Estimating a probability mass function with unknown labels

Richard Gill
Mathematical Institute, University Leiden

Research initiated by Erik van Zwet with Allard Veldman, leading to
http://arxiv.org/abs/1312.1200
by Dragi Anevski, Richard Gill, and Stefan Zohren;
continuing with Maikel Bargpeter and Giulia Cereda

Estimating a probability mass function with unk rown labels deliberately discarded

Richard Gill
Mathematical Institute, University Leiden
http://arxiv.org/abs/1312.1200
Dragi Anevski, Richard Gill, and Stefan Zohren

The problem

- Notation: $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots\right), \boldsymbol{p}=\left(p_{1}, p_{2}, \ldots\right)$
- Model: $\boldsymbol{X} \sim \operatorname{Multinomial(}(N, \boldsymbol{p})$, where:
- very many p_{k} are very small
- no further structure assumed:
- $k=1,2, \ldots$ are mere labels

The problem

- Problem: estimate functionals of \boldsymbol{p} such as
- $\sum_{k} p_{k} \log p_{k}$
- $\sum_{k} p_{k}{ }^{2}$
- $\log \left(\sum_{k}\left(1-p_{k}\right)^{N} p_{k} / \sum_{k}\left(1-p_{k}\right)^{N} p_{k}^{2}\right), \ldots$

Note: invariant under permutations of labels!

The problem

- Problem: estimate functionals of \boldsymbol{p} such as ...
- Standard solution ("naieve estimator"):
- Estimate \boldsymbol{p} with MLE $=$ empirical mass function \boldsymbol{p}_{N}
- Plug-in to functional

Applications

- Biodiversity (ecology)
- Computer science (coding an unknown language in an unknown alphabet)
- Forensic science (Good-type estimators for problem of quantifying the evidential value of a rare Y-STR haplotype, rare mitochondrial DNA haplotype, ...)
- Literature (how many words did Shakespeare know?

Hi-profile estimator

- Notation: (1), (2), ... are the (backwards) ranks
- ((1), (2), ...) is a ranking (a bijection $\mathbb{N} \rightarrow \mathbb{N}$)
- Reduce data to $\dot{\boldsymbol{X}}=\left(X_{(1)}, X_{(2)}, \ldots\right)$
- Reduce parameter to $\dot{\boldsymbol{p}}=\left(p_{(1)}, p_{(2)}, \ldots\right)$
- $\dot{\boldsymbol{X}}$ is \boldsymbol{X} ordered by decreasing size, ...
- Now estimate $\dot{\boldsymbol{p}}$ from $\dot{\boldsymbol{X}}$ by MLE, and plug-in...

Hi-profile = MLE for reduced problem

- If (wlog) $\boldsymbol{p}=\dot{\boldsymbol{p}}$, likelihood $=\sum_{\text {rankings }}(\mathrm{N}$ choose $\boldsymbol{X}) \prod_{k} p_{K}{ }^{\chi_{k}}$
- Hi-profile estimator proposed by computer scientist Alon Orlitsky and explored in many very short papers with many collaborators
- Much numerical work, many conjectures
- Incomprehensible outline proof of L_{1} consistency ... (obviously totally wrong, but containing brilliant ideas!)

The Maximum Likelihood Probability of Unique-Singleton, Ternary, and Length-7 Patterns

Jayadev Acharya
ECE Department, UCSD
Email: jayadev@ucsd.edu

Alon Orlitsky
ECE \& CSE Departments, UCSD
Email: alon@ucsd.edu

Shengjun Pan
CSE Department, UCSD
Email: s1pan@ucsd.edu

The Maximum Likelihood Probability of Unique-Singleton, Ternary, and Length-7 Patterns

Jayadev Acharya ECE Department, UCSD Email: jayadev@ucsd.edu	Alon Orlitsky ECE \& CSE Departments, UCSD Email: alon@ucsd.edu	Shengjun Pan CSE Department, UCSD Email: slpan@ucsd.edu
Canonical $\bar{\psi}$	$\widehat{P}_{\bar{\psi}}$	Reference
1	any distribution	Trivial
11, 111, 111, ..	(1)	Trivial
12, 123, 1234, ..	()	Trivial
$\begin{aligned} & 112,1122,1112, \\ & 11122,111122 \end{aligned}$	($1 / 2,1 / 2)$	[12]
11223, 112233, 1112233	$(1 / 3,1 / 3,1 / 3)$	[13]
111223, 1112223,	(1/3, 1/3, 1/3)	Corollary 5
1123, 1122334	$(1 / 5,1 / 5, \ldots, 1 / 5)$	[12]
11234	(1/8, 1/8, .., 1/8)	[13]
11123	(3/5)	[15]
11112	(0.7887.., 0.2113..)	[12]
111112	(0.8322.., 0.1678..)	[12]
111123	(2/3)	[15]
111234	(1/2)	[15]
112234	$(1 / 6,1 / 6, \ldots, 1 / 6)$	[13]
112345	(1/13, .., 1/13)	[13]
1111112	(0.857.., 0.143..)	[12]
1111122	(2/3, 1/3)	[12]
1112345	(3/7)	[15]
1111234	(4/7)	[15]
1111123	(5/7)	[15]
1111223	$\left(\frac{1}{\sqrt{7}}, \frac{\sqrt{7}-1}{2 \sqrt{7}}, \frac{\sqrt{7}-1}{2 \sqrt{7}}\right)$	Corollary 7
1123456	$(1 / 19, \ldots, 1 / 19)$	[13]
1112234	$(1 / 5,1 / 5, \ldots, 1 / 5) ?$	Conjectured

TABLE I
PML DISTRIBUTIONS OF ALL PATTERNS OF LENGTH ≤ 7

Computation

- We propose SA-MH-EM (Orlitsky et al: MH within EM)
- $S A=$ Stochastic approximation (solve score equations)
- $\mathrm{MH}=$ Metropolis-Hastings (sample from conditional law of complete data given incomplete)
- $\mathrm{EM}=$ Expectation Maximization (missing data problem)
- First we reduced data and parameter; now we put both back again!
- In our new complete data problem we pretend $\boldsymbol{p}=\dot{\boldsymbol{p}}$

Computation

- SA-MH-EM
- To guarantee existence of MLE we need to extend the model
- Extension: allow blob of infinitely many zero probability categories, together having positive probability
- To make computation feasible, we have to sieve extended parameter space
- Reduction: finite dimensional, assume positive lower bounds, but keeping blob

Our main theorem

- (Almost) root- $N L_{1-c o n s i s t e n c y ~ o f ~(s i e v e d ~ e x t e n d e d) ~ H i-~}^{\text {- }}$ profile estimator of $\dot{\boldsymbol{p}}$
- Ingredients: Dvoretsky-Kiefer-Wolfowitz inequality: exponential probability bound for $\left\|\boldsymbol{p}_{N}-\boldsymbol{p}\right\|_{\infty}$
- Hardy's asymptotic formula for \# partitions of N
- Hardy's lemma: monotone re-ordering is an L_{∞} contraction
- A new Lemma about MLE, reminiscent of Neyman-Pearson

Lemma

- Suppose P and Q are two probability measures, both members of a statistical model \mathcal{P} for observed data $\dot{\boldsymbol{X}}$, mass functions p and q, (corresponding to parameters \boldsymbol{p} and \boldsymbol{q})
- Suppose A is some event in the sample space of the observed data
- Suppose $P(A) \geq 1-\delta$ and $Q(A) \leq \varepsilon$
- Then $P($ The MLE is $Q) \leq \delta+\varepsilon$

Proof of Lemma

- $P($ The MLE is $Q) \leq P(p \leq q)$
- $P\left(A^{c}\right) \leq \delta$
- $Q(A) \leq \varepsilon$ hence $P(A \cap\{p \leq q\}) \leq \varepsilon$
- $P(p \leq q) \leq P\left(A^{c}\right)+P(A \cap\{p \leq q\}) \leq \delta+\varepsilon$

Putting the pieces together

- Dvoretsky-Kiefer-Wolfowitz $\Rightarrow P\left(B^{c}\right)$ exponentially small, $B=\left\{\left\|\boldsymbol{p}_{N}-\boldsymbol{p}\right\|_{\infty} \leq c\right\}$
- Hardy (monotone ordering) $\Rightarrow P\left(A^{c}\right)$ exponentially small, $A=\left\{\left\|\dot{\boldsymbol{p}}_{N}-\dot{\boldsymbol{p}}\right\|_{\infty} \leq c\right\} \supseteq B$
- Repeat (with care!) for $Q, C=\left\{\left\|\boldsymbol{q}_{N}-\boldsymbol{q}\right\|_{\infty} \leq c\right\} \subseteq A^{c}$, where \boldsymbol{q} is at least a certain L_{1} distance from \boldsymbol{p}
- Lemma $\Rightarrow P$ (The MLE is Q) is exponentially small

Putting the pieces together

- Sample space is finite \Rightarrow set of possible MLE's is finite Hardy (\# partitions of N) \Rightarrow \# possible MLE's is of smaller order than $\exp (+b \sqrt{ } N)$)
- Sum over all \boldsymbol{q} outside of an L_{1} ball around \boldsymbol{p}
- $\exp (-a N)$ wins from $\exp (+b \sqrt{ } N)$
- $P\left(\right.$ MLE is outside L_{1} ball around $\left.\boldsymbol{p}\right)$ is exponentially small

Is that result any good?

- It's far too weak: MLE of $\boldsymbol{p}=\dot{\boldsymbol{p}}$ based on $\dot{\boldsymbol{X}}$ does not have better rate than naive estimator: $\dot{\boldsymbol{p}}_{N}$!
- We conjecture it truly is (or can be) a whole lot better
- Challenge 1: refine this proof, or build a second stage on top of it
- So far we used almost nothing about the model!
- Challenge 2: better computational algorithm

