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1. Introduction

B. and Vandekerkhove (2013) Scandinavian J. Statist.

Mixture of probability densities:

x f(-—a), with probability p
f(-—b), with probability 1 —p ’

where f is a probability density, symmetric around O.

X has probability density
g=p-f(-—a)+(1—p) f(-—b).

Identifiability and estimation results:

[1] Bordes, Mottelet, Vandekerkhove (2006) Ann. Statist.
[2] Hunter, Wang, Hettmansperger (2006) Ann. Statist.
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B., Ngueyep Tzoumpe, Vandekerkhove (2015) Bernoulli, on line

Mixture of regression models

Y — a(X)+e, with probability 7(X)
| b(X)+e, with probability 1 — 7(X) ~’

where ¢ centered with symmetric probability density (conditional on X).

Completely respondent (CR) and
non-respondent voxels (NR)

3 Month Post Tx FDG
12 3 4 5 6 7 8

L — T T T T T
10 15 20 25 30 35 40 45 50 55 60 65 70 7.5 80 85 90 95 105 115 125

Pre Tx FDG

Figure : Display of the original PET-radiotherapy data from Bowen et al. (2012)
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2. Mixture of symmetric probability densities

We observe Xi,..., X, i.i.d. having common probability density function (p.d.f.)
gx)=p-f(x—a)+(1—-p) - f(x—b), xeR,

where p € (0,1), a, b€ R and f : R — Ry is a symmetric p.d.f. around 0 axis.
Denote by 8 = (p, a, b) the scalar parameter.
Goal: recover 6 and the function f in our semiparametric model, from g = Kpf.

Previously,
[1] Bordes, Mottelet, Vandekerkhove (2006) Ann. Statist.
[2] Hunter, Wang, Hettmansperger (2006) Ann. Statist.
work with c.d.f
Gor(x)=p-F(x—a)+(1—p)-F(x—b).

Write G = KyF, i.e. inverse problem with partially known operator.

C. Butucea ( Université Paris-Est Marne-la-Vallée ) Mixture models with symmetric errors Van Dantzig Seminar, Delft 2016



|dentifiability

They prove the identifiability of 0 over the set © = [0,1) x R*\A, A = {(x,x) : x € R}
and F c.d.f. of a symmetric distribution: If

G917F1(X) = G921F2(X)’X ER
then 61, = 6> and F1 = F>.

Iterative inversion procedure:
Recall that Gg,r(x + b) = p- F(x —a+ b) + (1 — p) - F(x) giving

- 1 _ P -
F(x) = 1*PG(X+b) lpr(X a+ b)
= LG(XH))—Lc(x—a+2b)+”72F(x—2a+2b)
l1-p (1-p)? (1-p)?
= .. =K,'G(x),
forﬁ<1.
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Key fact: F is the cdf of a symmetric distribution

iff
F(x) = SF(x), for all x, with SF(x) =1 — F(—x).
Estimation is based on the fact that

G(x) = [K:SK{ ' G](x), for all x, iff t = 6.

Therefore, a contrast can be build
T(t) = /(G — K:SK; 1 G)*dG

and
0 =arg intf/(G — K:SK{'G)?dG.
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The procedure:
-truncate the iterative algorithm at N, K, u;
-estimate the contrast

Tw(t) = /(G — Ky nSK1G)2dG;

by Tn,n; )
-minimize that estimator to get 0:

6= argir:f Tw.n(t).

Main results: n'/*~%(f — 0) = o(1) a.s. and ||F, — Flleo = 0as.(n~/47), for some
a > 0.
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Contrast function

We go to Fourier domain: f*(u) = [, € f(x)dx.
Key fact: f symmetric iff " € Riff Im(f*) =0.

We have, ) )

g"(u) = pe"f*(u) + (1 — p)e"*f"(u) = M(0, u) - F*(u),
where M(6, u) = pe™ + (1 — p)e™®.
We suppose that 0 < P, < p < P* < % and then

0<1—2P" <|M(6,u)] <1, forall u.
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Thus, our inverse problem is well-posed! The exact inversion goes:

*

_&
M@, — f.

g—g —f =

Equivalently, f = F~! [%] .

Our procedure:

-define a new contrast S(t) based on the Fourier transform;
-estimate it by $,(t) at parametric rate;

-minimize it to get 0, = arginf; 5,(t)

-estimate f by a deconvolution-type estimator that uses 0.
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If f is a symmetric pdf such that f* belongs to .; and L, and if 6 belongs to T a
compact set included in ©, then

Im

g"(u) -
=0, for all ff =0.
M, 1) 0, forall u, i t=20

We build the contrast function

S(t) = /R (/m5257”3))2dW(u), teR

where W is the cdf of a continuous distribution with finite 3rd order moments.

Rk: W helps computing the integrals with Monte-Carlo AND allows less restrictive
assumptions on f.

Proposition: S(t) > 0 for all t and S(t) =0 iff t = 6.
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Estimation of the contrast function:

s0=— [ (e - Mé(rt(—)u)>2 W)

Recall that g*(u) = E(e™) and put

itXi o Xk
2t 0) = ey T M —)
Thus
(1) = —4,1(,%1 > /zk (£, u)Zi(t, u)dW(u).

Rk: do not use the plug-in estimator!
Our estimator of 0 is

~

0, = arg mtin Sa(1).
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Estimator of f by kernel-deconvolution like procedure:

. 1 <~ ek K*(uh,
Fr(u)y== Z #
n k=1 M(On,fkvu)

where K is a kernel and 0, _ is the previous leave-one-out estimator of 6.

Theorem: If W : R — R" is a continuous cdf such that [ |u[*dW(u) < oo then

~

0, — 0, in probability

and
Vn(0, — 6) — N(0,X), in distribution,

where X is an explicit covariance matrix depending on 6 and on W.

Rk: loss of asymptotic efficacity due to W, but less " expensive” assumptions on f.
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If, moreover, f belongs to a Sobolev class 5(B, L) with smoothness 8 > 1/2 and L > 0,
then  with h = cn™/?%) ¢ > 0 and K symmetric kernel in L; and Ly, such that
supp(K*) C [-1,1], then

281 4 .
lim sup  sup sup Eps[n” 27 |fa(x) — F(x))?] < C*,
n—soco fES(B,L) €T

where C* = C*(B, L, P*, [ K*). Moreover,

. . . _28-1 ~ 2
lim inf inf sup supEpr[n” 27 |fa(x) — F(x)|7] > G >0,
n—=oo f, feS(B,L) 0T

where the infimum is taken over all estimators ﬁ of f.

Rk. the nonparametric rates are those in the direct problem and the lower bounds are
directly deduced from there.

Rk. the well-posed inverse problem implies that there is no loss in the nonparametric
rate.
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Gassiat, Rousseau (2013, arxiv:1302.2345)
Y; = as, +¢€i,

where S;'s take values {1, ..., K} with probabilities p1, ..., px and are dependent.
From marginal bi-variate distributions ((Y1, Y2)), identifiability and estimation of

K, aly ..., dK and P1y -y PK,

under some assumptions.

Here, these assumptions are not verified!

If K > 2, our method provides an estimator, but no identifiability results are known for
K > 3, sufficient conditions are known for K = 3 (Bordes et al., 2006).

Balabdaoui and B. (2014) identifiability of mixture of probability densities that are Pdlya
functions.

In the multivariate case (a, b € RY), it is sufficient to use the marginal densities in order
to identify and estimate 6.
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3. Mixture of regression functions with symmetric errors

B., Ngueyep Tzoumpe, Vandekerkhove (2015) Bernoulli, to appear
(X1, Y1), ooy (Xn, Ya) ilind. such that

v a(Xj) +¢ei, with probability 7(X;)
"7l b(Xi)+ei, with probability 1 — w(X;)

where ¢; i.i.d., centered with symmetric conditional probability density.

The conditional probability density of Y /X = x is

g (y) = m(¥)f(y — a(x)) + (1 = 7(x)) iy — b(x)),

where /X = x has symmetric probability density £, for all x.

Rk. We can also apply the method to
. T .

1) o(Xei, ie. fiuly) = 5i5f (ﬁ) ,

2) f(y) = 25:1 Ak(x)fi(x), fx is symmetric for all k.
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Local and global identifiability

For given xo in supp(?) (pdf of X;, i =1,...,n), we want to estimate
0(x0) = (m(x0), a(x0), b(x0)) and £

Local indentifiability for fixed xo;
revisit the proof by Bordes et al. to get it on the set [P., P*] C (0,1) and a compact set

in(x,y):x<y.
So, no restriction to m(xo) < 1/2! Label switching to get a(x0) < b(xo).

Global identifiability We assume the curves a and b are transversal, following Huang, Li,
Wang (2013) JASA.
Suppose a, b are C* such that

(a(x) = b(x))* + [la(x) — b(x)|* # 0, for all x.
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Contrast function

In Fourier domain, gx (u) = M(0(x), u)f; (u), for all u.
The new contrast is based on the fact that

Im(gs(u) - M(t,u)) =0, for all real number u iff t = 0(x).

Contrast function
S() = [ (g (@) W(e,u) - £ ()W (w),
for x in supp(£).
We write
1 % = - 2 2
S(t) = -2 / (& (u) - M(t,u) — gt (u) - M(t,u))” £(x)dW (u).

Smoothing is needed. We choose kernel smoothing!
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We put

Zix(t,u, h) = (ei”Yk M(t,u) —e ™Y M(t, u)) %K (?)

and

1
(0= 51 2 [ 2t w2 (e 0 W (),
and

~

0, = arg ir:f Sa(t).

Nonparametric rates for estimating S will follow for 6.

Kernel estimator for f using 6, - under the assumptions of the former paper (7 < 1/2).
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Al. We assume that the functions 7, a, b, £ belong to a Holder smoothness class
L(a, M) with a, M > 0.

A2. Assume that £(-) € L1 N L, for all x € RY. In addition, we require that there exists
a w-integrable function ¢ such that

£ () = £ ()] < p(u)lx = X'[|%, (x,x) € R xR’, ueR.

Remark. Note that for the scaling model, if f is the A(0,1) p.d.f. and o(-) is bounded
and Holder a-smooth, we have:

N

u

()~ fo(w)] < &

2
j0%(x) = * ()| < € x— x|
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A3. We assume that the kernel K is such that [ |K| < oo, [ K* < oo and that it
satisfies also the moment condition

[ 117 1K (<)o < .
A4. The weight function w is a p.d.f. such that
/(u4 + p(u))w(u)du < oco.

The following results will hold true under the additional assumption on the kernel (see
A3): [XK(x)dx =0, for all j such that |j| < k.

Proposition For each t € © and xo € supp(¥) fixed, suppose 6o eé and that
assumptions A1-A4 hold. Then, the empirical contrast function S,(-) satisfies

E[(5:(0) - S0)] < G + G,

if h — 0 and nh? — oo as n — co, where constants C;, C; depend on ©, K, w, « and
M but are free from n, h, t and xo.
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Theorem (Consnstency) Let suppose that assumptions of the previous Proposition hold.
The estimator 0, converges in probability to 0(xo) = 6 if h — 0 and nh? — oo as
n— oo.

In the asymptotic variance we will use the following notation:

J(6o, u) = Im ( M(8o, u) (6o, u)) *(1)(xo), (1)

and

V (0o, i1, u2) :=4- / Im (eiuly/\77(90, m)) “Im (eiuzyM(Qo, U2)) &o(y)dy. (2
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Theorem (Asy[nptotic normality) Suppose that assumptions of the Proposition hold.
The estimator 0, of fo, with h — 0 such that nh? — oo and such that /**™¢ = o(n™?),
as n — oo, is asymptotically normally distributed:

V'nhd(8, — 66) — N(0,S) in distribution,
where § = 377'YZ, with

7-— f%/j(@o,u)j(Go,u)Tw(u)du,

and
Y ;://_j(907ul)_jT(ao,UQ)V(oo,Ul,U2)W(U1)W(U2)dll1du27

for J defined in (1) and V in (2).
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Theorem (Minimax rates) Suppose Al-A4 and consider xq € supp(¢) fixed such that

£(x0) > L. >0 for all £ € L(c, M) and 6o = 0(x0) €0 \{1/2}. The estimator 0, of 6o,
with h < n~V/@otd) a5 n 3 50, is such that

sup E[||0, — 60]%] < Cn 203,

where the supremum is taken over all the functions =, a, b, £ and f* checking
assumptions A1-A2. Moreover,

inf sup E[|| T, — 0ol?] > cn~ 24,

where C, ¢ > 0 depend only on a, M, ©, K and w, and the infimum is taken over the set
of all the estimators T, (measurable function of the observations (Xi, ..., X)) of 6.
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4.1 Synthetic data

Simulated data set and fitted means ‘Simulated data set and fited means Simulated data set and fitted means

Covarate Coviate Covarate

(a) Gaussian distribution  (b) Student distribution  (c) Laplace distribution

Figure : Examples of a simulated dataset of size 1200 with different distribution errors
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Estimators by Huang, Li, Wang (2013) under the assumption of Gaussian errors:

Estimated Means and True Mean Estimated Means and True Mean Estimated Means and True Mean

\/\ \/\

- Estmaed means Esimated me Esimaed means

a W aa 9

= 200 and bX)

24 — huerag of estmated means 24 — etage of estmated mears BN — huerage of estmated means
00 02 04 05 08 10 00 02 04 06 08 10 00 02 04 05 08 10
Conrate 00 Courite 00 Conrate 00

(a) Gaussian distribution  (b) Student distribution  (c) Laplace distribution

Figure : Mean Curves estimated with NMRG (100 repeated samples)
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Estimated Means and True Mean

Estimated Means and True Mean Estimated Means and True Mean

D "

- Tue means
- Esimated means

- True means - Tue means
- Esimated means - Esimated means
a4 — Average of estinated means LR — Average of estmated means El — Average of estinated means
00 02 04 08 08 10 00 0z 04 08 08 10 00 02 04 06 08 10
Conaiae (9 Covarite (x) Covaite ()

(a) Gaussian distribution

Figure : Mean Curves

(b) Student distribution  (c) Laplace distribution

estimated with NMR-SE (100 repeated samples)
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Estimated mixing proportions Estimated mixing proportions Estimated mixing proportons

24 == Tue msng proporion 24 -~ True mixing proporton 24 -~ True mixing propor
stimated mixing proportions. Estimated mixing proporton imated o poporions
— Average of esimased miing poportons — Aerage of esimated mong proportons —  Average of estimated mixing proportons.
F oo F oo
g g
H H
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Covariate Covariate Covariate

(a) Gaussian distribution  (b) Student distribution  (c) Laplace distribution

Figure : Mixing proportions estimated with NMRG

st Marne-la- é i i i i i Delft 2016



Mixing proportons. x)

Estimated mixing proportions

Estimated mixing proportions

Estimated mixing proportons

e T prrors Eommass oo et popiens
ekt ki R— R o g orions ekt iR
" F oo
3
o o2 o o5 o8 10 0 oz o4 s os 1o o o2 o o5 o8 10
cons coe cons

(a) Gaussian distribution

Figure :

st Marne-la-

(b) Student distribution

(c) Laplace distribution

Mixing proportions curves estimated with NMR-SE

Delft 2016
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4.2 Real data

© —_— CR voxels (NMR-SE)

—_— NR voxels(NMR-SE)
CR voxels (NMRG)

© | ——— NR voxels (NMRG)

3 Month Post Tx FDG

10 15 20 25 3.0 35 40 45 50 55 60 65 70 75 80 85 9.0 95 10.5 115 125

Pre Tx FDG

(a) Scatter of plots of pre-treatment FDG PET vs. post-treatment
FDG PET and estimated location functions for the completely
respondent and non-respondent voxel subpopulations
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NR voxels (NMR-SE)
------ NR voxels (NMRG)

mixing proportion

0.00 0.15 0.30 0.45 0.60 0.75 0.90

r T T T T T T T T T T T T T T T T T T T T
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Pre Tx FDG

(a) Estimated mixing proportions for the completely (CR) and
non-respondent (NR) voxel subpopulation

Figure : Location and mixing proportion function estimation by using NMR-SE and
NMRG methods
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Error density function

5 _ 2

@ o]

2 1 o

@ 12 i

e 1

3 10 =
= s T 8 £
L o o
= 3 T s

=]

s T 4

o

S T 2

& 0

To10 5 0 -5 -10

Errors €

Figure : Density Estimates of the errors for the different levels of PET Tx FDG values
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