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Scope of this talk

Talk :
» Adaptive and honest confidence sets : general presentation.

» Application in matrix completion.



Motivating example : Matrix completion

Problem :
Application : Recommendation
system (e.g. Netflix).
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Motivating example : Matrix completion
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Application : Recommendation
system (e.g. Netflix).
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Trace Regression Model

f : matrix of dimension d X d.

n observed data samples (X;,Y;)i<n :

Yi=fx, +ei, i=1,...,n,

where X; ~iia Uy g2 and € is an
indep. centered noise s. t. [e] < 1.
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Motivating example : Matrix completion

Problem : Bernoulli Model
Application : Recommendation f : matrix of dimension d X d.
system (e.g. Netflix). Data
® 2 - 2
= 2 £ EE Yij = (fij+eij)Bij, (4,7) €{l,...,d}",
< 8 8§ 4
e o . where B; j ~jiq B(n/dQ) and ¢ is an
indep. centered noise such that
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Motivating example : Matrix completion

Problem :
Application : Recommendation
system (e.g. Netflix).
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High dimensional regime : d? > n.



Motivating example : Matrix completion

Problem :

Application : Recommendation
system (e.g. Netflix).
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High dimensional regime : d? > n.

Let for 1 <k <d

C(k) = {f : rank(f) <k, [|fllo <1}



Motivating example : Matrix completion

Problem :

Application : Recommendation
system (e.g. Netflix).
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Let for 1 <k <d

C(k) = {f : rank(f) <k, [|fllo <1}

Question : If f € C(k), then the
“optimal” precision of inference
should depend on k. Inference
adaptive to k7

High dimensional regime : d? > n.



Adaptive inference

Adaptive estimation and
confidence statements : secc
[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai
and Low, 2004, 2006], [Robins and van der Vaart
(2006)], [Massart, 2007], [Giné and Nickl, 2010],

etc.

> “Large” sets Cy C C1 Low rank

sets, smoothness classes, etc.

» Associated probability
distributions Py for f € C;

> Receive a dataset of n
i.i.d. entries according to Py

Adaptive inference :
Adaptation to the set C;, when
fecy, he{01}.




Adaptive inference

Adaptive estimation and
confidence statements : scc
[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai
and Low, 2004, 2006], [Robins and van der Vaart
(2006)], [Massart, 2007], [Giné and Nickl, 2010],

etc.

> “Large” sets Cy C C1 Low rank

sets, smoothness classes, etc.

» Associated probability
distributions Py for f € C;

> Receive a dataset of n
i.i.d. entries according to Py

Estimation :

» Minimax-optimal estimation
errors ro (over Cp) and r;
(over C1) in |[|.|| norm

Minimax-opt. est. error

rn = inf sup Ef||f—f|, he {0,1}.
f est. feCy,

Minimax-optimal est. error in

matrix completion over C(k) :

[ kd
Ody | —.
n
See [Keshavan et al., 2009, Cai et al., 2010,

Kolchinskii et al., 2011, Klopp and Gaiffas,

2015].
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Adaptive inference

Adaptive estimation and
confidence statements : scc
[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai
and Low, 2004, 2006], [Robins and van der Vaart
(2006)], [Massart, 2007], [Giné and Nickl, 2010],

etc.

> “Large” sets Cy C C1 Low rank

sets, smoothness classes, etc.

» Associated probability
distributions Py for f € C;

> Receive a dataset of n
i.i.d. entries according to Py

Adaptive estimation :

» Minimax-optimal estimation
errors ro (over Cp) and r;
(over C1) in |[|.|| norm

» In many models : adaptive
estimator f exists

Adaptive estimation

sup Ef||f — f|| <Ory, Vhe{0,1}.
feCn

Adaptive estimators exist in
matrix Completion See [Keshavan et al.,
2009, Cai et al., 2010, Kolchinskii et al., 2011,

Klopp and Gaiffas, 2015].



Adaptive inference
Adaptive and honest

Adaptive estimation and confidence sets :
confidence statements : secc

» Minimax-optimal estimation
[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai

errors 1o, 71 in ||.|| norm
and Low, 2004, 2006], [Robins and van der Vaart N
(2006)], [Massart, 2007], [Giné and Nickl, 2010], > Conﬁdence set C : contains
e f and has adaptive diameter

To

> “Large” sets Cy C C1 Low rank

sets, smoothness classes, etc.

» Associated probability
distributions Py for f € C; C,

> Receive a dataset of n
i.i.d. entries according to Py



Adaptive inference

Adaptive estimation and
confidence statements : scc
[Bickel, 1982], [Lepski and Spokoiny, 1997], [Cai
and Low, 2004, 2006], [Robins and van der Vaart
(2006)], [Massart, 2007], [Giné and Nickl, 2010],

etc.

> “Large” sets Cy C C1 Low rank

sets, smoothness classes, etc.

» Associated probability
distributions Py for f € C;

> Receive a dataset of n
i.i.d. entries according to Py

Adaptive and honest
confidence sets :

» Minimax-optimal estimation
errors 19, 71 in ||.|| norm

» Confidence set C' : contains
f and has adaptive diameter

a-adapt. and honest conf. set

Honesty :

sup Pr(f € 0) > 1 —a.
fet

Adaptivity :

sup Ef||C|| < Ory, Vh € {0,1}.
fetn
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Uncertainty quantification

Adaptive and honest
confidence statements : sce
[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai
and Low (2004, 2006)], [Robins and van der

Vaart (2006)], [Giné and Nickl (2010)], etc.

> “Large” sets Cy C Cy

> Associated probability
distributions Py for f € C;

» Receive a dataset of n
ii.d. entries according to Py

Adaptive and honest
confidence sets :
» Minimax-optimal estimation
errors rg, 71 in ||.|| norm

» Confidence set C : contains
f and has adaptive diameter
f
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Uncertainty quantification A related testing problem :

Adaptive and honest Hy:feCy vs
confidence statements : sce

Hy : f e’y \CO
[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai
and Low (2004, 2006)], [Robins and van der

Vaart (2006)], [Giné and Nickl (2010)], etc.

> “Large” sets Cy C Cy

> Associated probability
distributions Py for f € C;

> Receive a dataset of n C,
ii.d. entries according to Py



Uncertainty quantification Uniform consistency :
Adaptive and honest Hy: feCy vs
confidence statements : scc

H : f eCy \CO
[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai
and Low (2004, 2006)], [Robins and van der a_unlf COHSlStGIlt test T

Vaart (2006)], [Giné and Nickl (2010)], etc.

sup EfT + sup E¢[1 — T] < 2a.
> “Large” sets Cy C Cq feHo S

> Associated probability
distributions Py for f € C;

» Receive a dataset of n
i.i.d. entries according to Py

C.



]
Uncertainty quantification Uniform consistency:

Adaptive and honest Hy:feCy vs
confidence statements : sce

, , Hy: f €Crllf = Coll = p.
[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai
and Low (2004, 2006)], [Robins and van der

Vaart (2006)], [Giné and Nickl (2010)], etc.

> “Large” sets Cy C Cy

> Associated probability
distributions Py for f € C;

» Receive a dataset of n
ii.d. entries according to Py % Test validity not

guaranteed



Uncertainty quantification

Adaptive and honest
confidence statements : secc
[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai
and Low (2004, 2006)], [Robins and van der

Vaart (2006)], [Giné and Nickl (2010)], etc.

> “Large” sets Cy C Cq

» Associated probability
distributions Py for f € C;

» Receive a dataset of n
ii.d. entries according to [Py

Non-existence result :

Theorem (Hoffmann and Nickl,
2010)

If for p > UOrg there exists no
a-uniformly consistent test, then
a-adaptive and honest confidence
sets do not exist.




Uncertainty quantification

Adaptive and honest
confidence statements : secc
[Ingster (1987, 1993)], [Spokoiny (1996)], [Cai
and Low (2004, 2006)], [Robins and van der

Vaart (2006)], [Giné and Nickl (2010)], etc.

> “Large” sets Cy C Cq

> Associated probability
distributions Py for f € C;

» Receive a dataset of n
i.i.d. entries according to Py

Existence result :

Theorem (C., 2015, C., Klopp,
Loffler and Nickl, 2016)

If for p < UOrg there exists an «
uniformly consistent test and if
an oracle estimator exists, then
a-adaptive and honest confidence
sets exist.




Results in some models

Setting H Sub-models Norm ‘ Existence iif...
Non-param. Holder smooth. Loo Never [Baraud, 2004],
regression so > 81 [Cai and Low, 2004]
Density est. and Holder smooth. Lo Never [Robins and
non-param. reg. S0 > S1 van der Vart, 2006]
Density Sobolev smooth. | Lo S0 > s1/2
estimation So > 81 [Bull and Nickl, 2012]
Non-param. Besov smooth. L, so > s1(1—1/p)
regression S0 > S1 [C., 2013]
Sparse reg. in dim. || Sparsity Lo ko > Omin(y/p, v/n)
p, n samples ko < k1 [Nickl and

van de Geer, 2013]
Extreme value 2nd order | Never
index : Pareto By < 1 [C. and Kim, 2015]
1st order coeff
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Setting H Sub-models Norm [ Existence iif...
Non-param. Holder smooth. Lo Never [Baraud, 2004],
regression S0 > S1 [Cai and Low, 2004]
Density est. and Holder smooth. Loo Never [Robins and
non-param. reg. S0 > S1 van der Vart, 2006]
Density Sobolev smooth. | Lo S0 > s1/2
estimation S0 > S1 [Bull and Nickl, 2012]
Non-param. Besov smooth. L, so > s1(1—1/p)
regression S0 > S1 [C., 2013]
Sparse reg. in dim. || Sparsity Lo ko > Omin(y/p, v/n)
p, n samples ko < k1 [Nickl and

van de Geer, 2013]
Extreme value 2nd order | Never
index : Pareto fo < 51 [C. and Kim, 2015]
1st order coeff

In all these models, adaptive and honest confidence sets
typically do not exist over the entire parameter range.



Results in some models

Setting H Sub-models Norm [ Existence iif...
Non-param. Holder smooth. Loo Never [Baraud, 2004],
regression S0 > $1 [Cai and Low, 2004]
Density est. and Holder smooth. Lo Never [Robins and
non-param. reg. S0 > 81 van der Vart, 2006]
Density Sobolev smooth. | Lo S0 > s1/2
estimation S0 > S1 [Bull and Nickl, 2012]
Non-param. Besov smooth. L, so > s1(1—1/p)
regression S0 > S1 [C., 2013]
Sparse reg. in dim. || Sparsity Lo ko > Omin(y/p, v/n)
p, n samples ko < k1 [Nickl and

van de Geer, 2013]
Extreme value 2nd order | Never
index : Pareto o < 51 [C. and Kim, 2015]
1st order coeff

Interesting research direction : restrict these spaces to large
spaces where such confidence sets exist [Szabd, van der Vaart,
van Zanten (2015)], [Ray, 2015], [Nickl and Szabé (2016)].



Matrix completion : Trace regression

Problem :
Application : Recommendation
system (e.g. Netflix).
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I —
Trace Regression Model

f : matrix of dimension d X d.

n observed data samples (X;,Y;)i<n :

Yi=fx;, +e, i=1,...,n,

where X; ~iia Uy qy2 and € is an
indep. centered noise s. t. |g] < 1.
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Confidence sets : Trace Regression Model

Theorem (C., Klopp, Loffler and Nickl, 2016)

In the matriz completion “trace regression” model, a-adaptive
and honest confidence sets exist over the entire range of
parameters (i.e. for any 1 < ko < k1 < d).

Dimension reduction in the smaller model not too radical.



Idea of the proof : known variance
Let f be a minimax estimator s.t. rank(f) < rank(f) whp. Set

Y — Xf|?
T, = M —V(e), where X is the sampling operator.
n

We have whp and knowing 9

(rank(f) +1)d

T = |If = fIP| S &P
n
I£6 < C(ko) ; ko +1)d
felky) and T, < dQ(Oj;) ~ r,%o.

7y, S NF = Cko)ll

. ko + 1)d
fecm) or -t Do
n

~

< T

~

This concludes the proof accepting the test if either f € C(ko)
or if T,, < T‘]%O cp? < r}io.



Idea of the proof : unknown variance

Customers
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£ More than Z—j A n entries
3 sampled twices, i.e. N.
I Set (Xi, Zi, Z;)i<n
0,0} |

Ref)lace T, by

T, = < Sz~ X2 - ).
i<N

We have as before whp and knowing 6

T — |If — fIPI < pr.

n
This concludes the proof : p? < 'r,%o.



Matrix completion : Bernoulli Model

Problem : Bernoulli Model
Application : Recommendation f : matrix of dimension d X d.
system (e.g. Netflix). Data
£ 8 £ B X Yij = (fiiteii)Bij, (i,5) €{1,...,d}",
N
= [ e o . where B; j ~jiq B(n/d2) and ¢ is an
)Q indep. centered noise such that
B ® ®© © lel < 1.
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Confidence sets : Bernoulli Model

Theorem (C., Klopp, Loffler and Nickl, 2016)

» Bernoulli Model with known noise variance
Adaptive and honest confidence sets exist.
» Bernoulli Model with unknown noise variance :

Adaptive and honest confidence sets do not exist (unless
maybe k:% > k12 Open question).

The two models are not equivalent in this case!



(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! First example : rank one

5

: Random opinions! H; : Rank one opinions.
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(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! First example : rank one

Hy : Random opinions! H; : Rank one opinions.
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(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! First example : rank one

H; : Rank one opinions.

Hy : Random opinions!
Customers Customers
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(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! First example : rank one

Hy : Random opinions! H; : Rank one opinions.
Customers Customers
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Less than Z—i such cycles whp — distinguishability only if
n > d.



(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! General case : rank k

5

: Random opinions! H; : Rank one opinions.
Customers Customers
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(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! General case : rank k

Hy : Random opinions! H; : Rank one opinions.
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(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! General case : rank k

Hy : Random opinions! H; : Rank one opinions.
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(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! General case : rank k

: Rank one opinions.

: Random opinions! H,
Customers

Customers
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Less than dff—;g correct cycles (taking rank groups into account)

— distinguishability only if n > k3/%d.



Conclusion on uncertainty quantification

Conclusions :

» Strong link between model testing and adaptive
uncertainty quantification.

» Adaptive estimators and and honest confidence sets : while
adaptive estimation is often possible in standard models,
adaptive uncertainty quantification is often impossible.

» Matrix completion, trace regression model : adaptive and
honest confidence sets exist in some models! Sensitivity of
adaptive and honest confidence sets on the model
assumptions.

Relevant open question : exact model testing. Complexity of
the null hypothesis?



Thank you!



