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Hidden Markov models (HMMs)

Zk Zk+1

Xk Xk+1

Observations (Xk)k≥1 are independent conditionnally to (Zk)k≥1

L ((Xk)k≥1|(Zk)k≥1) =
⊗
k≥1

L (Xk |Zk)

Latent (unobserved) variables (Zk)k≥1 form a Markov chain
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Finite state space stationary HMMs

The Markov chain is stationary, has finite state space {1, . . . ,K}
and transition matrix Q. The stationary distribution is denoted µ.

Conditionnally to Zk = j , Xk has emission distribution Fj .

The marginal distribution of any Xk is

K∑
j=1

µ (j)Fj

A finite state space HMM is a finite mixture with Markov regime
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The use of hidden Markov models

Modeling dependent data arising from heterogeneous populations.

Markov regime : leads to efficient algorithms to compute :

Filtering/prediction/smoothing/ probabilities
(Forward/Backward recursions) : given a set of observations,
the probability of hidden states.

Maximum a posteriori (prediction of hidden states) ; Viterbi’s
algorithm.

Likelihoods and EM algorithms : estimation of the transition
matrix Q and the emission distributions F1, . . . , FK

MCMC Bayesian methods
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The parametric/non parametric story

The inference theory is well developed in the parametric situation
where for all j , Fj ∈ {Fθ, θ ∈ Θ} with Θ ⊂ Rd .
But parametric modeling of emission distributions may lead to poor
results in particular applications.

Motivating example : DNA copy number variation using DNA
hybridization intensity along the genome
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Popular approach : HMM with emission distributions N (mj ;σ
2) for

state j .
Sensitivity to outliers, skewness or heavy tails that may lead to large
numbers of false copy number variants detected.
→ Non parametric Bayesian algorithms : Yau, Papaspiliopoulos,
Roberts, Holmes JRSSB 2011)

Other examples in which the use of nonparametric algorithms
improves performances

Bayesian methods

I Climate state identification (Lambert et al. 2003)

EM-style algorithms
I Voice activity detection (Couvreur et al., 2000)
I Facial expression recognition (Shang et al. 2009)
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Finite state space non parametric HMMs

The marginal distribution of any Xk is
∑K

j=1 µ (j)Fj

Non parametric mixtures are not identifiable with no further
assumptions

µ (1)F1 + µ (2)F2 + . . .+ µ (K )FK

= (µ(1)+µ(2))

[
µ (1)

µ(1) + µ(2)
F1 +

µ (2)

µ(1) + µ(2)
F2

]
+ . . .+µ (K )FK

=
µ (1)

2
F1 +

[
µ(1)

2 F1 + µ (2)F2

]
µ(1)

2 + µ (2)
+ . . .+ µ (K )FK

Why do non parametric HMM algorithms work ? ? ? ?

Dependence of observed variables has to help !
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Basic questions

Denote F = (F1, . . . ,FK ).

For m an integer, let P(m)
K ;Q;F be the distribution of (X1, . . . ,Xm).

The sequence of observed variables has mixing properties : adaptive

estimation of P(m)
K ;Q;F is possible. Can one get information on K , Q

and F from an estimator P̂(m) of P(m)
K ;Q;F ?

Identifiability : for some m,

P(m)
K1;Q1;F1

= P(m)
K2;Q2;F2

=⇒ K1 = K2, Q1 = Q2, F1 = F2.

Inverse problem : Build estimators K̂ , Q̂ and F̂ such that one

may deduce consistency/rates from those of P̂(m) as an

estimator of P(m)
K ;Q;F.
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Joint work with Judith Rousseau (translated emission distributions ;
Bernoulli 2016)

Joint work with Alice Cleynen and Stéphane Robin (General
identifiability ; Stat. and Comp. 2016),
Yohann De Castro and Claire Lacour (Adaptive estimation via model
selection and least squares ; JMLR 2016),
Yohann De Castro and Sylvain Le Corff (Spectral estimation and
estimation of filtering/smoothing probabilities ; IEEE IT to appear),

Work by Elodie Vernet (Bayesian estimation ; consistency EJS 2015
and rates Bernoulli in revision)

Work by Luc Lehéricy (Estimation of K ; submitted ; state by state
adaptivity ; submitted)

Work by Augustin Touron (Climate applications ; PHD in progress)
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Identifiability/inference theoretical results in
nonparametric HMMs

1 Identifiability in non parametric finite translation HMMs and
extensions

2 Identifiability in non parametric general HMMs

3 Generic methods

4 Inverse problem inequalities

5 Further works
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Translated emission distributions

Here we assume that there exists a distribution function F and real
numbers m1, . . . ,mK such that

Fj (·) = F (· −mj) , j = 1, . . . ,K .

The observations follow

Xt = mZt + εt , t ≥ 1,

where the variables εt , t ≥ 1, are i.i.d. with distribution function F ,
and are independent of the Markov chain (Zt)t≥1.

Previous work : independent variables ; K ≤ 3 ; symmetry
assumption on F : Bordes, Mottelet, Vandekerkhove (Annals of Stat.
2006) ; Hunter, Wang, Hettmansperger (Annals of Stat. 2007) ;
Butucea, Vandekerkhove (Scandinavian J. of Stat, to appear).
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Identifiability : assumptions

For K ≥ 2, let Θk be the set of θ =
(
m, (Qi ,j)1≤i ,j≤K ,(i ,j)6=(K ,K)

)
satisfying :

Q is a probability mass function on {1, . . . ,K}2 such that
det(Q) 6= 0,

m ∈ RK is such that m1 = 0 < m2 < . . . < mk .

For any distribution function F on R, denote P(2)
(θ,F ) the law of

(X1,X2) :

P(2)
(θ,F ) (A× B) =

K∑
i ,j=1

Qi ,jF (A−mi )F (B −mi ) .
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Identifiability result

Theorem [ EG, J. Rousseau (Bernoulli 2016)]

Let F and F̃ be distribution function on R, θ ∈ ΘK and θ̃ in ΘK̃ .
Then

P(2)
θ,F = P(2)

θ̃,F̃
=⇒ K = K̃ , θ = θ̃ and F = F̃.

No assumption on F !

HMM not needed ; dependent (stationary) state variables
suffice.

Extension (by projections) to multidimensional variables.

Identification of `-marginal distribution, i.e. the law of
(Z1, . . . ,Z`), K and F using the law of (X1, . . . ,X`).
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Identifiability : sketch of proof
φF : characteristic function of F ; φF̃ : c.f. of F̃ ;
φθ,i : (φθ̃,i ) c.f. of the law of mZi

under Pθ,F , (under Pθ̃,F̃ ) ;
Φθ : (Φθ̃) c.f. of the law of (mZ1 ,mZ2) under Pθ,F (under Pθ̃,F̃ ).

The c.f. of the law of X1, of X2, then of (X1,X2), give

φF (t)φθ,1 (t) = φF̃ (t)φθ̃,1 (t) ,

φF (t)φθ,2 (t) = φF̃ (t)φθ̃,2 (t) ,

φF (t1)φF (t2) Φθ (t1, t2) = φF̃ (t1)φF̃ (t2) Φθ̃ (t1, t2) .

We thus get for all (t1, t2) ∈ R2,

φF (t1)φF (t2) Φθ (t1, t2)φθ̃,1 (t1)φθ̃,2 (t2)

= φF (t1)φF (t2) Φθ̃ (t1, t2)φθ,1 (t1)φθ,2 (t2) .
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Identifiability : sketch of proof

Thus on a neighborhood of 0 in which φF is non zero :

Φθ (t1, t2)φθ̃,1 (t1)φθ̃,2 (t2) = Φθ̃ (t1, t2)φθ,1 (t1)φθ,2 (t2) .

Then

Equation extended to the complex plane (entire functions).

The set of zeros of φθ,1 coincides with the set of zeros of φθ̃,1
(here det(Q) 6= 0 is used).

Hadamard’s factorization theorem allows to prove that
φθ,1 = φθ̃,1.

Same proof for φθ,2 = φθ̃,2, leading to Φθ = Φθ̃, and then
φF = φF̃

Finally the characteristic function characterizes the law, so that
K = K̃ , θ = θ̃ and F = F̃ .
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Identifiability : estimation of θ

Φθ (t1, t2)φX1 (t1)φX2 (t2)− Φ(X1,X2) (t1, t2)φθ,1 (t1)φθ,2 (t2) = 0.

Replace φX1 (t1), φX2 (t2) and Φ(X1,X2) (t1, t2) by estimators
(ex : empirical estimators) to get an empirical contrast (take
the square of the modulus and integrate).

Preliminar estimator : penalize to get consistent estimators of
K and θ satisfying the assumptions.

θ̂n minimize the contrast over a suitable compact.

θ̂n is
√
n-consistent + asymptotic distr. + deviation inequalities [ G.

, Rousseau (Bernoulli 2016)]
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Finite state space HMM : Connexion with mixtures of
independent variables
The distribution of (X1,X2,X3) may be written as

P(3)
Q,F =

K∑
i=1

K∑
j=1

K∑
m=1

µ (i)Qi ,jQj ,mFi ⊗ Fj ⊗ Fm

=
K∑
j=1

µ (j)

(
K∑
i=1

µ (i)Qi ,j

µ (j)
Fi

)
⊗ Fj ⊗

(
K∑

m=1

Qj ,mFm

)

=
K∑
j=1

µ (j)Gj ,1 ⊗ Gj ,2 ⊗ Gj ,3

which is a mixture of K populations, in each population the
observation is that of independent variables.

Z1 and Z3 are independent conditionally to Z2.

→ Use results about mixtures of independent variables.
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An old result by Kruskal

Kruskal’s algebraic result (1977) : 3-way contingency tables are
identifiable (up to label switching) under some Kruskal’s rank
assumption.
Kruskal + adequate approximation argument : Non parametric
mixtures in which, conditionally to the population, at least 3
variables are independent, are identifiable under some linear
independence assumption of the conditional probability distributions
of those variables. (Allman et al. , 2009)

Theorem (A. Cleynen, S. Robin, EG, 2016 Stat. and Comput.)

Assume that the probability measures F1, . . . ,FK are linearly
independent and that Q has full rank. Then the parameters K , Q
and F1, . . . ,FK are identifiable from the distribution of 3 consecutive
observations X1, X2, X3, up to label swapping of the hidden states.
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Mixtures of independent variables : spectral analysis
Works by Anandkumar, Dai, Hsu, Kakade, Song, Zhang, Xie.

Let X = (X1;X2;X3) have distribution ⊗3
d=1Gj ,d conditionally to

Z = j so that X has distribution

K∑
j=1

µ (j)⊗3
d=1 Gj ,d

Let ϕ1, . . . , ϕM be M real valued functions.
For d = 1, 2, 3, define A(d) the M × K matrix such that

A
(d)
l ,j =

∫
ϕldGj ,d = E [ϕl(Xd)|Z = j ]

A(d) =


∫
ϕ1dG1,d · · ·

∫
ϕ1dGK ,d

...
...

...∫
ϕMdG1,d · · ·

∫
ϕMdGK ,d
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Mixtures of independent variables : spectral analysis

Let D = Diag(µ(1), · · · , µ(K )).

Let S the M ×M matrix such that Sl ,m = E [ϕl(X1)ϕm(X2)].
Then,

S = A(1)D(A(2))T .

If for all d = 1, 2, 3, G1,d , . . . ,GK ,d are linearly independent, then
for large enough M, rank(A(d)) = K and

rank (S) = K .

Let U1 and U2 be M × K matrices such that UT
1 SU2 is invertible

(may be found by SVD of S).

UT
1 SU2 =

(
UT

1 A(1)
)
D
(

(A(2))TU2

)
.
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Mixtures of independent variables : spectral analysis
Define T be the M ×M ×M tensor such that

T (l1, l2, l3) = E [ϕl1(X1)ϕl2(X2)φl3(X3)].

Let V ∈ RM , and define T [V ] the M ×M matrix such that

T [V ]l ,m = E [ϕl(X1)ϕm(X2)〈V ,Φ(X3)〉]

where Φ(X3) = (ϕh(X3))1≤h≤M . Then

T [V ] = A(1)D · Diag
(

(A(3))TV
)

(A(2))T

Define
B(V ) = (UT

1 T [V ]U2)(UT
1 SU2)−1.

Then, one has

B(V ) = (UT
1 A(1))Diag

(
(A(3))TV

)
(UT

1 A(1))−1.
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Mixtures of independent variables : spectral analysis

UT
1 SU2 =

(
UT

1 A(1)
)
D
(

(A(2))TU2

)
(
UT

1 SU2

)−1
=
(

(A(2))TU2

)−1
D−1

(
UT

1 A(1)
)−1

T [V ] = A(1)D · Diag
(

(A(3))TV
)

(A(2))T

B(V ) = (UT
1 T [V ]U2)(UT

1 SU2)−1

= UT
1 A(1)D · Diag

(
(A(3))TV

)
(A(2))TU2(UT

1 SU2)−1

= UT
1 A(1)Diag

(
(A(3))TV

)
· D(A(2))TU2(UT

1 SU2)−1

= (UT
1 A(1))Diag

(
(A(3))TV

)
(UT

1 A(1))−1.
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Mixtures of independent variables : spectral analysis

Recall

B(V ) = (UT
1 T [V ]U2)(UT

1 SU2)−1 = (UT
1 A(1))Diag

(
(A(3))TV

)
(UT

1 A(1))−1.

All matrices B(V ) have the same eigenvectors, and eigenvalues the
coordinates of (A(3))TV .
By exploring various vectors V , one may recover A(3). The
eigenvectors stay the same when permuting coordinates 2 and 3 of
the observed variable, so that one may recover A(2), and thus also
A(1). Recovering D is then also possible. Then, by taking M to
infinity, one may recover the whole distributions G1,j , G2,j and G3,j ,
j = 1, . . . ,K .

One may recover µ(1), . . . , µ(K ) and G1,j , G2,j and G3,j ,
j = 1, . . . ,K using Singular Value/ Eigen Value decompositions of
matrices built from the distribution of X = (X1,X2,X3).
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Spectral analysis : estimation

Emission distributions with densities f ?j , j = 1, . . . ,K in L2(X ).

Use a sieve of finite dimensional subspaces with orthonormal
basis ΦM := {ϕ1, . . . , ϕM}.
Examples : histograms ; splines ; Fourier ; wavelets.

Estimation of Q? and 〈f ?j , ϕm〉, j = 1, . . . ,K , m = 1, . . . ,M on
the basis of the empirical distribution of the three-dimensional
marginal, i.e. the distribution of (X1,X2,X3)
Uses only one SVD, matrix inversions and one diagonalization.

‖Q̂ − Q?‖2 and ‖f̂M,j − f ?M,j‖2 are OP

(
M3

n

)
(De Castro, G., Le Corff, IEEE IT to appear)
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Identifiability/inference theoretical results in
nonparametric HMMs

1 Identifiability in non parametric finite translation HMMs and
extensions

2 Identifiability in non parametric general HMMs

3 Generic methods

4 Inverse problem inequalities

5 Further works
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Model selection via penalized contrast
Define a contrast function γn(g), g a possible density such that
γn(g)− γn(g?) has positive limit for g 6= g?, g? being the true
density.
The possible densities g have a particular form depending on the
emission densities and a parametric part : g := gθ,F .
A sieve for the emission distributions leads to sieves on the possible
densities S(θ,M).
For the parametric part, we have in hand an estimator θ̂ that
converges at parametric (or nearly parametric) rate.
For each M, define ĝM as the minimizer of γn(g) for g ∈ S(θ̂,M).
Set a penalty function pen(n,M) and choose

M̂ = arg min
M=1,...,n

{γn(ĝM) + pen(n,M)} .

Then the estimator of g? is ĝ = ĝ
M̂

, and the estimator of F ? is F̂
such that

ĝ = g
θ̂,F̂
.
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Model selection via penalized contrast
Translation mixtures with dependent regime

Recall that the observations follow :

Xt = mZt + εt , t ≥ 1,

where the variables εt , t ≥ 1, are i.i.d. with distribution function F ,
and are independent of the Markov chain (Zt)t≥1.
When θ = ((mj)j , (Qi ,j)i ,j) is known, one may recover F from the
marginal density gθ,F of Xt .
If F has density f , then gθ,f := gθ,F is given by :

gθ,f (x) =
K∑
j=1

µ (j) f (x −mj) .

where µ(i) =
∑K

j=1 Qi ,j . Given the estimator

θ̂n = ((m̂i )1≤i≤k? , (Q̂i ,j)(i ,j)6=(k?,k?)), denote µ̂(i) =
∑k?

j=1 Q̂i ,j .
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Model selection via penalized contrast
Translation mixtures with dependent regime

Maximum marginal-likelihood :

γn (g) = −1

n

n∑
i=1

log g (Xi ) .

The sieve S(θ̂,M) is the set of functions g =
∑K

j=1 µ̂ (j) f (x − m̂j)
where f ∈ FM :

FM =

{
M∑
i=1

πiϕβi (x − αi ) , αi ∈ [−AM ,AM ], βi ∈ [bM ,B],

πi ≥ 0, i = 1, . . . , p,

p∑
i=1

πi = 1

}

with ϕβ the centered gaussian density with variance β2.
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Model selection via penalized contrast
General finite state space HMMs

Here θ = Q the transition matrix of the hidden Markov chain. For
F = (f1, . . . , fK ) emission densities, if π is the stationary distribution
of Q, the density of (X1,X2,X3) is given by

gθ,F (x1, x2, x3) =
K∑

j1,j2,j3=1

π(j1)Q(j1, j2)Q(j2, j3)fj1(x1)fj2(x2)fj3(x3).

Least squares :

γn (g) = ‖g‖2
2 −

2

n

n−2∑
s=1

g (Xs ,Xs+1,Xs+2) .

As n tends to infinity, γn (g)− γn (g?) converges almost surely to
‖g − g?‖2

2.

The sieve S(θ̂,M) is the set of functions g
θ̂,F

such that

∀j = 1, . . . ,K , ∃(amj)1≤m≤M ∈ RM , fj =
M∑

m=1

amjϕm.
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Oracle inequalities (in general)

There exist constants κ, C and n0 such that : if

pen(n,M) ≥ κ complexity(M)
log n

n
,

then for all x > 0, for all n ≥ n0, with probability 1− e−x , it holds

D2(ĝ , g?) ≤ C { inf
M

[
d2(g?M , g

?) + pen(n,M)
]

+ small terms } .

Proof : concentration inequality + control of the complexity of
the Sieve (ex : using bracketing entropy).

Adaptive rates ; automatic best compromise bias/variance.

Penalty in practice : slope heuristics.
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Oracle inequalities : Translation mixtures and HMMs

Additional difficulty : deal with θ̂ in γn.
C depends here on the hidden chain (concentration inequality for
dependent variables).

Translation mixtures with dependent regime
Oracle inequality using penalized m.l.e (G. , Rousseau [Bernoulli
2016]).
D2(ĝ , g?) : Hellinger’s distance.
d2(g?M , g

?) : Kullback’s divergence.

General finite state space HMMs
Oracle inequality using least squares (De Castro, G. Lacour [JMLR
2016]).
D2(ĝ , g?) and d2(g?M , g

?) : L2-square distance.
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General question

Consistent estimation of g? translates to consistent estimation of
F ?.

Do adaptive minimax rates for the estimation of g? translate to
adaptive minimax rates for the estimation of F ? ?
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Inverse problem : translation mixtures

Recall g? =
∑K

j=1 µ
? (j) f ?

(
x −m?

j

)
.

G., Rousseau, Bernoulli 2016

If f ? has bounded derivative,(
2 max

j
µ̂ (j)− 1

)∥∥∥f̂ − f ?
∥∥∥

1
≤ 2h (g?, ĝ)+(1+‖(f ?)′‖∞)‖θ̂n−θ?‖.

Consequence : if maxj µ
?(j) > 1

2 , results on h2 (g?, ĝ) and ‖θ̂n − θ?‖
translate to results on

∥∥∥f̂ − f ?
∥∥∥

1
.

Remark : φg? = φf ?φθ? with φθ?(t) =
∑K

j=1 µ
? (j) e im

?
j t , and

φθ?(t) 6= 0 for all t if and only if maxj µ
?(j) > 1

2 (Moreno 1973).
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Proof
Proof : starts from ‖g? − ĝ‖2

1 ≤ 4h2 (g?, ĝ) . Then,

‖g? − ĝ‖1 = ‖
K∑
j=1

µ? (j) f ?
(
y −m?

j

)
−

K∑
j=1

µ̂ (j) f̂ (· − m̂j) ‖1

≥ ‖
K∑
j=1

µ̂ (j) (f̂ − f ?) (· − m̂j) ‖1

−‖
K∑
j=1

µ? (j) f ?
(
y −m?

j

)
−

K∑
j=1

µ̂ (j) f ? (· − m̂j) ‖1

≥ ‖
K∑
j=1

µ̂ (j) (f̂ − f ?) (· − m̂j) ‖1 − (1 + ‖(f ?)′‖∞)‖θ̂n − θ?‖.

Then using the triangle inequality,

‖
K∑
j=1

µ̂ (j) (f̂ − f ?) (· − m̂j) ‖1 ≥
(

2 max
j
µ̂ (j)− 1

)∥∥∥f̂ − f ?
∥∥∥

1
.
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Inverse problem : non parametric HMMs
Recall that for F = (f1, . . . , fK ) emission densities and Q a
transition matrix with stationary distribution π,

gQ,F (x1, x2, x3) =
K∑

j1,j2,j3=1

π(j1)Q(j1, j2)Q(j2, j3)fj1(x1)fj2(x2)fj3(x3).

Assumption : P(Q?, 〈f ?j , f ?l 〉) 6= 0 P polynomial

→ generically satisfied
→ always satisfied if K = 2

Theorem (Y. de Castro, EG, C. Lacour, JMLR 2016)

There exists C > 0 such that for all Q in a neighborhood of Q?,

‖gQ,F? − gQ,F‖2 ≥ C
K∑
j=1

‖f ?j − fj‖2.

Thus, results on ‖g? − ĝ‖2 translate to results on
∑K

j=1 ‖f ?j − f̂j‖2.
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Simulations : K=2
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Simulations : K=2

Integrated variance
∑2

j=1 E‖f̂j − fM,j‖2 of spectral and least squares
estimators, as a function of M (N = 50000, histogram basis)
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Identifiability/inference theoretical results in
nonparametric HMMs

1 Identifiability in non parametric finite translation HMMs and
extensions

2 Identifiability in non parametric general HMMs

3 Generic methods

4 Inverse problem inequalities

5 Further works
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Sensitivity to the linear dependence assumption
(L. Lehéricy, mémoire de M2, 2015).
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Likelihood methods

Back to Kruskal : identifiability holds when Q is full rank and
F1, . . . ,FK are distinct probability distributions, but on the basis of
the (2K + 1)[(K 2 − 2K + 2) + 1]-th marginal distribution.
(Alexandrovitch et al., 2016)

→ Full likelihood methods

(Oracle inequalities, L. Lehéricy, on going work)
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Others

Bayesian methods E. Vernet : consistency of the posterior
distribution (EJS 2015) ; rates of concentration for the posterior
distribution (Bernoulli, in revision).

Clustering/Estimation of the filtering and marginal smoothing
distibutions (Y. De Castro, EG, S. Le Corff, IEEE IT, to appear)

Estimation of K (L. Lehéricy, 2016, submitted)

Adaptive estimation of each emission density using Lepski’s
method (L. Lehéricy, on going work)

Seasonal HMMs and climate applications (A. Touron, work in
progress)
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Thank you for your attention !
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