Adaptive uncertainty quantification through adaptive and honest confidence sets

Alexandra Carpentier

Institut für Mathematik, Universität Potsdam Funded by the DFG Emmy Noether grant CA 1488 1-1 $$\operatorname{MuSyAD}$$

Van Dantzig Seminar, Amsterdam, Dec. 2th 2016

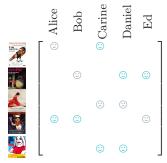
Scope of this talk

Talk:

- ▶ Adaptive and honest confidence sets : general presentation.
- ► Application in matrix completion.

Problem:

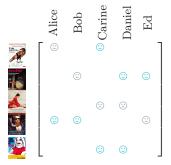
Application : Recommendation system (e.g. Netflix).



Inference (estimation + uncertainty quantification) of the matrix?

Problem:

Application : Recommendation system (e.g. Netflix).



Inference (estimation + uncertainty quantification) of the matrix?

Trace Regression Model

f: matrix of dimension $d \times d$. n observed data samples $(X_i, Y_i)_{i < n}$:

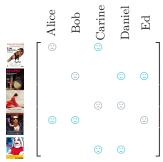
$$Y_i = f_{X_i} + \varepsilon_i, \quad i = 1, \dots, n,$$

where $X_i \sim_{iid} \mathcal{U}_{\{1,\dots,d\}^2}$ and ε is an indep, centered noise s. t. $|\varepsilon| \leq 1$.

$$\begin{array}{c} \text{Customers} \\ \{ @, @ \} \\ \\ & @ \\ \end{array}$$

Problem:

Application : Recommendation system (e.g. Netflix).



Inference (estimation + uncertainty quantification) of the matrix?

Bernoulli Model

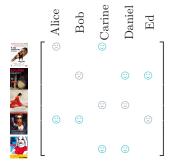
f: matrix of dimension $d \times d$. Data

$$Y_{i,j} = (f_{i,j} + \varepsilon_{i,j}) B_{i,j}, \ (i,j) \in \{1, \dots, d\}^2,$$

where $B_{i,j} \sim_{iid} \mathcal{B}(n/d^2)$ and ε is an indep. centered noise such that $|\varepsilon| \leq 1$.

Problem:

Application: Recommendation system (e.g. Netflix).



Inference (estimation + uncertainty quantification) of the matrix?

High dimensional regime : $d^2 \ge n$.

Problem:

Application: Recommendation system (e.g. Netflix).

Let for $1 \le k \le d$

 $\mathcal{C}(k) = \{f: \mathrm{rank}(f) \leq k, \|f\|_{\infty} \leq 1\}.$

Inference (estimation + uncertainty quantification) of the matrix?

High dimensional regime : $d^2 \ge n$.

Problem:

Application: Recommendation system (e.g. Netflix).

Let for $1 \le k \le d$

 $\mathcal{C}(k) = \{f: \mathrm{rank}(f) \leq k, \|f\|_{\infty} \leq 1\}.$

Question: If $f \in C(k)$, then the "optimal" precision of inference should depend on k. Inference adaptive to k?

Inference (estimation + uncertainty quantification) of the matrix?

High dimensional regime : $d^2 \ge n$.

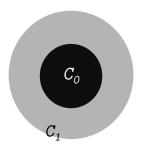
Adaptive estimation and confidence statements: See

[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai and Low, 2004, 2006], [Robins and van der Vaart (2006)], [Massart, 2007], [Giné and Nickl, 2010], etc.

- ▶ "Large" sets $C_0 \subset C_1$ Low rank sets, smoothness classes, etc.
- Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

Adaptive inference:

Adaptation to the set C_h when $f \in C_h$, $h \in \{0, 1\}$.



Adaptive estimation and confidence statements: See

[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai and Low, 2004, 2006], [Robins and van der Vaart (2006)], [Massart, 2007], [Giné and Nickl, 2010], etc.

- ▶ "Large" sets $C_0 \subset C_1$ Low rank sets, smoothness classes, etc.
- ▶ Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ► Receive a dataset of ni.i.d. entries according to \mathbb{P}_f

Estimation:

▶ Minimax-optimal estimation errors r_0 (over C_0) and r_1 (over C_1) in $\|.\|$ norm

Minimax-opt. est. error

$$r_h = \inf_{\tilde{f} \text{ est. } f \in \mathcal{C}_h} \mathbb{E}_f \|\tilde{f} - f\|, \ h \in \{0,1\}.$$

Minimax-optimal est. error in matrix completion over C(k):

$$\Box d\sqrt{\frac{kd}{n}}.$$

See [Keshavan et al., 2009, Cai et al., 2010, Kolchinskii et al., 2011, Klopp and Gaiffas, 2015].

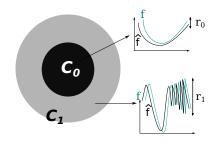
Adaptive estimation and confidence statements: See

[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai and Low, 2004, 2006], [Robins and van der Vaart (2006)], [Massart, 2007], [Giné and Nickl, 2010], etc.

- ▶ "Large" sets $C_0 \subset C_1$ Low rank sets, smoothness classes, etc.
- ▶ Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

Adaptive estimation:

▶ Minimax-optimal estimation errors r_0 (over C_0) and r_1 (over C_1) in $\|.\|$ norm



Adaptive estimation and confidence statements: See

[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai and Low, 2004, 2006], [Robins and van der Vaart (2006)], [Massart, 2007], [Giné and Nickl, 2010], etc.

- ▶ "Large" sets $C_0 \subset C_1$ Low rank sets, smoothness classes, etc.
- ▶ Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

Adaptive estimation:

- ▶ Minimax-optimal estimation errors r_0 (over C_0) and r_1 (over C_1) in $\|.\|$ norm
- ▶ In many models : adaptive estimator \hat{f} exists

Adaptive estimation

Klopp and Gaiffas, 2015].

$$\sup_{f \in \mathcal{C}_h} \mathbb{E}_f \|\hat{f} - f\| \le \Box r_h, \quad \forall h \in \{0, 1\}.$$

Adaptive estimators exist in matrix completion see [Keshavan et al., 2009, Cai et al., 2010, Kolchinskii et al., 2011,

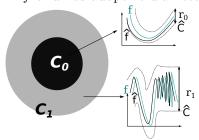
Adaptive estimation and confidence statements: See

[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai and Low, 2004, 2006], [Robins and van der Vaart (2006)], [Massart, 2007], [Giné and Nickl, 2010], etc.

- ▶ "Large" sets $C_0 \subset C_1$ Low rank sets, smoothness classes, etc.
- ▶ Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

Adaptive and honest confidence sets:

- ▶ Minimax-optimal estimation errors r_0 , r_1 in $\|.\|$ norm
- Confidence set \hat{C} : contains f and has adaptive diameter



Adaptive estimation and confidence statements: See

[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai and Low, 2004, 2006], [Robins and van der Vaart (2006)], [Massart, 2007], [Giné and Nickl, 2010], etc.

- ▶ "Large" sets $C_0 \subset C_1$ Low rank sets, smoothness classes, etc.
- ▶ Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ► Receive a dataset of ni.i.d. entries according to \mathbb{P}_f

Adaptive and honest confidence sets:

- ▶ Minimax-optimal estimation errors r_0 , r_1 in $\|.\|$ norm
- ► Confidence set \hat{C} : contains f and has adaptive diameter

 α -adapt. and honest conf. set

Honesty:

$$\sup_{f \in \mathcal{C}_1} \mathbb{P}_f(f \in \hat{C}) \ge 1 - \alpha.$$

Adaptivity:

$$\sup_{f \in \mathcal{C}_h} \mathbb{E}_f \|\hat{C}\| \le \Box r_h, \quad \forall h \in \{0, 1\}.$$

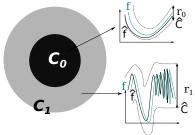
Adaptive and honest confidence statements: See

[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai and Low (2004, 2006)], [Robins and van der Vaart (2006)], [Giné and Nickl (2010)], etc.

- ▶ "Large" sets $C_0 \subset C_1$
- Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

Adaptive and honest confidence sets:

- ▶ Minimax-optimal estimation errors r_0 , r_1 in $\|.\|$ norm
- ► Confidence set \hat{C} : contains f and has adaptive diameter



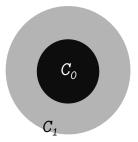
Adaptive and honest confidence statements: See

[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai and Low (2004, 2006)], [Robins and van der Vaart (2006)], [Giné and Nickl (2010)], etc.

- ▶ "Large" sets $C_0 \subset C_1$
- Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

A related testing problem:

 $H_0: f \in \mathcal{C}_0 \text{ vs}$ $H_1: f \in \mathcal{C}_1 \setminus \mathcal{C}_0.$



Adaptive and honest confidence statements: See

[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai and Low (2004, 2006)], [Robins and van der Vaart (2006)], [Giné and Nickl (2010)], etc.

- ▶ "Large" sets $C_0 \subset C_1$
- Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

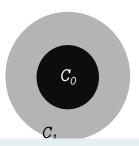
Uniform consistency:

$$H_0: f \in \mathcal{C}_0 \text{ vs}$$

 $H_1: f \in \mathcal{C}_1 \setminus \mathcal{C}_0.$

 α -unif. consistent test T

$$\sup_{f \in H_0} \mathbb{E}_f T + \sup_{f \in H_1} \mathbb{E}_f [1 - T] \le 2\alpha.$$



Adaptive and honest confidence statements: See

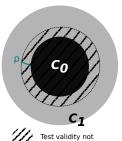
[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai and Low (2004, 2006)], [Robins and van der Vaart (2006)], [Giné and Nickl (2010)], etc.

- ▶ "Large" sets $C_0 \subset C_1$
- ► Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

Uniform consistency:

 $H_0: f \in \mathcal{C}_0$ vs

 $H_o: f \in C_1, ||f - C_0|| \ge \rho.$



Adaptive and honest confidence statements: See

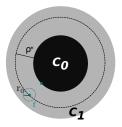
[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai and Low (2004, 2006)], [Robins and van der Vaart (2006)], [Giné and Nickl (2010)], etc.

- ▶ "Large" sets $C_0 \subset C_1$
- Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

Non-existence result:

Theorem (Hoffmann and Nickl, 2010)

If for $\rho \geq \Box r_0$ there exists no α -uniformly consistent test, then α -adaptive and honest confidence sets do not exist.



Adaptive and honest confidence statements: See

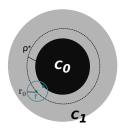
[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai and Low (2004, 2006)], [Robins and van der Vaart (2006)], [Giné and Nickl (2010)], etc.

- ▶ "Large" sets $C_0 \subset C_1$
- Associated probability distributions \mathbb{P}_f for $f \in \mathcal{C}_1$
- ▶ Receive a dataset of n i.i.d. entries according to \mathbb{P}_f

Existence result:

Theorem (C., 2015, C., Klopp, Löffler and Nickl, 2016)

If for $\rho \leq \Box r_0$ there exists an α uniformly consistent test and if an oracle estimator exists, then α -adaptive and honest confidence sets exist.



Results in some models

Setting	Sub-models	Norm	Existence iif
Non-param.	Hölder smooth.	L_{∞}	Never [Baraud, 2004],
regression	$s_0 > s_1$		[Cai and Low, 2004]
Density est. and	Hölder smooth.	L_{∞}	Never [Robins and
non-param. reg.	$s_0 > s_1$		van der Vart, 2006]
Density	Sobolev smooth.	L_2	$s_0 \ge s_1/2$
estimation	$s_0 > s_1$		[Bull and Nickl, 2012]
Non-param.	Besov smooth.	L_p	$s_0 \ge s_1(1 - 1/p)$
regression	$s_0 > s_1$		[C., 2013]
Sparse reg. in dim.	Sparsity	L_2	$k_0 \ge \Box \min(\sqrt{p}, \sqrt{n})$
p, n samples	$k_0 < k_1$		[Nickl and
			van de Geer, 2013]
Extreme value	2nd order	.	Never
index:	Pareto $\beta_0 < \beta_1$		[C. and Kim, 2015]
1st order coeff			

Results in some models

Setting	Sub-models	Norm	Existence iif
Non-param.	Hölder smooth.	L_{∞}	Never [Baraud, 2004],
regression	$s_0 > s_1$		[Cai and Low, 2004]
Density est. and	Hölder smooth.	L_{∞}	Never [Robins and
non-param. reg.	$s_0 > s_1$		van der Vart, 2006]
Density	Sobolev smooth.	L_2	$s_0 \ge s_1/2$
estimation	$s_0 > s_1$		[Bull and Nickl, 2012]
Non-param.	Besov smooth.	L_p	$s_0 \ge s_1(1 - 1/p)$
regression	$s_0 > s_1$		[C., 2013]
Sparse reg. in dim.	Sparsity	L_2	$k_0 \ge \Box \min(\sqrt{p}, \sqrt{n})$
p, n samples	$k_0 < k_1$		[Nickl and
			van de Geer, 2013]
Extreme value	2nd order	.	Never
index:	Pareto $\beta_0 < \beta_1$		[C. and Kim, 2015]
1st order coeff			

In all these models, adaptive and honest confidence sets typically do not exist over the entire parameter range.

Results in some models

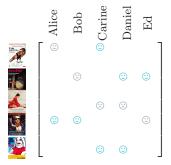
Setting	Sub-models	Norm	Existence iif
Non-param.	Hölder smooth.	L_{∞}	Never [Baraud, 2004],
regression	$s_0 > s_1$		[Cai and Low, 2004]
Density est. and	Hölder smooth.	L_{∞}	Never [Robins and
non-param. reg.	$s_0 > s_1$		van der Vart, 2006]
Density	Sobolev smooth.	L_2	$s_0 \ge s_1/2$
estimation	$s_0 > s_1$		[Bull and Nickl, 2012]
Non-param.	Besov smooth.	L_p	$s_0 \ge s_1(1 - 1/p)$
regression	$s_0 > s_1$		[C., 2013]
Sparse reg. in dim.	Sparsity	L_2	$k_0 \ge \Box \min(\sqrt{p}, \sqrt{n})$
p, n samples	$k_0 < k_1$		[Nickl and
			van de Geer, 2013]
Extreme value	2nd order	.	Never
index:	Pareto $\beta_0 < \beta_1$		[C. and Kim, 2015]
1st order coeff			

Interesting research direction: restrict these spaces to large spaces where such confidence sets exist [Szabó, van der Vaart, van Zanten (2015)], [Ray, 2015], [Nickl and Szabó (2016)].

Matrix completion: Trace regression

Problem:

Application: Recommendation system (e.g. Netflix).



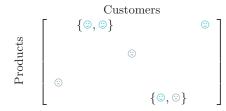
Inference (estimation + uncertainty quantification) of the matrix?

Trace Regression Model

f: matrix of dimension $d \times d$. n observed data samples $(X_i, Y_i)_{i < n}$:

$$Y_i = f_{X_i} + \varepsilon_i, \quad i = 1, \dots, n,$$

where $X_i \sim_{iid} \mathcal{U}_{\{1,\ldots,d\}^2}$ and ε is an indep. centered noise s. t. $|\varepsilon| \leq 1$.



Confidence sets: Trace Regression Model

Theorem (C., Klopp, Löffler and Nickl, 2016)

In the matrix completion "trace regression" model, α -adaptive and honest confidence sets exist over the entire range of parameters (i.e. for any $1 \le k_0 < k_1 \le d$).

Dimension reduction in the smaller model not too radical.

Idea of the proof: known variance

Let \hat{f} be a minimax estimator s.t. $rank(\hat{f}) \leq rank(f)$ whp. Set

$$T_n = \frac{\|Y - \mathcal{X}\hat{f}\|^2}{n} - \mathbb{V}(\epsilon)$$
, where \mathcal{X} is the sampling operator.

We have whp and knowing $\tilde{\theta}$

$$|T_n - ||f - \hat{f}||^2| \lesssim d^2 \frac{(\operatorname{rank}(\hat{f}) + 1)d}{n}.$$

If
$$\theta \in \mathcal{C}(k_0)$$
:
$$\hat{f} \in \mathcal{C}(k_0) \quad \text{and} \quad T_n \lesssim d^2 \frac{(k_0 + 1)d}{n} \simeq r_{k_0}^2.$$

If
$$r_{k_0} \lesssim ||f - C(k_0)||$$
:

$$\hat{f} \notin \mathcal{C}(k_0)$$
 or $r_{k_0}^2 - d^2 \frac{(k_0 + 1)d}{n} \lesssim r_{k_0}^2 \lesssim T_n$.

This concludes the proof accepting the test if either $\hat{f} \in C(k_0)$ or if $T_n \lesssim r_{k_0}^2 : \rho^2 \leq r_{k_0}^2$.

Idea of the proof: unknown variance

$$T_n = \frac{1}{N} \sum_{i \le N} (Z_i - \tilde{\mathcal{X}}\hat{f})(Z_i' - \tilde{\mathcal{X}}\hat{f}).$$

We have as before whp and knowing $\tilde{\theta}$

$$|T_n - ||f - \hat{f}||^2| \lesssim d^2 \frac{(\operatorname{rank}(\hat{f}) + 1)d}{n}.$$

This concludes the proof : $\rho^2 \leq r_{k_0}^2$.

Matrix completion: Bernoulli Model

Problem:

Application : Recommendation system (e.g. Netflix).

Inference (estimation + uncertainty quantification) of the matrix?

Bernoulli Model

f: matrix of dimension $d \times d$. Data

$$Y_{i,j} = (f_{i,j} + \varepsilon_{i,j}) B_{i,j}, \ (i,j) \in \{1, \dots, d\}^2,$$

where $B_{i,j} \sim_{iid} \mathcal{B}(n/d^2)$ and ε is an indep. centered noise such that $|\varepsilon| \leq 1$.

Confidence sets: Bernoulli Model

Theorem (C., Klopp, Löffler and Nickl, 2016)

- ▶ Bernoulli Model with known noise variance : Adaptive and honest confidence sets exist.
- ▶ Bernoulli Model with unknown noise variance : Adaptive and honest confidence sets do not exist (unless maybe $k_0^2 \ge k_1$? Open question).

The two models are not equivalent in this case!

No entries sampled twice! First example: rank one

 $H_0: {f Random\ opinions!} \ {f Customers} \ {f Cust$

 H_1 : Rank one opinions.

No entries sampled twice! First example: rank one

 $H_0: {f Random\ opinions!} \ {f Customers} \ {f Customers} \ {f @} \ {f &} \$

 $H_1: {
m Rank \ one \ opinions.}$ ${
m Customers}$ ${
m Stoppoold}$ ${
m Customers}$ ${
m$

No entries sampled twice! First example: rank one

$$H_1: \text{Rank one opinions.}$$

$$\begin{array}{c} \text{Customers} \\ & \odot \\ \text{pop} \\ \text{Customers} \\ & - \\ - \\ - \end{array}$$

No entries sampled twice! First example: rank one

Less than $\frac{n^4}{d^4}$ such cycles whp \rightarrow distinguishability only if $n \gg d$.

No entries sampled twice! General case : rank k

 $H_0: {
m Random\ opinions!} \ {
m Customers} \ {
m Gustomers} \ {
m Gust$

 H_1 : Rank one opinions.

No entries sampled twice! General case : rank k

No entries sampled twice! General case : rank k

$$\begin{array}{c|c} & \text{Customers} \\ & \odot & \odot \\ & - & - \\ & - & - \\ \end{array}$$

 H_1 : Rank one opinions.

No entries sampled twice! General case : rank k

Less than $\frac{n^4}{d^4k^3}$ correct cycles (taking rank groups into account) \rightarrow distinguishability only if $n \gg k^{3/4}d$.

Conclusion on uncertainty quantification

Conclusions:

- ▶ Strong link between model testing and adaptive uncertainty quantification.
- ▶ Adaptive estimators and and honest confidence sets : while adaptive estimation is often possible in standard models, adaptive uncertainty quantification is often impossible.
- Matrix completion, trace regression model: adaptive and honest confidence sets exist in some models! Sensitivity of adaptive and honest confidence sets on the model assumptions.

Relevant open question: exact model testing. Complexity of the null hypothesis?

Thank you!