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Some High Dimensional Statistical Models

Normal mean: Yi
ind∼ N(θi , σ

2), i = 1, . . . , n.

Linear regression: Yi = β′Xi + εi , independent errors (possibly
normal) with variance σ2, i = 1, . . . , n, β ∈ Rp, possibly
p � n, can even be exponential in n.

Generalized linear model: Yi
ind∼ ExpFamily(g(β′Xi )),

i = 1, . . . , n, g some link function, β ∈ Rp, possibly p � n.

Normal covariance (or precision): Xi
iid∼ Np(0,Σ), i = 1, . . . , n,

possibly p � n.

Exponential family: Xi
iid∼ ExpFamily(θ), θ ∈ Rp, possibly

p � n.

Nonparametric additive regression: Yi
ind∼ N(

∑p
j=1 fj(Xij), σ

2),
i = 1, . . . , n, f1, . . . , fp smooth functions acting on p
co–ordinates of covariate X , possibly p � n.

Nonparametric density regression: Yi |Xi
ind∼ f (· | Xi ), f

smooth, Xi ’s p-dimensional, possibly p � n.

Subhashis Ghosal, North Carolina State University Bayesian methods for high dimensional models: Convergence issues and computational challenges



Sparsity

Sparsity — Only a few of stated relations are non-trivial.

An essential low dimensional structure, often present in high
dimensional models, making inference possible.

Normal mean: Only r � n means are non-zero.
Linear regression: Only r � min(p, n) coefficients are non-zero.
Normal covariance (or precision):

(Nearly) banding structure: Total contribution of off-diagonal
elements outside a band is small;
Graphical model structure: Off-diagonal elements are non-zero
only if the the corresponding edges are connected.

Nonparametric additive regression: Only r � min(p, n)
functions are non-zero.
Nonparametric density regression: Only r � min(p, n)
covariates actually influence the conditional density.
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More Settings of Sparsity

Estimating missing entries of a large matrix: A large matrix,
whose entries are observed with errors, have many entries
missing. Assume that the p × p matrix is expressible as
A+BC , where A is sparse (meaning most entries are zero, like
a diagonal or a thinly banded matrix) and B and C are low
rank matrices (line p × r and r × p, where r � p, say r = 1).

Clustering: Xi
ind∼ N(θi , σ

2), many θi ’s are tied with each other
to form r � n groups. Tieing patterns and cluster means
ξ1, . . . , ξr , as well as r , are unknown.
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Oracle

If sparsity structure is known, then inference reduces to low
dimensional analysis, and hence optimal procedures are clear.
For instance, in the normal mean model, if we knew which θi ’s
are non-zero, we just estimate them incurring estimation error
rσ2 rather than nσ2.

The goal is to match the performance of the oracle within a
small extra cost (which may come in the form of additive
and/or multiplicative constant, and sometimes an additional
log factor). For instance, in the sequence model, unless the
oracle is known, a logarithmic factor is unavoidable.

If signals are sufficiently strong, one also likes to discover the
true sparsity structure up to small error (for instance, one likes
to conclude, with probability tending to one, the estimated
sparsity agrees with the true sparsity).
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Classical Procedures for High Dimensional Data

The most famous classical procedure for detecting sparsity in
linear regression is the Lasso [Tibshirani (1996)]. It imposes
an `1-penalty to set certain coefficients to zero, thus leading
to a sparse regression.

Recent book Bühlman and van de Geer (2011) studies
theoretical aspects of Lasso and related methods thoroughly.

Covariance estimation under (nearly) banding structure was
developed by Bickel and Levina (2008) and others.

To estimate a covariance matrix under the the graphical
model setting can be done by imposing `1-penalty on entries,
leading to the so called graphical Lasso.
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Bayesian Procedures for High Dimensional Data

We are interested in Bayesian procedures for high dimensional
data. Bayesian procedures also give assessments of model
uncertainty and lead to more natural approach to prediction.

Sparsity is easily incorporated in a prior, for instance, by
putting a Dirac point mass at zero.

How does one approach posterior computation when
dimension is very high? Changing dimension suggests
Reversible Jump MCMC, but does not work at this scale.

What can one say about concentration of the posterior
distribution near the truth? Does it (nearly) match the oracle?

Does a sparse version of the Bernstein-von Mises theorem
hold, i.e., the posterior is asymptotically the product of
normal of the oracle dimension and Dirac masses at zero?
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Behavior of Posterior in High Dimension without Sparsity

For generalized linear regression, linear (possibly non-normal)
regression and exponential family models, Ghosal (1997, 1999,
2000) respectively obtained convergence rates and
Bernstein-von Mises theorem for the posterior distribution for
p →∞ without sparsity, but needed p � n.

Influenced by the works of Portnoy (1986, 1986, 1988) and
Haberman (1977) for similar results on MLE.

Will be interesting to investigate sparse Bernstein-von Mises
theorems so that p � n will be allowed.
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Normal Mean Model

Castillo and van der Vaart (2012) considered mixture of point
mass and heavy tailed prior, and showed that with high
posterior probability ‖θ − θ0‖2 is of the order r log(n/r)
(agreeing with the minimax rate), and also that the support of
the θ has cardinality of the order r . This can be considered as
a full Bayesian analog of the empirical Bayes approach of
Johnstone and Silverman (2004).

They also have a smart computational strategy evaluating
model probabilities as coefficients of a certain polynomial, but
is very tied to the normal mean model.

Babenko and Belitser (2010) considered an oracle formulation
and showed that ‖θ − θ0‖2 if of the order of the “oracle risk”
with high posterior probability.
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Generalized Linear Model

Jiang (2007) studied posterior convergence rates for
generalized linear regression under sparsity where
log p = O(nα), α < 1 and obtained the rate n−(1−α)/2.
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Computation: Linear Regression

Bayesian Lasso [Park and Casella (2008)]: Linear regression
using Laplace prior and MCMC. No point mass.

Stochastic Search Variable Selection [Geroge and McCullagh
(1993)] using spike and slab prior — really a low dimensional
affair.

Laplace approximation technique [Yuan and Lin (2005)]:

Posterior probabilities of various models are given by integrals
of likelihood (a product of n functions) and the prior, which is
taken as independent Laplace on non-zero coefficients. Use the
fact that the posterior mode is Lasso restricted to the model.
Expand the log-likelihood around the posterior mode and use
Laplace approximation.
Works only for “regular models”, for which no estimated
coefficient is zero, i.e., only subsets of Lasso selection.
Every “non-regular model” is dominated by the corresponding
regular model in terms of model posterior probability.

Subhashis Ghosal, North Carolina State University Bayesian methods for high dimensional models: Convergence issues and computational challenges



Nonparametric Additive Regression

Use Yuan and Lin’s (2005) idea of Laplace approximation to
compute model posterior probabilities.

Expand each function in a basis: fj(xj) =
∑mj

l=1 βj ,lψj ,l(xj).

The corresponding group of coefficients are given independent
multivariate Laplace prior along with Dirac mass at zero.

p(βj |γ) = (1− γj)1l(βj = 0)

+γj
Γ(mj/2)

2πmj/2Γ(mj)

(
λ

2σ2

)mj

exp{− λ

2σ2
‖βj‖}.

Also p(γ) ∝ dγq
|γ|(1− q)p−|γ|.

The posterior mode now corresponds to the group Lasso
[Yuan and Lin (2006)], restricted to the model. Always the
case for additive penalty with minimum zero at zero.
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Nonparametric Additive Regression (contd.)

For Laplace approximation, need to calculate the Hessian of
the log-posterior at the posterior model in model γ:
σ−2(2ΨT

γ Ψγ + λAγ), where Ψγ is the data matrix considering
the expansion and Aγ is a block-diagonal matrix coming from
the Hessian of the log-prior (present due to the multivariate
nature).

Model posterior probabilities for all regular models are
approximately proportional to

dγ(qλ/2(1− q))|γ|
∏
j∈Jγ

(Γ(mj/2)/Γ(mj))

× det(ΨT
γ Ψγ +

λ

2
Aγ)−1/2

× exp{−[‖Y −Ψγ β̂γ‖2 + λ
∑
j∈Jγ

‖β̂j‖]/(2σ2)}.
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Nonparametric Additive Regression (contd.)

If q < 1/2, non-regular models are dominated by regular
models, so search for high posterior probability models may be
restricted to regular models only.

Consistency of group Lasso selection means that correct
model is regular with probability tending to one.

Error in Laplace approximation is controllable as long as the
true model size is o(n1/3).

Simulations show method is robust in terms of the choice of q.
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Nonparametric Additive Regression (contd.)

Table: Table corresponding to AR(1) predictors, p = 500, r = 5 and
q = 0.2, choosing penalty parameter λ using penalized marginal
likelihood criterion

n Error I Error II True.model

Approx.Bayes 100 2.335 (0.076) 0.120 (0.025) 0.040 (0.009)
Reich.method 100 0.980 (0.009) 392.020 (0.093) 0
G.Lasso 100 2.335 (0.076) 0.120 (0.025) 0.040 (0.009)

Approx.Bayes 200 1.460 (0.127) 0.060 (0.017) 0.110 (0.014)
Reich.method 200 1.330 (0.010) 356.610 (0.103) 0
G.Lasso 200 1.460 (0.127) 0.060 (0.017) 0.110 (0.014)

Approx.Bayes 500 0.405 (0.043) 0.175 (0.030) 0.540 (0.022)
Reich.method 500 - - -
G.Lasso 500 0.405 (0.043) 0.175 (0.030) 0.540 (0.022)
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Estimation of Large Precision Matrix

Consider multivariate Gaussian data X ∼ Np(0,Σ).

Let Ω = Σ−1 be the precision matrix.

If the p variables are represented as the vertices of a graph G ,
then the absence of an edge between any two vertices j and
j ′, which means conditional independence given others, is
equivalent to ωjj ′ = 0.

Roverato (2000), Letac and Massam (2007), Rajaratnam et
al. (2008) studied families of conjugate priors for Ω for
Gaussian graphical models called G -Wishart and WPG

-Wishart
families, and obtained expressions for posterior mean when “G
is decomposable with a perfect ordering of cliques”.

Marginal likelihood can also be calculated explicitly giving
posterior distribution of the banding parameter k .
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Banding and Graphical Models

Figure: [Left] Structure of a banded precision matrix with shaded
non-zero entries. [Right] The graphical model corresponding to a banded
precision matrix of dimension 6 and banding parameter 3.
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Posterior Convergence Rate for a Large Precision Matrix

We study convergence rate under `∞-operator norm.

We do not assume that the true Ω is a banded matrix, but
only that it is approximable by banded matrices in the
following sense: maxj

∑
i{ωjj ′ : |j − j ′| > k} ≤ γ(k) for all k,

and 0 < ε0 ≤ min eigjΩ ≤ max eigjΩ ≤ ε−10 <∞.

Theorem

The posterior distribution of Ω converges at the rate
εn,k = max

{
k2(n−1 log p)1/2, γ(k)

}
.

In particular, the posterior distribution is consistent if k →∞ such
that k4n−1 log p → 0.
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Steps in the Proof of Posterior Convergence

Conjugacy gives exact expressions for the posterior mean.

We show that the posterior mean and the graphical MLE are
k2/n close.

We show that the graphical MLE and the true Ω are εn,k close.

We find posterior concentration around the posterior mean
decomposing WPG

-Wishart in Wishart over the cliques,
representation of Wishart as sum of self-outer-product ZZ ′ of
normal variables and applying exponential maximal
inequalities.

In all three steps, the most important issue is controlling the
number of terms, which is of the order of p, but a closer look
reveals that at any entry, at most (2k + 1) terms can be
non-zero.
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Graphical Lasso for Sparse Precision Matrix

Developed in various papers — Meinshausen and Bühlman
(2006), Yuan and Lin (2007), Banerjee et al. (2008),
Friedman, Hastie and Tibshirani (2008).

Minimize log det Ω− tr(SΩ)− λ‖Ω‖1 subject to p.d. Ω,
where S is the sample covariance matrix.

Computation is doable in O(p3) steps by R package Glasso,
but often has convergence issues. Uses a blockwise
co-ordinate descent algorithm. For 103 × 103 matrix
(approximately 500K parameters) takes 1 min.

Improved algorithms by Mazumder and Hastie (2012), Witten
et al. (2011).
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Convergence rate of Graphical Lasso

Convergence rate studied by Rothman et al. (2008). If
λ �

√
(log p)/n, convergence rate in Frobenius (aka

Euclidean) norm is
√

((p + s) log p)/n, where s is the number
of non-zero off-diagonal entries.

Equivalently, in normalized Frobenius, the rate is
√

(log p)/n
if s = O(p). For the operator norm, the rate is√

((s + 1) log p)/n.
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Bayesian Graphical Lasso for Sparse Precision Matrix

Wang (2012): Put independent exponential prior on diagonal
entries, Laplace on off-diagonals, subject to positive
definiteness restriction.

Posterior mode is graphical Lasso.

Not a real sparse prior. Posterior sits on non-sparse matrices,
and hence cannot converge near the truth in high dimension.

Real sparsity can be introduced by an extra Dirac mass at
zero for off-diagonal entries.

Computation becomes a challenge. Traditional
MCMC/RJMCMC do not work in high dimensional setting.

What can we say about posterior convergence rates?
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Approximate Computation of Bayesian Graphical Lasso

Use Laplace approximation around graphical Lasso restricted
to the sparsity (as in the sparse linear/additive regression
model), which is the posterior mode since the penalty is
additive with minimum zero at zero.

Explicit calculation of the Hessian possible.

If q < 1/2, where q is the weight given to the non-singular
part in the prior for the off-diagonal elements, then as before,
non-regular models are dominated by the corresponding
regular models in terms of posterior probability,

Error in Laplace approximation can be controlled if
(p + s)εn → 0, where εn is the posterior convergence rate in
Frobenius norm.
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Posterior Convergence Rate for Bayesian Graphical Lasso

Use Frobenius norm ‖Ω−10 Ω− I‖F on Ω scaled by the true Ω0.

This is comparable with the Hellinger distance between
Np(0,Ω0) and Np(0,Ω), the square root of their
Kullback-Leibler divergence and the Euclidean norm on the
vector of eigenvalues of Ω−10 Ω centered by 1.

Use general theory of posterior convergence rate [Ghosal,
Ghosh and van der Vaart (2000)]. This needs bounding
Hellinger entropy, assuring prior concentration in
Kullback-Leibler sense and finally linking the Hellinger
distance with the distance of interest.

In view of the equivalence of distances, need bounding entropy
and obtain prior concentration in terms of Frobenius norm.
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Posterior Convergence Rate (contd.)

Entropy calculation reduces to linking with Euclidean entropy.

If eigenvalues of Ω0 lie in [a, b] ⊂ (0,∞), calculation of prior
concentration reduces to calculation of entry-wise prior
concentration in view of a priori “independence” of the entries.

Leads to the same convergence rate as the (non-Bayesian)
graphical Lasso: εn =

√
((p + s) log p)/n.
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Bayesian Density Regression

First consider the situation of fixed dimension p and no
sparsity.

Model conditional density of Y given X = x at y by a convex
combination of tensor product of B-splines:∑
θj ,j1,...,jpB

∗
j (y)Bj1(x1) · · ·Bjp(xp), j , j1, . . . , jp ≤ J, where

B’s are B-splines and B∗’s are normalized B-splines, where
θj ,j1,...,jp ≥ 0 and add up to 1.

Such functions approximate any Cα conditional density within
J−α.

A prior for f is obtained from the natural Jp+1-dimensional
Dirichlet distribution on the θ-vector, and an exponential
tailed infinitely supported prior on J.

Subhashis Ghosal, North Carolina State University Bayesian methods for high dimensional models: Convergence issues and computational challenges



Bayesian Density Regression: Computation

Posterior mean can be analytically expressed as a sum of
several explicit terms.

This is because the likelihood in θ-vector is an explicit linear
combination of a polynomial in θ-vector, and any polynomial
in θ can be integrated out with respect to a Dirichlet
distribution.

Moreover the numerator and the denominator in the
expression for posterior mean is similar looking, but the
numerator contributes one extra factor in the likelihood.

The number of such terms is very high.

Sampling of terms is an option.
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Convergence Rate for Bayesian Density Regression

Using the general theory of posterior convergence [Ghosal,
Ghosh and van der Vaart (2000)], in terms of averaged
squared Hellinger distance on conditional densities (with
respect to the distribution of the covariates), posterior
converges at the optimal rate n−α/(2α+p+1) up to a log factor,
for any (unknown) smoothness level, that is the posterior is
automatically rate adaptive.

Here every calculation reduces to Euclidean space.

Entropy grows like J2p+1 log(1/ε).

Prior concentration is like ε−J
p+1

.

As long as ε ≥ J−α, the order of bias, the convergence rate is
the solution of nε2 � Jp+1 log(1/ε), which is n−α/(2α+p+1) up
to a log factor.
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Bayesian Density Regression in High Dimension

When p is high, but the conditional density only depends a
fixed d co-ordinates only, the oracle rate is n−α/(2α+d+1).

Introduce a variable selection step in the prior using an
indicator γk for the inclusion of the kth variable.

Further impose a bound on the total number of variables in
the model that can grow only very slowly. like logarithmically,
or impose a very strong tail condition on the prior for total
model size. This ensures that high complexity models have
very low prior probability.

Still nearly analytic computation of posterior mean is possible.

Appropriate modification of posterior convergence arguments
leads to the adaptive oracle rate n−α/(2α+d+1) up to a
logarithmic factor.
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Bayesian Density Regression in High Dimension (contd.)

Table: Density regression example
Y |X ∼ Beta(5X2 exp(2X1), 5X 2

3 + 3X4).

Dim n = 100 n = 500

rs (l1) rs (l2) ls (l1) ls (l2) rs (l1) rs (l2) ls (l1) ls (l2)

5 .65 .61 .73 .85 .70 .67 .70 .77

10 .66 .59 .78 .92 .74 .76 .81 1.14

50 .67 .63 .65 .66 .74 .74 .73 .84

100 .70 .68 .70 .78 .66 .62 .65 .69

500 .58 .50 .69 .80 .77 .83 .78 1.16

1000 .74 .73 .75 1.14 .66 .61 .81 1.17

s.e. .04 .08 .06 .12 .05 .09 .08 .18
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