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Classical problem of regression

I Observations : feature-label pairs {(z i , yi ); i = 1, . . . ,n}
• z i ∈ Rd multidimensional feature vector ;
• yi ∈ R real valued label.

I Regression function : for some f∗ : Rd → R it holds that

yi = f∗(z i ) + ξi ; with i.i.d. noise {ξi}.

We will always assume that E[ξ1] = 0, Var[ξ1] = σ2.
The feature vectors z i are assumed deterministic.

I Dictionary approach : for a given family (called dictionary) of
functions {ϕj}j∈[p], it is assumed that for some β̄ ∈ Rp,

f∗ ≈ fβ̄ :=

p∑
j=1

β̄jϕj .

I Sparsity : the dimensionality of β̄ is large, possibly much larger
than n, but it has only a few nonzero entries (s = ‖β̄‖0 � p).
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Classical problem of regression

I Observations : feature-label pairs {(z i , yi ); i = 1, . . . ,n}

I Regression function : for some f∗ : Rd → R it holds that
yi = f∗(z i ) + ξi ; with i.i.d. noise {ξi}.

I Dictionary approach : for a dictionary {ϕj}j∈[p],

f∗ ≈ fβ̄ :=
∑p

j=1
β̄jϕj .

I Sparsity : the dimensionality of β̄ is large, possibly much larger
than n, but it has only a few nonzero entries (s = ‖β̄‖0 � p).

I Prediction loss : the quality of recovery is measured by the
normalized Euclidean norm :

`n (̂f, f∗) =
1
n

n∑
i=1

{̂
f(z i )− f∗(z i )

}2
.

The goal is to propose an estimator β̂ such that `n(fβ̂, f
∗) is small.
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Equivalence with multiple linear regression

� Set y = (y1, . . . , yn)> and ξ = (ξ1, . . . , ξn)>.

� Define the design matrix X = [ϕj (z i )]i∈[n],j∈[p].

� Assume, for notational convenience, that f∗ = fβ∗ . We get then
the regression model

y = Xβ∗ + ξ.

� The prediction loss of an estimator β̂ is then

`n(β̂,β∗) :=
1
n
‖X(β̂ − β∗)‖2

2.

� The columns of X (dictionary elements) satisfy 1
n‖X

j‖2
2 ≤ 1.

n × p

XY β∗ ξ

n × 1

p × 1

n × 1
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Lasso and its prediction error

� Definition : Given λ > 0, the Lasso estimator is

β̂Lasso
λ ∈ arg min

β∈Rp

{ 1
2n
‖y − Xβ‖2

2 + λ‖β‖1

}
.

� Risk bound with “slow” rate : if λ ≥ σ
( 2

n log(p/δ)
)1/2, then

`n(β̂Lasso
λ ,β∗) ≤ min

β̄

{
`n(β̄,β∗) + 4λ‖β̄‖1

}
, (1)

with probability at least 1− δ (see, for instance, [Rigollet and
Tsybakov, 2011].

� For fixed sparsity s, the remainder term is of order n−1/2, up to a
log factor. This is called “slow” rate.

� Slow-rate bound holds even if the columns of X are strongly
correlated.
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Fast rates for the Lasso

� Recall the Restricted Eigenvalue condition RE(T ,5) : ∀δ ∈ Rp

‖δT c‖1 ≤ 5‖δT‖1 ⇒ 1
n
‖Xδ‖2

2 ≥ κ2
T ,5‖δT‖2

2.

� Risk bound with “fast” rate : according to [Koltchinskii, Lounici
and Tsybakov, AoS, 2011], if for some T ⊂ [p] the matrix X
satisfies RE(T ,5) and the noise distribution is Gaussian, then
λ = 3σ

( 2 log(p/δ)
n

)1/2 leads to

`n(β̂Lasso
λ ,β∗) ≤ inf

β̄∈Rp

{
`n(β̄,β∗) + 4λ‖β̄T c‖1 +

σ2‖β̄‖0

n
18 log(p/δ)

κ2
T ,5

}
,

with probability at least 1− δ (see also [Sun and Zhang, 2012]).

� The remainder term above is of order s/n, called fast rate, if κT ,5
is bounded away from zero. This constrains the correlations
between the columns of X.
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II. Some questions
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Question 1

� For really sparse vectors (for example, s is fixed and n→∞),
there are methods that satisfy fast rate bounds for prediction
irrespective of the correlations between the
covariates [BTW07a, DT07, RT11].

� Fast rate bounds for Lasso prediction, in contrast, usually rely on
assumptions on the correlations of the covariates such as low
coherence [CP09], restricted eigenvalues [BRT09, RWY10],
restricted isometry [CT07], compatibility [vdG07], etc.

� Question : is it possible to establish fast rate bounds for the
Lasso that are valid irrespective of the correlations between the
covariates. This question is open even if we allow for oracle
choices of the tuning parameter λ, that is, if we allow for λ that
depends on the true regression vector β∗, the noise vector ξ,
and the noise level σ.
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Question 2

� Known results imply fast rates for prediction with the Lasso in the
following two extreme cases : First, when the covariates are
mutually orthogonal, and second, when the covariates are all
collinear.

� Question : how far from these two extreme cases can a design
be such that it still permits fast rates for prediction with the
Lasso ?

� For the first case, the case of mutually orthogonal covariates,
this question has been thoroughly studied [BRT09, BTW07b,
Zha09, vdGB09, Wai09, CWX10, JN11].

� For the second case, the case of collinear covariates, this
question has received much less attention and is therefore one
of our main topics.
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Question 3
A particular case of the Lasso is the least squares estimator with the
total variation penalty :

f̂ TV ∈ arg min
f∈Rn

{1
n
‖y − f‖2

2 + λ‖f‖TV

}
, (2)

which corresponds to the Lasso estimator for the design matrix

X =

1 0 . . . 0
1 1 . . . 0
.
.
.

.

.

.
. . .

.

.

.
1 1 . . . 1

 f = Xβ, ‖f‖TV = ‖β‖1.

� It is known that if f∗ is piecewise constant, then the minimax rate
of estimation is parametric O(n−1).

� According to [MvdG97], the risk of the TV-estimator is O(n−2/3).

� Question : Is the TV-estimator indeed suboptimal for estimating
piece-wise constant functions or this gap is just an artifact of the
proof ?
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III. A counter-example
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Fast rates : a negative result

� Let n ≥ 2 and m = b
√

2nc. Define the design matrix X ∈ Rn×2m

by

X =

√
n
2


1 1 1 1 . . . 1 1
1 −1 0 0 . . . 0 0
0 0 1 −1 . . . 0 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 0 . . . 1 −1

 .

� We assume in this example that ξ is composed of i.i.d.
Rademacher random variables.

� Let β∗ ∈ R2m such that β∗1 = β∗2 = 1 and β∗j = 0 for every j > 2.

Proposition

For any λ > 0, the prediction loss of β̂Lasso
λ satisfies

P
(
`n(β̂Lasso

λ ,β∗) ≥ (8n)−1/2
)
≥ 1

2
.

Arnak S. Dalalyan October 9, 2014 13



14

Fast rates : a negative result

Other negative results can be found in [CP09], but the specificities of
the last proposition are that :

� the sparsity is fixed and small : s = 2, while p ≈
√

8n.

� the correlations are fixed and bounded away from zero and one :
〈X j ,X j′〉 = 1/2 for most j , j ′.

� the result is true for all values of λ.

Conclusion
The statistical complexity of the Lasso is definitely worse than that of
the Exponential Screening [RT11] and Exponentially Weighted Aggre-
gate with sparsity prior [DT07].
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IV. Taking advantage of correlations : intermediate rates
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A measure of (high) correlations and a sharp OI

Recall “slow” rate : if λ ≥ σ
( 2

n log(p/δ)
)1/2, then w.p. ≥ 1− δ,

`n(β̂Lasso
λ ,β∗) ≤ min

β̄

{
`n(β̄,β∗) + 4λ‖β̄‖1

}
. (3)

This bound can be substantially improved when some columns of X
are nearly collinear (very strongly correlated).

For every set T ⊂ [p], we introduce the quantity

ρT = n−1/2 max
j∈[p]
‖(In − ΠT )X j‖2,

where ΠT is the projector onto span(XT ).
Theorem 1

If λ ≥ ρTσ
( 2

n log(p/δ)
)1/2, with prob. ≥ 1− 2δ the Lasso fulfills

`n(β̂Lasso
λ ,β∗) ≤ inf

β̄∈Rp

{
`n(β̄,β∗) + 4λ‖β̄‖1

}
+

2σ2(|T |+ 2 log(1/δ))

n
.
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Discussion

� “Slow” rates meet “fast” rates when the quantity ρT is O(n−1/2).

� For designs containing highly correlated covariates (as in the
case of the TV-estimator), choosing the tuning parameter
substantially smaller than the universal value σ

( 2
n log(p/δ)

)1/2

may considerably improve the rate.

� Applying Theorem 1 in the case of the TV-estimator, we get
sharp OI’s with a minimax-rate-optimal remainder term in the
case of Hölder continuous and monotone functions f .
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V. Fast rates and weighted compatibility
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Weighted compatibility factors

For any T ⊂ [p], let us introduce the weights

ωj (T ,X) =
1√
n
‖(In − ΠT )X j‖2.

� the weights ωj (T ,X) are all between zero and one,

� they vanish whenever X j belongs to Span{X `, ` ∈ T}.

For any γ > 0, we define the sets

C0(T , γ,ω) =
{
δ ∈ Rp : ‖(1p − γ−1ω)T c � δT c‖1 < ‖δT‖1

}
.

For every vector ω ∈ Rp with nonnegative entries, we call the
weighted compatibility factor the quantity

κ̄T ,γ,ω = inf
δ∈C0(T ,γ,ω)

|T | · ‖Xδ‖2
2

n
{
‖δT‖1 − ‖(1p − γ−1ω)T c � δT c‖1

}2 .

When ω = 1p, this coincides with the compatibility factors [vdG07].
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Refined OI with fast rates

Theorem 2

If for some γ > 1, λ = γσ
( 2

n log(p/δ)
)1/2, then with prob. ≥ 1− 2δ :

`n(β̂Lasso
λ ,β∗) ≤ inf

β̄,T

{
`n(β̄,β∗) + 4λ‖β̄T c‖1 +

4σ2|T | log(p/δ)

n
· rn,p,T

}
,

where rn,p,T = log−1(p/δ) + 2|T |−1 + γ2κ̄−1
T ,γ,ω.

� The remainder term converges to zero at the (fast) rate s/n if the
weighted compatibility factor is bounded away from zero.

� The weighted compatibility factor is significantly larger than the
unweighted one and can be bounded away from zero even if the
columns of X are strongly correlated.
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TV-estimator and piece-wise constant functions

TV-estimator :

f̂ TV ∈ arg min
f∈Rn

{1
n
‖y − f‖2

2 + λ‖f‖TV

}
, (4)

which corresponds to the Lasso estimator for the design matrix

X =

1 0 . . . 0
1 1 . . . 0
.
.
.

.

.

.
. . .

.

.

.
1 1 . . . 1

 f = Xβ, ‖f‖TV = ‖β‖1.

� Assume that f ∗i = f∗(i/n) for a piece-wise constant function f∗.

� Let T be the set of “jumps” of f ∗.

� We managed to prove that the weighted comp. factor satisfies :
κ̄2

T ,γ,ω ≥ (log(n) ∨∆−1)−1, where ∆ is the smallest distance
between the jumps of the function f∗.
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TV-estimator and piece-wise constant functions

Proposition 2

Let f ∗ be a piecewise constant vector and J∗ = {j ∈ [n] : f ∗j 6= f ∗j+1}. If

λ = 2σ
{ 2

n log(n/δ)
}1/2, then w. p. ≥ 1− 2δ,

1
n
‖f̂ TV − f ∗‖2

2 ≤
4σ∗2|J∗| log(n/δ)

n
·
(
3 + 256(log(n) + ∆−1)).
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Some take away messages

� Generally, the statistical complexity of the Lasso is strictly worse
than that of Exponential Screening.

� Presence of highly correlated covariates may be very helpful
when predicting (denoising) with the Lasso.

� If all the irrelevant covariates are within a distance O(n−1/2) of
the linear span of the relevant covariates, then the Lasso
achieves the fast rate of prediction.

� (Known) Prediction risk bounds for the Lasso are strictly better
than those for the Dantzig selector.

� TV-estimator does achieve the optimal rate on the class of
piece-wise constant functions.
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