Mixture models with symmetric errors

Cristina Butucea ${ }^{1}$
${ }^{1}$ Université Paris-Est Marne-la-Vallée
\section*{Van Dantzig Seminar, Delft 2016}

Outline

(1) Introduction
(2) Mixture of symmetric probability densities

- Model and Identifiability
- Contrast function
- Estimators and Results
(3) Mixture of regression functions with symmetric errors
- Model
- Contrast function
- Estimators and Results

4 Numerical performance

- Synthetic data
- Real data

1. Introduction

B. and Vandekerkhove (2013) Scandinavian J. Statist.

Mixture of probability densities:

$$
X \sim \begin{cases}f(\cdot-a), & \text { with probability } p \\ f(\cdot-b), & \text { with probability } 1-p\end{cases}
$$

where f is a probability density, symmetric around 0 .
X has probability density

$$
g=p \cdot f(\cdot-a)+(1-p) \cdot f(\cdot-b)
$$

Identifiability and estimation results:
[1] Bordes, Mottelet, Vandekerkhove (2006) Ann. Statist.
[2] Hunter, Wang, Hettmansperger (2006) Ann. Statist.
B., Ngueyep Tzoumpe, Vandekerkhove (2015) Bernoulli, on line

Mixture of regression models

$$
Y= \begin{cases}a(X)+\varepsilon, & \text { with probability } \pi(X) \\ b(X)+\varepsilon, & \text { with probability } 1-\pi(X)\end{cases}
$$

where ε centered with symmetric probability density (conditional on X).

Completely respondent (CR) and
non-respondent voxels (NR)

Figure: Display of the original PET-radiotherapy data from Bowen et al. (2012)

2. Mixture of symmetric probability densities

We observe X_{1}, \ldots, X_{n} i.i.d. having common probability density function (p.d.f.)

$$
g(x)=p \cdot f(x-a)+(1-p) \cdot f(x-b), \quad x \in \mathbb{R},
$$

where $p \in(0,1), a, b \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$is a symmetric p.d.f. around 0 axis.

Denote by $\theta=(p, a, b)$ the scalar parameter.

Goal: recover θ and the function f in our semiparametric model, from $g=K_{\theta} f$.

Previously,
[1] Bordes, Mottelet, Vandekerkhove (2006) Ann. Statist.
[2] Hunter, Wang, Hettmansperger (2006) Ann. Statist.
work with c.d.f

$$
G_{\theta, F}(x)=p \cdot F(x-a)+(1-p) \cdot F(x-b) .
$$

Write $G=K_{\theta} F$, i.e. inverse problem with partially known operator.

Identifiability

They prove the identifiability of θ over the set $\Theta=\left[0, \frac{1}{2}\right) \times \mathbb{R}^{2} \backslash \Delta, \Delta=\{(x, x): x \in \mathbb{R}\}$ and F c.d.f. of a symmetric distribution: If

$$
G_{\theta_{1}, F_{1}}(x)=G_{\theta_{2}, F_{2}}(x), x \in \mathbb{R}
$$

then $\theta_{1}=\theta_{2}$ and $F_{1} \equiv F_{2}$.

Iterative inversion procedure:

Recall that $G_{\theta, F}(x+b)=p \cdot F(x-a+b)+(1-p) \cdot F(x)$ giving

$$
\begin{aligned}
F(x) & =\frac{1}{1-p} G(x+b)-\frac{p}{1-p} F(x-a+b) \\
& =\frac{1}{1-p} G(x+b)-\frac{p}{(1-p)^{2}} G(x-a+2 b)+\frac{p^{2}}{(1-p)^{2}} F(x-2 a+2 b) \\
& =\ldots=: K_{\theta}^{-1} G(x),
\end{aligned}
$$

for $\frac{p}{1-p}<1$.

Key fact: F is the cdf of a symmetric distribution
iff
$F(x)=S F(x)$, for all x, with $S F(x)=1-F(-x)$.

Estimation is based on the fact that

$$
G(x)=\left[K_{t} S K_{t}^{-1} G\right](x), \text { for all } x, \text { iff } t=\theta
$$

Therefore, a contrast can be build

$$
T(t)=\int\left(G-K_{t} S K_{t}^{-1} G\right)^{2} d G
$$

and

$$
\theta=\arg \inf _{t} \int\left(G-K_{t} S K_{t}^{-1} G\right)^{2} d G
$$

The procedure:
-truncate the iterative algorithm at $N, K_{t, N}^{-1}$;
-estimate the contrast

$$
T_{N}(t)=\int\left(G-K_{t, N} S K_{t, N}^{-1} G\right)^{2} d G
$$

by $\hat{T}_{N, n}$;
-minimize that estimator to get $\hat{\theta}$:

$$
\hat{\theta}=\arg \inf _{t} \hat{T}_{N, n}(t)
$$

Main results: $n^{1 / 4-\alpha}(\hat{\theta}-\theta)=o(1)$ a.s. and $\left\|\hat{F}_{n}-F\right\|_{\infty}=o_{\text {a.s. }}\left(n^{-1 / 4+\alpha}\right)$, for some $\alpha>0$.

Contrast function

We go to Fourier domain: $f^{*}(u)=\int_{\mathbb{R}} e^{i u x} f(x) d x$.

Key fact: $\quad f$ symmetric iff $\quad f^{*} \in \mathbb{R}$ iff $\operatorname{Im}\left(f^{*}\right) \equiv 0$.
We have,

$$
g^{*}(u)=p e^{i u a} f^{*}(u)+(1-p) e^{i u b} f^{*}(u)=M(\theta, u) \cdot f^{*}(u)
$$

where $M(\theta, u)=p e^{i u a}+(1-p) e^{i u b}$.

We suppose that $0<P_{*} \leq p \leq P^{*}<\frac{1}{2}$ and then

$$
0<1-2 P^{*} \leq|M(\theta, u)| \leq 1, \text { for all } u
$$

Thus, our inverse problem is well-posed! The exact inversion goes:

$$
g \longrightarrow g^{*} \longrightarrow f^{*}=\frac{g^{*}}{M(\theta, \cdot)} \longrightarrow f
$$

Equivalently, $f=\mathcal{F}^{-1}\left[\frac{\mathcal{F}[g](u)}{M(\theta, u)}\right]$.
Our procedure:
-define a new contrast $S(t)$ based on the Fourier transform;
-estimate it by $\hat{S}_{n}(t)$ at parametric rate;
-minimize it to get $\hat{\theta}_{n}={\arg \inf _{t} \hat{S}_{n}(t)}^{(t)}$
-estimate f by a deconvolution-type estimator that uses $\hat{\theta}_{n}$.

If f is a symmetric pdf such that f^{*} belongs to \mathbb{L}_{1} and \mathbb{L}_{2} and if θ belongs to T a compact set included in Θ, then

$$
\operatorname{Im} \frac{g^{*}(u)}{M(t, u)}=0, \text { for all } u, \quad \text { iff } \quad t=\theta
$$

We build the contrast function

$$
S(t)=\int_{\mathbb{R}}\left(\operatorname{lm} \frac{g^{*}(u)}{M(t, u)}\right)^{2} d W(u), \quad t \in \mathbb{R}
$$

where W is the cdf of a continuous distribution with finite 3rd order moments.

Rk: W helps computing the integrals with Monte-Carlo AND allows less restrictive assumptions on f.
Proposition: $S(t) \geq 0$ for all t and $S(t)=0$ iff $t=\theta$.

Estimators

Estimation of the contrast function:

$$
S(t)=-\frac{1}{4} \int_{\mathbb{R}}\left(\frac{g^{*}(u)}{M(t, u)}-\frac{\overline{g^{*}}(u)}{M(t,-u)}\right)^{2} d W(u)
$$

Recall that $g^{*}(u)=E\left(e^{i u X}\right)$ and put

$$
Z_{k}(t, u)=\frac{e^{i u X_{k}}}{M(t, u)}-\frac{e^{-i u X_{k}}}{M(t,-u)}
$$

Thus

$$
\hat{S}_{n}(t)=-\frac{1}{4 n(n-1)} \sum_{k \neq j} \int Z_{k}(t, u) Z_{j}(t, u) d W(u)
$$

Rk: do not use the plug-in estimator! Our estimator of θ is

$$
\hat{\theta}_{n}=\arg \min _{t} \hat{S}_{n}(t)
$$

Estimator of f by kernel-deconvolution like procedure:

$$
\hat{f}_{n}^{*}(u)=\frac{1}{n} \sum_{k=1}^{n} \frac{e^{i u X_{k}} K^{*}\left(u h_{n}\right)}{M\left(\hat{\theta}_{n,-k}, u\right)}
$$

where K is a kernel and $\hat{\theta}_{n,-k}$ is the previous leave-one-out estimator of θ.
Theorem: If $W: \mathbb{R} \rightarrow \mathbb{R}^{+}$is a continuous cdf such that $\int|u|^{3} d W(u)<\infty$ then

$$
\hat{\theta}_{n} \rightarrow \theta, \text { in probability }
$$

and

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \rightarrow N(0, \Sigma), \text { in distribution, }
$$

where Σ is an explicit covariance matrix depending on θ and on W.

Rk: loss of asymptotic efficacity due to W, but less "expensive" assumptions on f.

If, moreover, f belongs to a Sobolev class $S(\beta, L)$ with smoothness $\beta>1 / 2$ and $L>0$, then \hat{f}_{n} with $h=c n^{-1 /(2 \beta)}, c>0$ and K symmetric kernel in \mathbb{L}_{1} and \mathbb{L}_{2}, such that $\operatorname{supp}\left(K^{*}\right) \subset[-1,1]$, then

$$
\lim \sup _{n \rightarrow \infty} \sup _{f \in S(\beta, L)} \sup _{\theta \in T} E_{\theta, f}\left[n^{-\frac{2 \beta-1}{2 \beta}}\left|\hat{f}_{n}(x)-f(x)\right|^{2}\right] \leq C^{*},
$$

where $C^{*}=C^{*}\left(\beta, L, P^{*}, \int K^{2}\right)$. Moreover,

$$
\lim \inf _{n \rightarrow \infty} \inf _{\tilde{f}_{n}} \sup _{f \in S(\beta, L)} \sup _{\theta \in T} E_{\theta, f}\left[n^{-\frac{2 \beta-1}{2 \beta}}\left|\tilde{f}_{n}(x)-f(x)\right|^{2}\right] \geq C_{*}>0
$$

where the infimum is taken over all estimators \tilde{f}_{n} of f.

Rk. the nonparametric rates are those in the direct problem and the lower bounds are directly deduced from there.
Rk. the well-posed inverse problem implies that there is no loss in the nonparametric rate.

Gassiat, Rousseau (2013, arxiv:1302.2345)

$$
Y_{i}=a s_{i}+\varepsilon_{i}
$$

where S_{i} 's take values $\{1, \ldots, K\}$ with probabilities p_{1}, \ldots, p_{K} and are dependent. From marginal bi-variate distributions $\left(\left(Y_{1}, Y_{2}\right)\right)$, identifiability and estimation of

$$
K, \quad a_{1}, \ldots, a_{K} \text { and } p_{1}, \ldots, p_{K}
$$

under some assumptions.

Here, these assumptions are not verified!
If $K>2$, our method provides an estimator, but no identifiability results are known for $K>3$, sufficient conditions are known for $K=3$ (Bordes et al., 2006).
Balabdaoui and B. (2014) identifiability of mixture of probability densities that are Pólya functions.

In the multivariate case $\left(a, b \in \mathbb{R}^{d}\right)$, it is sufficient to use the marginal densities in order to identify and estimate θ.

3. Mixture of regression functions with symmetric errors

B., Ngueyep Tzoumpe, Vandekerkhove (2015) Bernoulli, to appear $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. such that

$$
Y_{i}= \begin{cases}a\left(X_{i}\right)+\varepsilon_{i}, & \text { with probability } \pi\left(X_{i}\right) \\ b\left(X_{i}\right)+\varepsilon_{i}, & \text { with probability } 1-\pi\left(X_{i}\right)\end{cases}
$$

where ε_{i} i.i.d., centered with symmetric conditional probability density.

The conditional probability density of $Y / X=x$ is

$$
g_{x}(y)=\pi(x) f_{x}(y-a(x))+(1-\pi(x)) f_{x}(y-b(x))
$$

where $\varepsilon / X=x$ has symmetric probability density f_{x} for all x.
Rk. We can also apply the method to

1) $\sigma\left(X_{i}\right) \varepsilon_{i}$, i.e. $f_{x}(y)=\frac{1}{\sigma(x)} f\left(\frac{y}{\sigma(x)}\right)$;
2) $f_{x}(y)=\sum_{k=1}^{K} \lambda_{k}(x) f_{k}(x), f_{k}$ is symmetric for all k.

Local and global identifiability

For given x_{0} in $\operatorname{supp}(\ell)\left(\right.$ pdf of $\left.X_{i}, i=1, \ldots, n\right)$, we want to estimate $\theta\left(x_{0}\right)=\left(\pi\left(x_{0}\right), a\left(x_{0}\right), b\left(x_{0}\right)\right)$ and $f_{x_{0}}$.

Local indentifiability for fixed x_{0};
revisit the proof by Bordes et al. to get it on the set $\left[P_{*}, P^{*}\right] \subset(0,1)$ and a compact set in $(x, y): x<y$.
So, no restriction to $\pi\left(x_{0}\right)<1 / 2$! Label switching to get $a\left(x_{0}\right)<b\left(x_{0}\right)$.

Global identifiability We assume the curves a and b are transversal, following Huang, Li, Wang (2013) JASA.
Suppose a, b are \mathcal{C}^{1} such that

$$
(a(x)-b(x))^{2}+\|\dot{a}(x)-\dot{b}(x)\|^{2} \neq 0, \text { for all } x
$$

Contrast function

In Fourier domain, $g_{x}^{*}(u)=M(\theta(x), u) f_{x}^{*}(u)$, for all u.

The new contrast is based on the fact that

$$
\operatorname{Im}\left(g_{x}^{*}(u) \cdot \bar{M}(t, u)\right)=0, \text { for all real number } u \text { iff } t=\theta(x)
$$

Contrast function

$$
S(t)=\int I m^{2}\left(g_{x}^{*}(u) \cdot \bar{M}(t, u)\right) \cdot \ell^{2}(x) d W(u)
$$

for x in $\operatorname{supp}(\ell)$.

We write

$$
S(t)=-\frac{1}{4} \int\left(g_{x}^{*}(u) \cdot \bar{M}(t, u)-\bar{g}_{x}^{*}(u) \cdot M(t, u)\right)^{2} \ell^{2}(x) d W(u)
$$

Smoothing is needed. We choose kernel smoothing!

We put

$$
Z_{k, x}(t, u, h)=\left(e^{i u Y_{k}} \bar{M}(t, u)-e^{-i u Y_{k}} M(t, u)\right) \frac{1}{h} K\left(\frac{X_{k}-x}{h}\right)
$$

and

$$
S_{n}(t)=-\frac{1}{4 n(n-1)} \sum_{k \neq j} \int Z_{k, x}(t, u, h) Z_{j, x}(t, u, h) d W(u),
$$

and

$$
\hat{\theta}_{n}=\arg \inf _{t} S_{n}(t) .
$$

Nonparametric rates for estimating S will follow for θ.
Kernel estimator for f using $\hat{\theta}_{n}$ - under the assumptions of the former paper $(\pi<1 / 2)$.

Results

A1. We assume that the functions π, a, b, ℓ belong to a Hölder smoothness class $L(\alpha, M)$ with $\alpha, M>0$.

A2. Assume that $f_{\mathbf{x}}(\cdot) \in \mathbb{L}_{1} \cap \mathbb{L}_{2}$ for all $\mathbf{x} \in \mathbb{R}^{d}$. In addition, we require that there exists a w-integrable function φ such that

$$
\left|f_{\mathrm{x}}^{*}(u)-f_{\mathrm{x}^{\prime}}^{*}(u)\right| \leq \varphi(u)\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{\alpha}, \quad\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathbb{R}^{d} \times \mathbb{R}^{d}, u \in \mathbb{R}
$$

Remark. Note that for the scaling model, if f is the $\mathcal{N}(0,1)$ p.d.f. and $\sigma(\cdot)$ is bounded and Hölder α-smooth, we have:

$$
\left|f_{\mathrm{x}}^{*}(u)-f_{\mathrm{x}^{\prime}}^{*}(u)\right| \leq \frac{u^{2}}{2}\left|\sigma^{2}(\mathbf{x})-\sigma^{2}\left(\mathbf{x}^{\prime}\right)\right| \leq C \frac{u^{2}}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{\alpha}
$$

A3. We assume that the kernel K is such that $\int|K|<\infty, \int K^{4}<\infty$ and that it satisfies also the moment condition

$$
\int\|\mathbf{x}\|^{\alpha}|K(\mathbf{x})| d \mathbf{x}<\infty
$$

A4. The weight function w is a p.d.f. such that

$$
\int\left(u^{4}+\varphi(u)\right) w(u) d u<\infty .
$$

The following results will hold true under the additional assumption on the kernel (see A3): $\int \mathbf{x}^{j} K(\mathbf{x}) d \mathbf{x}=0$, for all j such that $|j| \leq k$.

Proposition For each $t \in \Theta$ and $\mathbf{x}_{0} \in \operatorname{supp}(\ell)$ fixed, suppose $\theta_{0} \in \AA$ ® and that assumptions A1-A4 hold. Then, the empirical contrast function $S_{n}(\cdot)$ satisfies

$$
E\left[\left(S_{n}(t)-S(t)\right)^{2}\right] \leq C_{1} h^{2 \alpha}+C_{2} \frac{1}{n h^{d}},
$$

if $h \rightarrow 0$ and $n h^{d} \rightarrow \infty$ as $n \rightarrow \infty$, where constants C_{1}, C_{2} depend on Θ, K, w, α and M but are free from n, h, t and \mathbf{x}_{0}.

Theorem (Consistency) Let suppose that assumptions of the previous Proposition hold. The estimator $\hat{\theta}_{n}$ converges in probability to $\theta\left(\mathbf{x}_{0}\right)=\theta_{0}$ if $h \rightarrow 0$ and $n h^{d} \rightarrow \infty$ as $n \rightarrow \infty$.

In the asymptotic variance we will use the following notation:

$$
\begin{equation*}
j\left(\theta_{0}, u\right):=\operatorname{Im}\left(-\dot{M}\left(\theta_{0}, u\right) \bar{M}\left(\theta_{0}, u\right)\right) f_{x_{0}}^{*}(u) \ell\left(\mathbf{x}_{0}\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
V\left(\theta_{0}, u_{1}, u_{2}\right):=4 \cdot \int \operatorname{Im}\left(e^{i u_{1} y} \bar{M}\left(\theta_{0}, u_{1}\right)\right) \cdot \operatorname{Im}\left(e^{i u_{2} y} \bar{M}\left(\theta_{0}, u_{2}\right)\right) g_{x_{0}}(y) d y . \tag{2}
\end{equation*}
$$

Theorem (Asymptotic normality) Suppose that assumptions of the Proposition hold. The estimator $\hat{\theta}_{n}$ of θ_{0}, with $h \rightarrow 0$ such that $n h^{d} \rightarrow \infty$ and such that $h^{2 \alpha+d}=o\left(n^{-1}\right)$, as $n \rightarrow \infty$, is asymptotically normally distributed:

$$
\sqrt{n h^{d}}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightarrow N(0, \mathcal{S}) \quad \text { in distribution }
$$

where $\mathcal{S}=\frac{1}{4} \mathcal{I}^{-1} \Sigma \mathcal{I}$, with

$$
\mathcal{I}=-\frac{1}{2} \int j\left(\theta_{0}, u\right) j\left(\theta_{0}, u\right)^{\top} w(u) d u
$$

and

$$
\Sigma:=\iint j\left(\theta_{0}, u_{1}\right) j^{\top}\left(\theta_{0}, u_{2}\right) V\left(\theta_{0}, u_{1}, u_{2}\right) w\left(u_{1}\right) w\left(u_{2}\right) d u_{1} d u_{2}
$$

for j defined in (1) and V in (2).

Theorem (Minimax rates) Suppose A1-A4 and consider $\mathrm{x}_{0} \in \operatorname{supp}(\ell)$ fixed such that $\ell\left(\mathbf{x}_{0}\right) \geq L_{*}>0$ for all $\ell \in L(\alpha, M)$ and $\theta_{0}=\theta\left(\mathbf{x}_{0}\right) \in \stackrel{\circ}{\Theta} \backslash\{1 / 2\}$. The estimator $\hat{\theta}_{n}$ of θ_{0}, with $h \asymp n^{-1 /(2 \alpha+d)}$, as $n \rightarrow \infty$, is such that

$$
\sup E\left[\left\|\hat{\theta}_{n}-\theta_{0}\right\|^{2}\right] \leq C n^{-\frac{2 \alpha}{2 \alpha+d}}
$$

where the supremum is taken over all the functions π, a, b, ℓ and f^{*} checking assumptions A1-A2. Moreover,

$$
\inf _{T_{n}} \sup E\left[\left\|T_{n}-\theta_{0}\right\|^{2}\right] \geq c n^{-\frac{2 \alpha}{2 \alpha+d}}
$$

where $C, c>0$ depend only on α, M, Θ, K and w, and the infimum is taken over the set of all the estimators T_{n} (measurable function of the observations $\left(X_{1}, \ldots, X_{n}\right)$) of θ_{0}.

4.1 Synthetic data

Figure : Examples of a simulated dataset of size 1200 with different distribution errors

Estimators by Huang, Li, Wang (2013) under the assumption of Gaussian errors:

(a) Gaussian distribution

(b) Student distribution

(c) Laplace distribution

Figure: Mixing proportions estimated with NMRG

(a) Gaussian distribution

(b) Student distribution

(c) Laplace distribution

Figure: Mixing proportions curves estimated with NMR-SE

4.2 Real data

(a) Scatter of plots of pre-treatment FDG PET vs. post-treatment FDG PET and estimated location functions for the completely respondent and non-respondent voxel subpopulations

(a) Estimated mixing proportions for the completely (CR) and non-respondent (NR) voxel subpopulation

Figure : Location and mixing proportion function estimation by using NMR-SE and NMRG methods

Error density function
 (x) $90 \pm x_{\perp} \operatorname{dr}_{d}$

Figure: Density Estimates of the errors for the different levels of PET Tx FDG values

