Estimating a probability mass function with unknown labels

Richard Gill Mathematical Institute, University Leiden

Research initiated by Erik van Zwet with Allard Veldman, leading to

http://arxiv.org/abs/1312.1200 by Dragi Anevski, Richard Gill, and Stefan Zohren;

continuing with Maikel Bargpeter and Giulia Cereda

Estimating a probability mass function with unknown labels

deliberately discarded

Richard Gill Mathematical Institute, University Leiden

http://arxiv.org/abs/1312.1200 Dragi Anevski, Richard Gill, and Stefan Zohren

The problem

- <u>Notation</u>: $\mathbf{X} = (X_1, X_2, ...), \mathbf{p} = (p_1, p_2, ...)$
- <u>Model</u>: X ~ Multinomial(N, p), where:
 - very many p_k are very small
 - no further structure assumed:
 - *k* = 1, 2, ... are mere <u>labels</u>

The problem

- <u>Problem</u>: estimate functionals of **p** such as
 - $\sum_{k} p_k \log p_k$
 - $\sum_{k} p_{k}^{2}$
 - $\log \left(\sum_{k} (1-p_k)^N p_k / \sum_{k} (1-p_k)^N p_k^2 \right), \dots$

Note: invariant under permutations of labels!

The problem

- <u>Problem</u>: estimate functionals of **p** such as ...
- <u>Standard solution</u> ("naieve estimator"):
 - Estimate \boldsymbol{p} with MLE = empirical mass function \boldsymbol{p}_N
 - Plug-in to functional

Applications

- Biodiversity (ecology)
- Computer science (coding an unknown language in an unknown alphabet)
- Forensic science (Good-type estimators for problem of quantifying the evidential value of a rare Y-STR haplotype, rare mitochondrial DNA haplotype, ...)
- Literature (how many words did Shakespeare know?

Hi-profile estimator

- Notation: (1), (2), ... are the (backwards) ranks
- ((1), (2), ...) is a <u>ranking</u> (a bijection $\mathbb{N} \rightarrow \mathbb{N}$)
- <u>Reduce</u> data to $\dot{X} = (X_{(1)}, X_{(2)}, ...)$
- <u>Reduce</u> parameter to $\mathbf{\dot{p}} = (p_{(1)}, p_{(2)}, \dots)$
- **X** is **X** ordered by <u>decreasing</u> size, ...
- Now estimate $\dot{\boldsymbol{p}}$ from $\dot{\boldsymbol{X}}$ by MLE, and plug-in...

Hi-profile = MLE for reduced problem

- If (wlog) $\boldsymbol{p} = \boldsymbol{\dot{p}}$, likelihood = \sum_{rankings} (N choose \boldsymbol{X}) $\prod_{k} p_{k}^{X_{k}}$
- Hi-profile estimator proposed by computer scientist Alon Orlitsky and explored in many very short papers with many collaborators
- Much numerical work, many conjectures
- Incomprehensible outline proof of L₁ consistency ... (obviously totally wrong, but containing brilliant ideas!)

The Maximum Likelihood Probability of Unique-Singleton, Ternary, and Length-7 Patterns

6x7, 2x6, 17x5, 51x4, 86x3, 138x2, 123x1, 77x0

The Maximum Likelihood Probability of Unique-Singleton, Ternary, and Length-7 Patterns

Jayadev Acharya	Alon Orlitsky	Shengjun Pan
Email: jayadev@ucsd.edu	Email: alon@ucsd.edu Email	il: s1pan@ucsd.edu
Canonical $\overline{\psi}$	\hat{P}_{-}	Reference
1	ψ	Triviol
11, 111, 111,	(1)	Irivial
12, 123, 1234,	()	Trivial
112, 1122, 1112,	(1/2, 1/2)	[12]
11122, 111122	(1/2, 1/2)	[12]
11223, 112233, 1112233	(1/3, 1/3, 1/3)	[13]
111223, 1112223,	(1/3, 1/3, 1/3)	Corollary 5
1123, 1122334	$(1/5, 1/5, \ldots, 1/5)$	[12]
11234	$(1/8, 1/8, \ldots, 1/8)$	[13]
11123	(3/5)	[15]
11112	(0.7887, 0.2113)	[12]
111112	(0.8322, 0.1678)	[12]
111123	(2/3)	[15]
111234	(1/2)	[15]
112234	$(1/6, 1/6, \ldots, 1/6)$	[13]
112345	$(1/13, \ldots, 1/13)$	[13]
1111112	(0.857, 0.143)	[12]
1111122	(2/3, 1/3)	[12]
1112345	(3/7)	[15]
1111234	(4/7)	[15]
1111123	(5/7)	[15]
1111223	$\left(\frac{1}{\sqrt{7}}, \frac{\sqrt{7}-1}{2\sqrt{7}}, \frac{\sqrt{7}-1}{2\sqrt{7}}\right)$	Corollary 7
1123456	$(1/19, \ldots, 1/19)$	[13]
1112234	$(1/5, 1/5, \ldots, 1/5)?$	Conjectured

TABLE I PML distributions of all patterns of length ≤ 7

Computation

- We propose SA-MH-EM (Orlitsky et al: MH within EM)
- SA = Stochastic approximation (solve score equations)
- MH = Metropolis-Hastings (sample from conditional law of complete data given incomplete)
- EM = Expectation Maximization (missing data problem)
- First we reduced data and parameter; now we put both back again!
- In our new complete data problem we pretend $\boldsymbol{p} = \boldsymbol{\dot{p}}$

Computation

- SA-MH-EM
- To guarantee <u>existence</u> of MLE we need to extend the model
 - Extension: allow <u>blob</u> of infinitely many zero probability categories, together having positive probability
- To make computation feasible, we have to <u>sieve</u> extended parameter space
 - Reduction: finite dimensional, assume positive lower bounds, but keeping blob

Our main theorem

- (Almost) root-N L₁-consistency of (sieved extended) Hiprofile estimator of *p*
- Ingredients: <u>Dvoretsky-Kiefer-Wolfowitz</u> inequality: exponential probability bound for ||**p**_N - **p**||∞
- <u>Hardy</u>'s asymptotic formula for <u># partitions of N</u>
- <u>Hardy</u>'s lemma: <u>monotone re-ordering</u> is an L_{∞} contraction
- A new Lemma about MLE, reminiscent of Neyman-Pearson

Lemma

- Suppose P and Q are two probability measures, both members of a statistical model P for observed data X, <u>mass functions</u> p and q, (corresponding to parameters p and q)
- Suppose A is some event in the sample space of the observed data
- Suppose $P(A) \ge 1 \delta$ and $Q(A) \le \varepsilon$
- Then P (The MLE is Q) $\leq \delta + \varepsilon$

Proof of Lemma

- $P(\text{ The MLE is } Q) \leq P(p \leq q)$
- $P(A^c) \leq \delta$
- $Q(A) \leq \varepsilon$ hence $P(A \cap \{ p \leq q \}) \leq \varepsilon$
- $P(p \le q) \le P(A^c) + P(A \cap \{p \le q\}) \le \delta + \varepsilon$

Putting the pieces together

- <u>Dvoretsky-Kiefer-Wolfowitz</u> $\Rightarrow P(B^c)$ exponentially small, $B = \{ || \mathbf{p}_N - \mathbf{p} ||_{\infty} \le c \}$
- <u>Hardy (monotone ordering</u>) $\Rightarrow P(A^c)$ exponentially small, $A = \{ \| \dot{\mathbf{p}}_N \dot{\mathbf{p}} \|_{\infty} \le c \} \supseteq B$
- Repeat (with care!) for $Q, C = \{ || \mathbf{q}_N \mathbf{q} ||_{\infty} \le c \} \subseteq A^c$, where \mathbf{q} is at least a certain L₁ distance from \mathbf{p}
- Lemma $\Rightarrow P$ (The MLE is Q) is exponentially small

Putting the pieces together

- Sample space is finite \Rightarrow set of possible MLE's is finite <u>Hardy (# partitions of N)</u> \Rightarrow # possible MLE's is of smaller order than $\exp(+b\sqrt{N})$)
- Sum over all *q* outside of an L₁ ball around *p*
- $\exp(-aN)$ wins from $\exp(+b\sqrt{N})$
- P (MLE is outside L₁ ball around **p**) is exponentially small

Is that result any good?

- It's far too weak: MLE of $\mathbf{p} = \dot{\mathbf{p}}$ based on $\dot{\mathbf{X}}$ does not have better rate than naive estimator: $\dot{\mathbf{p}}_N$!
- We conjecture it truly is (or can be) a whole lot better
- <u>Challenge 1</u>: refine this proof, or build a second stage on top of it
- So far we used *almost nothing* about the model!
- <u>Challenge 2</u>: better computational algorithm