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Forensic Statistics

Ingredients:

Crime case

Evidence (E)

2 Hypotheses of Interest: Hp vs Hd

Background (B)

D = (E,B).
The court asks for the likelihood ratio

Pr(Hp | D)

Pr(Hd | D)
=

Pr(D | Hp)

Pr(D | Hd)︸ ︷︷ ︸
LR

Pr(Hp)

Pr(Hd)
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Example

Ingredients:

Crime case: murder

Evidence (E): profile of the DNA trace found on the crime scene
matches the suspect’s DNA profile.

2 Hypotheses of Interest:

Hp: The suspect left the stain
Hd : Someone else left the stain

Background (B): database of DNA profiles from the population of
possible perpetrators
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DNA profiles

A DNA profile is a list of integers h = (4− 5− 2− 10) that code some
characteristics in some portions of the DNA sequence of an individual:
different persons can share the same profile.

For Hp the match is a sure event,

For Hd the match is a random event with probability ph = frequency of
the profile h of the suspect in the population of possible perpetrators.
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DNA database

Database: a list of DNA profiles from a sample from the population of
possible perpetrators

DATABASE of size 10
Person 1 (4− 10− 6− 7)
Person 2 (3− 5− 6− 8)
Person 3 (3− 7− 8− 10)
Person 4 (10− 1− 4− 5)
Person 5 (3− 7− 8− 10)
Person 6 (3− 7− 8− 10)
Person 7 (1− 5− 7− 2)
Person 8 (3− 7− 8− 10)
Person 9 (3− 5− 6− 8)
Person 10 (3− 7− 8− 10)

The database is used to find out the rarity of the matching profile.
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LR assessment in the rare type match case

My research focuses on the LR assessment in the rare type match case,
that is:

A match between the suspect’s DNA profile and the crime stain’s
DNA profile.

This profile is not contained in the database B.

Especially if the database is big, the profile seems to be rare.
How rare?
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Previous models

Frequentist model:
(Cereda 2015) Frequentist approach to LR assessment in case of rare
haplotype match
arXiv:1502.04083

Bayesian model:
(Cereda 2015) Full Bayesian approach to LR assessment in case of
rare haplotype match
arXiv:1502.02406

(Cereda 2015) Nonparametric Bayesian approach to LR assessment in
case of rare haplotype match
arXiv:1506.08444
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Assumptions

Assumption 1

There are so many different DNA types that they may be considered
infinite.

Parameter: p = (pt |t ∈ T ), T an infinite countable set,pt > 0,
∑

pt = 1,
to represent the (unknown) frequencies of all DNA types in Nature.

Assumption 2

The particular list of integers that forms a DNA type is just a category: no
structure assumed.

“DNA types” or “colors” is now the same.
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Random partitions of [n]

Let [n] denote the set [n] = {1, 2, ..., n}.

A partition of the set [n] will be denoted as π[n].
Random partitions on the set [n] will be denoted as Π[n].
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DNA database can be reduced

DATABASE of size 10
Person 1 (4− 10− 6− 7)
Person 2 (3− 5− 6− 8)
Person 3 (3− 7− 8− 10)
Person 4 (10− 1− 4− 5)
Person 5 (3− 7− 8− 10)
Person 6 (3− 7− 8− 10)
Person 7 (1− 5− 7− 2)
Person 8 (3− 7− 8− 10)
Person 9 (3− 5− 6− 8)
Person 10 (3− 7− 8− 10)
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Person 10 (3− 7− 8− 10)

Assumption 2 → data can be replaces by the equivalence classes on the
indices of the relation “to have the same DNA type”.
This is a partition of the set [n] : {{1}, {2, 9}, {3, 5, 6, 8, 10}, {4}, {7}}
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Reduced data

Data D is made of the database + 2 new observations

D = π[n+2] partition of the set {1, 2, ..., n + 2}

Example:
Database → π[10] = {{1}, {2, 9}, {3, 5, 6, 8, 10}, {4}, {7}}
D → π[12] = {{1}, {2, 9}, {3, 5, 6, 8, 10}, {4}, {7}, {11, 12}}

We can see the data as a random variable. In that case,

D = Π[n+2].
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The distribution of D = Π[n+2] depends on p. However, it does not
depend on the order of the pi .

↓

We can consider directly the ordered vector
p ∈ ∇∞ = {(p1, p2, ....), p1 ≥ p2 ≥ ... > 0,

∑
pi = 1}.

For instance, p3= the frequency of the third most frequent DNA type in
Nature.
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Prior distribution on p ∈ ∇∞

Bayesian nonparametrics: we need a prior for the parameter p.

Two parameter Poisson Dirichlet distribution.

Parameters:
0 < α < 1, θ > −α
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The model (first part)

A,Θ

∇∞ 3 PP|α, θ ∼ PD(α, θ)

...X1N 3 X2 Xn

Xi = j → the i-th observation has the jth most common type in Nature.
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The model (first part)

A,Θ

P∇∞ 3

(A,Θ) ∼ f

P|α, θ ∼ PD(α, θ)

...X1N 3 X2 Xn

Suspect

Xn+1

X1, ...,Xn+1|p ∼i.i.d p Crime stain

Xn+2

H{Hp,Hd} 3

Xn+2|p,H, xn+1 ∼

{
δxn+1 if H = Hp

p if H = Hd
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Random partitions

Some notation:
Given X1, ...,Xn ∈ N, random variables, Π[n](X1,X2, ...,Xn) is the random
partition defined by the equivalence classes of i ∼ j iff Xi = Xj .

X1, ...,Xn −→ Π[n] = πDb
[n]

X1, ...,Xn,Xn+1 −→ Π[n+1] = πDb+
[n+1]

X1, ...,Xn,Xn+1,Xn+2 −→ Π[n+2] = πDb++
[n+2]

X1, ...,Xn are not observed, but generates the same partition as the
original database.
Data can be defined as D = Π[n+2].
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The complete model

A,Θ

H

P

X1 X2 Xn Xn+1 Xn+2

D
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Pitman sampling formula

P ∼ PD(α, θ)

X1,X2, ...,Xn|P = p ∼i.i.d p

then Π[n] = Π[n](X1, ...,Xn) has the following distribution:

Pr(Π[n] = π[n]|α, θ) = Pn
α,θ(π[n]) =

[θ + α]k−1;α

[θ + 1]n−1;1

k∏
i=1

[1− α]ni−1;1,

In our model

Pr(D|α, θ, h) = Pr(Π[n+2] = πDb++
[n+2] |α, θ, h) =

{
Pn+2
α,θ (πDb++

[n+2] ) if h = Hd

Pn+1
α,θ (πDb+

[n+1]) if h = Hp
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The model, simplified

A,Θ

H

D

D = Π[n+2].
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Lemma

A H

X Y

Lemma

Given four random variables A, H, X and Y , as above, the likelihood
function for h, given X = x and Y = y , satisfies

lik(h | x , y) ∝ E(p(y | x ,A, h) | X = x).
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Lemma

A,Θ H

Π[n+1] Π[n+2]

lik(h | π[n+1], π[n+2]) ∝ E(p(π[n+2] | π[n+1],A,Θ, h) | Π[n+1] = π[n+1]).
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Likelihood ratio

LR =
p(π[n+2]|Hp)

p(π[n+2]|Hd)
=

p(π[n+1], π[n+2]|Hp)

p(π[n+1], π[n+2]|Hd)
=

lik(Hp|π[n+1], π[n+2])

lik(Hd |π[n+1], π[n+2])

Lemma allows to write

LR =
E(

1︷ ︸︸ ︷
p(π[n+2] | π[n+1],A,Θ,Hp) | Π[n+1] = π[n+1])

E(p(π[n+2] | π[n+1],A,Θ,Hd)︸ ︷︷ ︸
1−A

n+1+Θ

| Π[n+1] = π[n+1])

=
1

E
(

1−A
n+1+Θ | Π[n+1] = π[n+1]

) .
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LR =
1

E
(

1−A
n+1+Θ | Π[n+1] = π[n+1]

)

By defining the random variable Φ = n 1−A
n+1+Θ we can write the LR as

LR =
n

E(Φ | Π[n+1] = π[n+1])
.

We are interested in the distribution of Φ,Θ|Π[n+1]

p(φ, θ | π[n+1]) ∝ p(π[n+1] | φ, θ)f (φ, θ)
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Log likelihood with φ and θ

log10 p(π[n+1] | φ, θ)

θ
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Dutch Y-STR database, 7 loci, N=18,925
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Log likelihood as a function of φ and θ

θ
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p(π[n+1] | φ, θ) ≈ N((φMLE , θMLE ), I−1
MLE )

p(φ, θ | π[n+1]) ∝ p(π[n+1] | φ, θ)f (φ, θ)

If the prior is smooth around the MLE then

p(φ, θ | π[n+1]) ≈ N((φMLE , θMLE ), I−1
MLE ).

It follows that E(Φ | Π[n+1] = π[n+1]) ≈ φMLE . That is

LR =
1

E(Φ | Π[n+1] = π[n+1])
≈ n + 1 + θMLE

1− αMLE
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Sorted relative frequencies: how good is our prior?

Comparison between the spectrum from a big database, and simulations
from PD(α, θ) using MLE estimators of the parameters.
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αMLE = 0.51, θMLE = 216
asymptotic behavior

Thick black line: ranked relative frequencies in the database.
Thin black lines: simulations from the PD(αMLE , θMLE ).
Dotted line: asymptotics.
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Sorted relative frequencies: how good is our prior?

Comparison between the spectrum from a big database, and simulations
from PD(α, θ) using MLE estimators of the parameters.
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The LR when p is known

Imagine we know p.

LR|p =
p(πDb++

[n+2] |Hp,p)

p(πDb++
[n+2] |Hd ,p)

= Applying Lemma =
1

E(pxn+1 |πDb+
[n+1],p)

.

How is this compared to the one we get with our method when p is
unknown?
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Test Dutch database (N=2085, 7 loci)

Database of 2085 Y-STR profiles form Dutch men.

Test: Compare the distribution of log10(LR|p) and log10 LR obtained by
100 samples of size 100 from this population.
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Results

Compare the distribution of log10(LR|p) and log10 LR obtained by 100
samples of size 100 from this population
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