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Hidden Markov models (HMMs)

ey

Observations (Xj)x>1 are independent conditionnally to (Zy)x>1

L (X)) k>11(Zk)k>1) ®L (X Zk)
k>1

Latent (unobserved) variables (Zj)x>1 form a Markov chain
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Finite state space stationary HMMs

The Markov chain is stationary, has finite state space {1,..., K}
and transition matrix Q. The stationary distribution is denoted .

Conditionnally to Zx = j, Xi has emission distribution F;.
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Finite state space stationary HMMs

The Markov chain is stationary, has finite state space {1,..., K}
and transition matrix Q. The stationary distribution is denoted p.

Conditionnally to Zx = j, Xi has emission distribution F;.

The marginal distribution of any Xj is
K
> () F
j=1

A finite state space HMM is a finite mixture with Markov regime
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The use of hidden Markov models

Modeling dependent data arising from heterogeneous populations.
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The use of hidden Markov models

Modeling dependent data arising from heterogeneous populations.

Markov regime : leads to efficient algorithms to compute :

o Filtering/prediction/smoothing/ probabilities
(Forward/Backward recursions) : given a set of observations,
the probability of hidden states.

@ Maximum a posteriori (prediction of hidden states) ; Viterbi's
algorithm.

o Likelihoods and EM algorithms : estimation of the transition
matrix @ and the emission distributions Fi, ..., Fk

o MCMC Bayesian methods
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The parametric/non parametric story

The inference theory is well developed in the parametric situation
where for all j, Fj € {Fy,0 € ©} with © C RY.

But parametric modeling of emission distributions may lead to poor
results in particular applications.

Motivating example : DNA copy number variation using DNA
hybridization intensity along the genome

Duplication Deletion

log ratio

Probe Number

Fig.1. Example array CGH data set: this data sets shows a copy number gain (duplication) and a copy num-
ber loss (deletion) which are characterized by relative upward and downward shifts in the log-intensity-ratio
respectively; the probe number here indicates the chromosomal location
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Popular approach : HMM with emission distributions N(mj;JZ) for
state j.

Sensitivity to outliers, skewness or heavy tails that may lead to large
numbers of false copy number variants detected.

— Non parametric Bayesian algorithms : Yau, Papaspiliopoulos,
Roberts, Holmes JRSSB 2011)

Other examples in which the use of nonparametric algorithms
improves performances

o Bayesian methods
» Climate state identification (Lambert et al. 2003)

o EM-style algorithms

» Voice activity detection (Couvreur et al., 2000)
» Facial expression recognition (Shang et al. 2009)
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Finite state space non parametric HMMs
The marginal distribution of any X is EJKZI w ()

Non parametric mixtures are not identifiable with no further
assumptions

p()Fi+p(2)Fa+ ...+ p(K) Fk

— @) [ RO e

w2

w), | [FATr@F]
= T

B2+ 1 (2)

+ ..—i—M(K)FK

Why do non parametric HMM algorithms work 7777

Dependence of observed variables has to help!

E.Gassiat (UPS and CNRS) Nonparametric HMM Leiden 2017 7 /47



Basic questions

Denote F = (Fy, ..., Fk).
For m an integer, let P . be the distribution of (X1, ..., Xm).

The sequence of observed variables has mixing properties : adaptive
estimation of IP’&"?%,;]F is pos/si\ble. Can one get information on K, Q
and IF from an estimator P(M) of ]P’EZ%.F ?

o Identifiability : for some m,

IP)(’")

() e =B s Ky = Ko, Q= @, Fy =T,

K2, Q2 F2

@ Inverse problem : Build estimators K, Q and F such that one
may deduce consistency/rates from those of P(™) as an

estimator of P%’?g\);m.
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Joint work with Judith Rousseau (translated emission distributions;
Bernoulli 2016)

Joint work with Alice Cleynen and Stéphane Robin (General
identifiability ; Stat. and Comp. 2016),

Yohann De Castro and Claire Lacour (Adaptive estimation via model
selection and least squares; JMLR 2016),

Yohann De Castro and Sylvain Le Corff (Spectral estimation and
estimation of filtering/smoothing probabilities; IEEE IT to appear),

Work by Elodie Vernet (Bayesian estimation; consistency EJS 2015
and rates Bernoulli in revision)

Work by Luc Lehéricy (Estimation of K ; submitted; state by state
adaptivity ; submitted)

Work by Augustin Touron (Climate applications; PHD in progress)
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|dentifiability /inference theoretical results in
nonparametric HMMs

@ !dentifiability in non parametric finite translation HMMs and
extensions

© Identifiability in non parametric general HMMs
© Generic methods
@ Inverse problem inequalities

© Further works
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|dentifiability /inference theoretical results in
nonparametric HMMs

@ !dentifiability in non parametric finite translation HMMs and
extensions
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Translated emission distributions

Here we assume that there exists a distribution function F and real
numbers my, ..., mk such that

Fi()=F(—-mj),j=1,...,K.
The observations follow
Xt =mz, + e, t > 1,

where the variables ¢;, t > 1, are i.i.d. with distribution function F,
and are independent of the Markov chain (Z;)¢>1.

Previous work : independent variables; K < 3; symmetry
assumption on F : Bordes, Mottelet, Vandekerkhove (Annals of Stat.
2006) ; Hunter, Wang, Hettmansperger (Annals of Stat. 2007);
Butucea, Vandekerkhove (Scandinavian J. of Stat, to appear).
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|dentifiability : assumptions

For K > 2, let @k be the set of 6 = (m, (QiJ)lgiJgK,(i,j);é(K,K))
satisfying :

e Q is a probability mass function on {1,..., K}? such that
det(Q) # 0,

o me RN issuch that mi =0 < my < ... < my.

For any distribution function F on R, denote ]P’Ez) the law of

0,F)
(Xl,XQ) :
) K
P (Ax B)=>" QijF (A—mi) F (B —m).
ij=1
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|dentifiability result

Theorem [ EG, J. Rousseau (Bernoulli 2016)]

Let F and F be distribution function on R, # € O and 6 in Og.
Then ) ) )
PYL =Pl — K=K, 0=0and F =F.

@ No assumption on F!

@ HMM not needed; dependent (stationary) state variables
suffice.

e Extension (by projections) to multidimensional variables.

o ldentification of /-marginal distribution, i.e. the law of
(Z1,...,2Z), K and F using the law of (X1,...,Xp).

E.Gassiat (UPS and CNRS) Nonparametric HMM Leiden 2017 14 / 47



|dentifiability : sketch of proof

¢F : characteristic function of F; ¢z : c.f. of F;

o,i : (¢5;) c.f. of the law of mz under Py r, (under P £);

g (P ) c.f. of the law of (mz, mgz,) under Py r (under P £)-

The c.f. of the law of Xi, of X3, then of (X1, X2), give
oF (t) do,1 (t) = dg (t) 54 (1),
oF (t) Po,2 (t) = D (t) 95, (1),

OF (t1) OF (t2) Po (t1, t2) = P (t1) P (t2) Py (ta, t2) -

We thus get for all (t1,t2) € R?,

oF (t1) oF (t2) Po (11, 12) @ 1 (t1) P55 (£2)
= ¢r (t1) ¢F (2) Py (t1, ©2) Pp1 (t1) Po2 (t2) -
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|dentifiability : sketch of proof

Thus on a neighborhood of 0 in which ¢Fg is non zero :

Py (t1, 22) o5 (1) P55 (t2) = Py (t1, 2) do.1 (t1) Po2 (t2) -
Then

e Equation extended to the complex plane (entire functions).

@ The set of zeros of ¢,1 coincides with the set of zeros of ¢ ;
(here det(Q) # 0 is used).

@ Hadamard's factorization theorem allows to prove that

¢9,1 = ¢§71-
@ Same proof for ¢y = ¢§,2, leading to ®y = &, and then
OF = dg

Finally the characteristic function characterizes the law, so that
K=K, 0=0and F=F.
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|dentifiability : estimation of 6

by (t1, 02) dx, (t1) dx, (t2) — Pxy x0) (1, t2) Po.1 (t1) o2 (t2) = 0.

® Replace ¢x, (t1), ¢x, (t2) and ®(x, x,) (t1, t2) by estimators
(ex : empirical estimators) to get an empirical contrast (take
the square of the modulus and integrate).

@ Preliminar estimator : penalize to get consistent estimators of
K and 0 satisfying the assumptions.

° 5,, minimize the contrast over a suitable compact.
0, is \/n-consistent + asymptotic distr. 4+ deviation inequalities [ G.
, Rousseau (Bernoulli 2016)]
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|dentifiability /inference theoretical results in
nonparametric HMMs

e Identifiability in non parametric general HMMs
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Finite state space HMM : Connexion with mixtures of
independent variables
The distribution of (X1, X2, X3) may be written as

K K K

PO = Y NN (i) QQmFi © F ® Fim

i=1 j=1 m=1
K K () Qi K
= Y (X EER e Fe (Y QmFn
j=1 i=1 29 m=1
K
= > () G1®G2®Gjs
j=1

which is a mixture of K populations, in each population the
observation is that of independent variables.
Z1 and Zs are independent conditionally to Z,.

— Use results about mixtures of independent variables.
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An old result by Kruskal

Kruskal's algebraic result (1977) : 3-way contingency tables are
identifiable (up to label switching) under some Kruskal's rank
assumption.

Kruskal 4+ adequate approximation argument : Non parametric
mixtures in which, conditionally to the population, at least 3
variables are independent, are identifiable under some linear
independence assumption of the conditional probability distributions
of those variables. (Allman et al. , 2009)

Theorem (A. Cleynen, S. Robin, EG, 2016 Stat. and Comput.)

Assume that the probability measures Fq, ..., Fk are linearly
independent and that @ has full rank. Then the parameters K, Q
and Fq, ..., Fk are identifiable from the distribution of 3 consecutive
observations Xi, X5, X3, up to label swapping of the hidden states.
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Mixtures of independent variables : spectral analysis
Works by Anandkumar, Dai, Hsu, Kakade, Song, Zhang, Xie.

Let X = (X1; X2; X3) have distribution ®3_, G; 4 conditionally to
Z = j so that X has distribution

K

> 1) @31 G

j=1

Let ¢1,...,om be M real valued functions.
For d = 1,2, 3, define A(9) the M x K matrix such that

A = [ 1d6ia = EfiXo)|Z =]

Je1dGig -+ [¢1dGk g
Ald) — : : :
JemdGig -+ [omdGk g
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Mixtures of independent variables : spectral analysis

Let D = Diag(p(1),--- , u(K)).

Let S the M x M matrix such that S; ,, = E[p(X1)om(X2)].
Then,

S =AW pALRHT,

If for all d =1,2,3, Gy 4,...,Gk g are linearly independent, then
for large enough M, rank(A(9)) = K and

rank (S) = K.

Let U; and Uy be M x K matrices such that U1T5U2 is invertible
(may be found by SVD of S).

UJ SU, = (UlT A(l)) D ((A(2))TU2) .
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Mixtures of independent variables : spectral analysis
Define T be the M x M x M tensor such that

T(h, ko, 13) = E[en (X1)en (X2)dr(X3)]-
Let V € RM, and define T[V] the M x M matrix such that
TIV]im = Elpi(X1)om(X2)(V, (X3))]
where ®(X3) = (pn(X3))1<h<m. Then
T[V] = AVD . Diag ((A<3>)Tv) (A@HT

Define
B(V) = (U] T[V]U2)(U{ SUp) ™t

Then, one has

B(V) = (U A®)Diag ((A(3))Tv> (U7 AL,
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Mixtures of independent variables : spectral analysis

UJ SU, = (UIT A(l)) D <(A(2))TU2)
<U1T5U2)_1 _ ((A(2))TU2)_1 p-1 <UlTA(1))_1

T[V] = AD - Diag ((A®)TV) (AD)T

B(V) = (U] T[VIU)(U] SUp)
U AVD . Diag ((A(3>)Tv) (AT Uy (U SU,)

= U] AW Diag ((A(3>)Tv) - D(AYT Uy (U SU,)
= (U] AD)Diag ((AD)TV) (U] AM)~L,

E.Gassiat (UPS and CNRS) Nonparametric HMM Leiden 2017 24 / 47



Mixtures of independent variables : spectral analysis

Recall
B(V) = (U] TIVIU:)(UT SUa) ™ = (U] AM) Diag ((AC)TV) (U] AD)

All matrices B(V) have the same eigenvectors, and eigenvalues the
coordinates of (AG)TV.

By exploring various vectors V, one may recover A(3). The
eigenvectors stay the same when permuting coordinates 2 and 3 of
the observed variable, so that one may recover A(?), and thus also
A1) Recovering D is then also possible. Then, by taking M to
infinity, one may recover the whole distributions Gy j, Gy and Gz,
j=1... K.

One may recover p(1),...,u(K) and Gij, Gy and Gz,
Jj=1,...,K using Singular Value/ Eigen Value decompositions of
matrices built from the distribution of X = (X1, X2, X3).
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Spectral analysis : estimation

Emission distributions with densities £, j =1,..., K in L2(Xx).

@ Use a sieve of finite dimensional subspaces with orthonormal
basis ®py = {¢1,..., oM}
Examples : histograms; splines; Fourier; wavelets.

@ Estimation of Q* and <15-*,g0m>,j: 1,....,.K,m=1,...,Mon

the basis of the empirical distribution of the three-dimensional
marginal, i.e. the distribution of (X1, X2, X3)
Uses only one SVD, matrix inversions and one diagonalization.

~ ~ M3
1Q Q"1 and [ ~ iy are 0p ()

(De Castro, G., Le Corff, IEEE IT to appear)
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|dentifiability /inference theoretical results in
nonparametric HMMs

© Generic methods
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Model selection via penalized contrast

Define a contrast function 7,(g), g a possible density such that
vn(g) — vn(g*) has positive limit for g # g*, g* being the true
density.

The possible densities g have a particular form depending on the
emission densities and a parametric part : g := gy F.

A sieve for the emission distributions leads to sieves on the possible
densities S(6, M).

For the parametric part, we have in hand an estimator 0 that
converges at parametric (or nearly parametric) rate.

For each M, define gy as the minimizer of ~,(g) for g € (4, M).
Set a penalty function pen(n, M) and choose

~

M =arg min {v,(gm) + pen(n, M)} .
M=1,...,n

Then the estimator of g* is g = g, and the estimator of F* is F
such that

E=8F
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Model selection via penalized contrast

Translation mixtures with dependent regime

Recall that the observations follow :
Xe=mgz +e, t>1,

where the variables ¢;, t > 1, are i.i.d. with distribution function F,
and are independent of the Markov chain (Z;)¢>1.

When 6 = ((m});, (Qi)ij) is known, one may recover F from the
marginal density gy F of X;.

If F has density f, then gy ¢ := gp F is given by :

go.r(x) =) nU)f(x—m).

.
Il Mx
-

where u(i) = Zszl Qjj. Given the estimator
0, = ((ﬁi)lgigk*, (Qi,j)(i,j);«é(k*,k*))y denote i(i) = ij;l Qi

E.Gassiat (UPS and CNRS) Nonparametric HMM Leiden 2017 29 / 47



Model selection via penalized contrast

Translation mixtures with dependent regime

Maximum marginal-likelihood :
1 n
v (g) = —nzglogg(X;)-
=

The sieve S(8, M) is the set of functions g = Zszl my)f(x—m)
where f € Fpy :

M
Fum = {Z Tipp (X — @), @i € [-Am, Aml, Bi € [bu, B,

i=1
P
m>0,i=1,...,p, Zw;zl}
i=1

with ¢z the centered gaussian density with variance 52
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Model selection via penalized contrast
General finite state space HMMs
Here 0 = @ the transition matrix of the hidden Markov chain. For
F = (fi,...,fx) emission densities, if 7 is the stationary distribution
of @, the density of (X1, X2, X3) is given by
K
goF (x,0,6) = Y w(1) Qo) Qiz, j3) i (x1) i, (x2) i (x3).

J1d2:J3=1

Least squares :
2 n—2
Yn (g) = HgH% - ; Zlg (X57Xs+1aXs+2) .
S

As n tends to infinity, v, (g) — vn (g*) converges almost surely to
le—g3
The sieve S(0, M) is the set of functions g5 - such that

M
vJ = 15 DRI Ka El(amj)lgmglvl S R 5 fj- = amjgﬁm.
m=1
EET—



Oracle inequalities (in general)

There exist constants s, C and ng such that : if

lo
pen(n, M) > k complexity(M) g n7
n

then for all x > 0, for all n > ng, with probability 1 — e™, it holds

D?(g,g*) < C {inf [d*(gt;, g") + pen(n, M)| 4+ small terms }.
n M

@ Proof : concentration inequality + control of the complexity of
the Sieve (ex : using bracketing entropy).
e Adaptive rates; automatic best compromise bias/variance.

@ Penalty in practice : slope heuristics.
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Oracle inequalities : Translation mixtures and HMMs

Additional difficulty : deal with @ in 7.
C depends here on the hidden chain (concentration inequality for
dependent variables).

Translation mixtures with dependent regime

Oracle inequality using penalized m.l.e (G. , Rousseau [Bernoulli
2016]).

D?(g, g*) : Hellinger's distance.

d*(gry, &%) : Kullback's divergence.

General finite state space HMMs
Oracle inequality using least squares (De Castro, G. Lacour [JMLR
2016]).

D?(g,g*) and d?(gry, &%) : La-square distance.
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|dentifiability /inference theoretical results in
nonparametric HMMs

© Inverse problem inequalities
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General question

F.

Consistent estimation of g* translates to consistent estimation of

Do adaptive minimax rates for the estimation of g* translate to
adaptive minimax rates for the estimation of F*7?
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Inverse problem : translation mixtures

Recall g* = K, u* (j) F* (x - m;) .

G., Rousseau, Bernoulli 2016
If f* has bounded derivative,

<2 max i (j) — 1) H?— f~
J

S 2h(g" &)+ (LH(FY o) 160 =071

v

Consequence : if max; ;*(j) > 3, results on h?(g*,g) and 16, — 6%
7= .

Remark : ¢z« = dreppr with Py« (t) = Zszl p* (j) €™t and

o+ (t) # O for all t if and only if max; 4*(j) > 3 (Moreno 1973).

translate to results on
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Proof
Proof : starts from Hg* — 2|2 < 4h%(g*,8). Then,

K
lg" —&lh = HZM G)F (y=mp) = > B0 F(-—m) s
Jj=1 j=1
K ~
> A0 (F )= ) s
"~ K
—||ZM G (y = mp) = > aG) (= my) |
j=1 j=1
K
> 1Y A F =) C =) = @+ 1Y l)18n — 67
Jj=1

Then using the triangle inequality,

K
10 - 6= mlh = (2max) 1) [F-
j=1
T



Inverse problem : non parametric HMMs

Recall that for F = (f1, ..., fx) emission densities and Q a
transition matrix with stationary distribution 7,

K
8Q,F (X1,X2,X3) = Z 7T(jl)Q(jl7j2)Q(J.2>J.3)fj-'1(Xl)ﬁz(x2)fl'3(x3)'
J1j2:3=1
Assumption : P(Q*, <75-*7 f/*>) #0 P polynomial

— generically satisfied

— always satisfied if K =2

Theorem (Y. de Castro, EG, C. Lacour, JMLR 2016)

There exists C > 0 such that for all Q in a neighborhood of Q*,

K
2> CY I = fill2-

Jj=1

lgq.F+ — ga.F

Thus, results on ||g* — g||2 translate to results on ZJKzl £ — EHQ
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Simulations : K=2

Emission law 1 Emission law 2
25

= = =True density
—— Spectral method
—— Empirical contrast method |-

0.2 0.4 0.6 0.8 1 ~o 0.2 0.4 0.6 0.8 1

Reconstruction of densities f; and f, (Beta distributions) with
spectral and least squares methods
(N = 50000, trigonometric basis)
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Simulations : K=2

Emission law 1 Emission law 2
25

= = = True density
—— Spectral method
—— Empirical Contrast method

_0.‘0 -0.5/

Reconstruction of densities f; and f, (Beta distributions) with
spectral and least squares methods (N = 50000, histogram basis)
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Simulations : K=2

02

0.18-
016~ ) -\/.\//
0.14- ,_\/"/‘/M

012 /

° 06‘/""- s -
004~ _ /:.-(‘-‘"“'"“ 3
0.02"
oL i i
5 10 15 20 E 30 35 4 4

Integrated variance Z_?:l E||7/‘J\ — famj||? of spectral and least squares
estimators, as a function of M (N = 50000, histogram basis)

E.Gassiat (UPS and CNRS) Nonparametric HMM Leiden 2017 41 / 47



|dentifiability /inference theoretical results in
nonparametric HMMs

© Further works
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Sensitivity to the linear dependence assumption
(L. Lehéricy, mémoire de M2, 2015).

Emission law 1 Emission law 2 Emission law 3
35 35] 35
True density
— L2 projection
== Spectral

25 Least Squares
2 2
15 15
1 1
05 05
o - o A
r .,
0. -o.
0 05 1 0 05 1
04
Empirical spectrum
—O— Theorical spectrum
03
02
01
o s> o o o
1 2 3 5 6 7 8

Index
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Emission law 1

Emission law 2

3 3
25 True density
— — — L2 projection
== Spectral
2 Least Squares

15

Emission law 3

0.4

03

0.2

0.1
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Likelihood methods

Back to Kruskal : identifiability holds when @ is full rank and
Fi1,..., Fk are distinct probability distributions, but on the basis of
the (2K + 1)[(K? — 2K + 2) + 1]-th marginal distribution.
(Alexandrovitch et al., 2016)

— Full likelihood methods

(Oracle inequalities, L. Lehéricy, on going work)
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Others

@ Bayesian methods E. Vernet : consistency of the posterior
distribution (EJS 2015); rates of concentration for the posterior
distribution (Bernoulli, in revision).

o Clustering/Estimation of the filtering and marginal smoothing
distibutions (Y. De Castro, EG, S. Le Corff, IEEE IT, to appear)

e Estimation of K (L. Lehéricy, 2016, submitted)

@ Adaptive estimation of each emission density using Lepski's
method (L. Lehéricy, on going work)

@ Seasonal HMMs and climate applications (A. Touron, work in
progress)
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Thank you for your attention !

Nonparametric HMM
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