R iff Im(f ∗) ≡ 0.

We have,
g∗(u) = pe iuaf ∗(u) + (1− p)e iubf ∗(u) = M(θ, u) · f ∗(u),

where M(θ, u) = pe iua + (1− p)e iub.

We suppose that 0 < P∗ ≤ p ≤ P∗ < 1
2

and then

0 < 1− 2P∗ ≤ |M(θ, u)| ≤ 1, for all u.
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Thus, our inverse problem is well-posed! The exact inversion goes:

g −→ g∗ −→ f ∗ =
g∗

M(θ, ·) −→ f .

Equivalently, f = F−1
[
F [g ](u)
M(θ,u)

]
.

Our procedure:

-define a new contrast S(t) based on the Fourier transform;

-estimate it by Ŝn(t) at parametric rate;

-minimize it to get θ̂n = arg inft Ŝn(t)

-estimate f by a deconvolution-type estimator that uses θ̂n.
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If f is a symmetric pdf such that f ∗ belongs to L1 and L2 and if θ belongs to T a
compact set included in Θ, then

Im
g∗(u)

M(t, u)
= 0, for all u, iff t = θ.

We build the contrast function

S(t) =

∫
R

(
Im

g∗(u)

M(t, u)

)2

dW (u), t ∈ R

where W is the cdf of a continuous distribution with finite 3rd order moments.

Rk: W helps computing the integrals with Monte-Carlo AND allows less restrictive
assumptions on f .

Proposition: S(t) ≥ 0 for all t and S(t) = 0 iff t = θ.
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Estimators

Estimation of the contrast function:

S(t) = −1

4

∫
R

(
g∗(u)

M(t, u)
− ḡ∗(u)

M(t,−u)

)2

dW (u).

Recall that g∗(u) = E(e iuX ) and put

Zk(t, u) =
e iuXk

M(t, u)
− e−iuXk

M(t,−u)
.

Thus

Ŝn(t) = − 1

4n(n − 1)

∑
k 6=j

∫
Zk(t, u)Zj(t, u)dW (u).

Rk: do not use the plug-in estimator!
Our estimator of θ is

θ̂n = arg min
t

Ŝn(t).
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Estimator of f by kernel-deconvolution like procedure:

f̂ ∗n (u) =
1

n

n∑
k=1

e iuXkK∗(uhn)

M(θ̂n,−k , u)

where K is a kernel and θ̂n,−k is the previous leave-one-out estimator of θ.

Theorem: If W : R→ R+ is a continuous cdf such that
∫
|u|3dW (u) <∞ then

θ̂n → θ, in probability

and √
n(θ̂n − θ)→ N(0,Σ), in distribution,

where Σ is an explicit covariance matrix depending on θ and on W .

Rk: loss of asymptotic efficacity due to W , but less ”expensive” assumptions on f .
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If, moreover, f belongs to a Sobolev class S(β, L) with smoothness β > 1/2 and L > 0,
then f̂n with h = cn−1/(2β), c > 0 and K symmetric kernel in L1 and L2, such that
supp(K∗) ⊂ [−1, 1], then

lim sup
n→∞

sup
f∈S(β,L)

sup
θ∈T

Eθ,f [n−
2β−1

2β |f̂n(x)− f (x)|2] ≤ C∗,

where C∗ = C∗(β, L,P∗,
∫
K 2). Moreover,

lim inf
n→∞

inf
f̃n

sup
f∈S(β,L)

sup
θ∈T

Eθ,f [n−
2β−1

2β |f̃n(x)− f (x)|2] ≥ C∗ > 0,

where the infimum is taken over all estimators f̃n of f .

Rk. the nonparametric rates are those in the direct problem and the lower bounds are
directly deduced from there.

Rk. the well-posed inverse problem implies that there is no loss in the nonparametric

rate.
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Gassiat, Rousseau (2013, arxiv:1302.2345)

Yi = aSi + εi ,

where Si ’s take values {1, ...,K} with probabilities p1, ..., pK and are dependent.
From marginal bi-variate distributions ((Y1,Y2)), identifiability and estimation of

K , a1, ..., aK and p1, ..., pK ,

under some assumptions.

Here, these assumptions are not verified!
If K > 2, our method provides an estimator, but no identifiability results are known for
K > 3, sufficient conditions are known for K = 3 (Bordes et al., 2006).
Balabdaoui and B. (2014) identifiability of mixture of probability densities that are Pólya
functions.

In the multivariate case (a, b ∈ Rd), it is sufficient to use the marginal densities in order
to identify and estimate θ.
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3. Mixture of regression functions with symmetric errors

B., Ngueyep Tzoumpe, Vandekerkhove (2015) Bernoulli, to appear
(X1,Y1), ..., (Xn,Yn) i.i.d. such that

Yi =

{
a(Xi ) + εi , with probability π(Xi )
b(Xi ) + εi , with probability 1− π(Xi )

,

where εi i.i.d., centered with symmetric conditional probability density.

The conditional probability density of Y /X = x is

gx(y) = π(x)fx(y − a(x)) + (1− π(x))fx(y − b(x)),

where ε/X = x has symmetric probability density fx for all x .

Rk. We can also apply the method to

1) σ(Xi )εi , i.e. fx(y) = 1
σ(x)

f
(

y
σ(x)

)
;

2) fx(y) =
∑K

k=1 λk(x)fk(x), fk is symmetric for all k.
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Local and global identifiability

For given x0 in supp(`) (pdf of Xi , i = 1, ..., n), we want to estimate
θ(x0) = (π(x0), a(x0), b(x0)) and fx0 .

Local indentifiability for fixed x0;
revisit the proof by Bordes et al. to get it on the set [P∗,P

∗] ⊂ (0, 1) and a compact set
in (x , y) : x < y .
So, no restriction to π(x0) < 1/2! Label switching to get a(x0) < b(x0).

Global identifiability We assume the curves a and b are transversal, following Huang, Li,
Wang (2013) JASA.
Suppose a, b are C1 such that

(a(x)− b(x))2 + ‖ȧ(x)− ḃ(x)‖2 6= 0, for all x .
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Contrast function

In Fourier domain, g∗x (u) = M(θ(x), u)f ∗x (u), for all u.

The new contrast is based on the fact that

Im(g∗x (u) · M̄(t, u)) = 0, for all real number u iff t = θ(x).

Contrast function

S(t) =

∫
Im2(g∗x (u) · M̄(t, u)) · `2(x)dW (u),

for x in supp(`).

We write

S(t) = −1

4

∫ (
g∗x (u) · M̄(t, u)− ḡ∗x (u) ·M(t, u)

)2
`2(x)dW (u).

Smoothing is needed. We choose kernel smoothing!
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We put

Zk,x(t, u, h) =
(
e iuYk M̄(t, u)− e−iuYkM(t, u)

) 1

h
K

(
Xk − x

h

)
and

Sn(t) = − 1

4n(n − 1)

∑
k 6=j

∫
Zk,x(t, u, h)Zj,x(t, u, h)dW (u),

and
θ̂n = arg inf

t
Sn(t).

Nonparametric rates for estimating S will follow for θ.

Kernel estimator for f using θ̂n - under the assumptions of the former paper (π < 1/2).
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Results

A1. We assume that the functions π, a, b, ` belong to a Hölder smoothness class
L(α,M) with α, M > 0.

A2. Assume that fx(·) ∈ L1 ∩ L2 for all x ∈ Rd . In addition, we require that there exists
a w -integrable function ϕ such that

|f ∗x (u)− f ∗x′ (u)| ≤ ϕ(u)‖x− x′‖α, (x, x′) ∈ Rd × Rd , u ∈ R.

Remark. Note that for the scaling model, if f is the N (0, 1) p.d.f. and σ(·) is bounded
and Hölder α-smooth, we have:

|f ∗x (u)− f ∗x′ (u)| ≤ u2

2
|σ2(x)− σ2(x′)| ≤ C

u2

2
‖x− x′‖α.
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A3. We assume that the kernel K is such that
∫
|K | <∞,

∫
K 4 <∞ and that it

satisfies also the moment condition∫
‖x‖α|K(x)|dx <∞.

A4. The weight function w is a p.d.f. such that∫
(u4 + ϕ(u))w(u)du <∞.

The following results will hold true under the additional assumption on the kernel (see
A3):

∫
xjK(x)dx = 0, for all j such that |j | ≤ k.

Proposition For each t ∈ Θ and x0 ∈ supp(`) fixed, suppose θ0 ∈
◦
Θ and that

assumptions A1-A4 hold. Then, the empirical contrast function Sn(·) satisfies

E
[
(Sn(t)− S(t))2

]
≤ C1h

2α + C2
1

nhd
,

if h→ 0 and nhd →∞ as n→∞, where constants C1, C2 depend on Θ, K , w , α and

M but are free from n, h, t and x0.
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Theorem (Consistency) Let suppose that assumptions of the previous Proposition hold.
The estimator θ̂n converges in probability to θ(x0) = θ0 if h→ 0 and nhd →∞ as
n→∞.

In the asymptotic variance we will use the following notation:

J̇(θ0, u) := Im
(
−Ṁ(θ0, u)M̄(θ0, u)

)
f ∗x0

(u)`(x0), (1)

and

V (θ0, u1, u2) := 4 ·
∫

Im
(
e iu1yM̄(θ0, u1)

)
· Im

(
e iu2yM̄(θ0, u2)

)
gx0 (y)dy . (2)
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Theorem (Asymptotic normality) Suppose that assumptions of the Proposition hold.
The estimator θ̂n of θ0, with h→ 0 such that nhd →∞ and such that h2α+d = o(n−1),
as n→∞, is asymptotically normally distributed:

√
nhd(θ̂n − θ0)→ N(0,S) in distribution,

where S = 1
4
I−1ΣI, with

I = −1

2

∫
J̇(θ0, u)J̇(θ0, u)>w(u)du,

and

Σ :=

∫ ∫
J̇(θ0, u1)J̇>(θ0, u2)V (θ0, u1, u2)w(u1)w(u2)du1du2,

for J̇ defined in (1) and V in (2).
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Theorem (Minimax rates) Suppose A1-A4 and consider x0 ∈ supp(`) fixed such that

`(x0) ≥ L∗ > 0 for all ` ∈ L(α,M) and θ0 = θ(x0) ∈
◦
Θ \{1/2}. The estimator θ̂n of θ0,

with h � n−1/(2α+d), as n→∞, is such that

supE [‖θ̂n − θ0‖2] ≤ Cn−
2α

2α+d ,

where the supremum is taken over all the functions π, a, b, ` and f ∗ checking
assumptions A1-A2. Moreover,

inf
Tn

supE [‖Tn − θ0‖2] ≥ cn−
2α

2α+d ,

where C , c > 0 depend only on α,M,Θ,K and w , and the infimum is taken over the set
of all the estimators Tn (measurable function of the observations (X1, . . . ,Xn)) of θ0.
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4.1 Synthetic data
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(a) Gaussian distribution
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(b) Student distribution
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Figure : Examples of a simulated dataset of size 1200 with different distribution errors
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Estimators by Huang, Li, Wang (2013) under the assumption of Gaussian errors:
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Figure : Mean Curves estimated with NMRG (100 repeated samples)

C. Butucea ( Université Paris-Est Marne-la-Vallée ) Mixture models with symmetric errors Van Dantzig Seminar, Delft 2016 25 / 31



0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

Estimated Means and True Mean

Covariate (X)

C
om

po
ne

nt
s 

m
ea

ns
 a

(X
) 

an
d 

b(
X

)

True means
Estimated means
Average of estimated means

(a) Gaussian distribution

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

Estimated Means and True Mean

Covariate (X)

C
om

po
ne

nt
s 

m
ea

ns
 a

(X
) 

an
d 

b(
X

)

True means
Estimated means
Average of estimated means

(b) Student distribution

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

Estimated Means and True Mean

Covariate (X)

C
om

po
ne

nt
s 

m
ea

ns
 a

(X
) 

an
d 

b(
X

)

True means
Estimated means
Average of estimated means

(c) Laplace distribution

Figure : Mean Curves estimated with NMR-SE (100 repeated samples)
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Figure : Mixing proportions estimated with NMRG

C. Butucea ( Université Paris-Est Marne-la-Vallée ) Mixture models with symmetric errors Van Dantzig Seminar, Delft 2016 27 / 31



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated mixing proportions

Covariate

M
ix

in
g 

pr
op

or
tio

ns
  π

(X
)

True mixing proportion
Estimated mixing proportions
Average of estimated mixing proportions

(a) Gaussian distribution

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated mixing proportions

Covariate

M
ix

in
g 

pr
op

or
tio

ns
  π

(X
)

True mixing proportion
Estimated mixing proportions
Average of estimated mixing proportions

(b) Student distribution

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated mixing proportions

Covariate

M
ix

in
g 

pr
op

or
tio

ns
  π

(X
)

True mixing proportion
Estimated mixing proportions
Average of estimated mixing proportions

(c) Laplace distribution

Figure : Mixing proportions curves estimated with NMR-SE
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4.2 Real data

●

●

●

●
●

●●

●●●●

●●●
●●●● ● ● ●●●●

● ● ● ● ●●
● ● ● ● ● ●● ● ● ● ●

●

●

●

●
●

●

●

●

●
●

●
●●

●
●
●●●

●
●

●●

●
●●

●●●

● ● ●●●●
● ● ● ●●●●●● ● ● ● ● ●●

●●●●● ● ● ●

●
●

●

● ●

●

●

● ●

●

●●
●

●

●

●
●●●

●

●

●
●

●●

●

●

●
●

●●

●
●

●
●

●●

● ●
●

●●●

●
●

●
●●●

●
● ●●●●

●
● ●●

●
●

●
●

●
●●

● ●
●

●●
● ● ●

●●●
● ● ●●●●

●●●●
●●

●
● ●

●●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●●
●

●

●
●

●●

●●
●

●

●
● ●

●
●●●●

●
●

● ●●●●●
●

●

●
● ●●●●●

●
● ●●●●

●
●

●
●

●

● ● ●
●

●● ● ●●
● ● ●

●●●● ●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●
●●●

●
●

●
● ● ●

●
●●●

●
●

●
● ● ●●●●

●
●● ●●

● ● ● ●●
●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●●
●

●
●

●

● ●

●

●

●

●

●●
●●

●
●

●

● ●
●

●
●

●
●●●

●

●

●●●
●

●
●

●

●

●

●●

●
●

●

●

●
●●●

● ● ●
●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●
●

●
●●

● ●
●

●

●●
●

●
● ●

●

●

●●●
●

● ●
●

●

●

●●●
●

●
● ●

●

●

●

●
●

●●

●

● ●
●

●

●

●

● ●●●

●
● ●

●

●

●

●

●
●

●●

● ●
●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●
●●

●

●
●

●

●
●

●
●

●
●●

●●●
●

●

●
●●●

● ● ● ●●
●

●● ●
● ● ●

●

●
●●

●

●
● ●

●

●

●●
●

●

●

● ●
●

●

●

●
●

●●

●

●
● ●

●

●

●
●

●

●●

●
●

● ●

●

●

● ●

●
●

●

●
●

●
●

●

●

●
●

●
●●

●
● ● ●

●

●

●

●
●

●

●
●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●●

●
●

● ●

●

●

●
● ●

●

●

●●●●●
●

●

● ●

●

●●
●

●
●

●
●

●●●
●

●●

●
● ●

●

●

●●●
●

● ●
●

●

●
●

●

●●

●
● ●

●

●

●●

●

●●

● ●
● ●

●

●

●●

●

●●

● ●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●
●

●

●

●
●

●●

●

●

●
●

●●●●●

●
●●●

●
●

●
●

●●●●

● ●
●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●●

●

●

●
●

●●

●●●●●
●●

●

●

●●
●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●●●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●
●

●

●
●

●
● ●

●

●

●●●●
●

● ●

●
●

●

●
●●

●
●●

●

● ●

●

●
●●

●
●

●

●●
●

●
● ●

●

●●

●●
●●●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●●●

● ●

●

●

●
●●

●

● ● ●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●●

● ●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●●

●

● ●
●

●
●

●●

●

●

●

●

●
●●

●

●
● ●

●
●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●
●●

● ● ●
●

●●

● ● ●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

● ●
● ●

●

●●
●

●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●
●

● ●●
●

●

●
●●

●●

●
● ● ● ●

●

●
●●

●●●

●
● ● ●

●●●
●●

●
● ●●

●
●●

● ●
●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

● ●
●

●
●●

●

●

●

●

●

● ● ●●●
●

●
●

●

●

● ●
● ● ●

●
●●●

● ●
●●

●
●●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ● ●
●

● ●
●

●

●

●

●

● ● ● ●
●

●
●

●

●
● ● ●

●●
●

●

●●
●

●
●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

● ●
●

●

●

●

●
● ● ●

●●●

● ●
●●

● ●
●●

●
● ● ●

●

●
●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

● ● ●●
●

●

●

●
● ●●●

●
●

●●

● ●●●
●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

● ●
●●

●

●
●

●●●

●●●●●
●

●●●
●

●●

●
● ●●

●

●

●●

● ●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●
●

●●

●●●●● ●
●

●●
●●

●

●

●
●●●

●
●

●

●
●

●●
●

●
●●

● ●
●●

●

●

●
●

● ●

●
●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

Pre Tx FDG

3 
M

on
th

 P
os

t T
x 

F
D

G

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.5 11.5 12.5

1
2

3
4

5
6

7
8

● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
● ●

●
●

●
●

●
● ●

●
●

●

CR voxels (NMR−SE)

NR voxels(NMR−SE)

CR voxels (NMRG)

NR voxels (NMRG)

(a) Scatter of plots of pre-treatment FDG PET vs. post-treatment
FDG PET and estimated location functions for the completely
respondent and non-respondent voxel subpopulations
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Figure : Location and mixing proportion function estimation by using NMR-SE and
NMRG methods
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Figure : Density Estimates of the errors for the different levels of PET Tx FDG values
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