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Data analysis in genomics

Top differential
expression

Gene p-value

XDH 5.5e-10
NEK3 6.7e-7
TAF5 7.1e-7

CYP2A7 1.6e-6
NAT2 1.8e-6
ZNF19 2.6e-6
SKP1 2.7e-6
NAT1 3.1e-6

GDF3 2.0e-5
CCDC25 2.1e-5
...

...

Familywise error control

95% conf.: no false positives

False discovery rate control

Expected prop. of false positives < 5%

Practice

Genes chosen for validation

Question

How many false positives to expect?
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Set-up

Hypotheses

H1, . . . ,Hm

True hypotheses

T ⊆ {1, . . . ,m} indices of true hypotheses

Rejections

R ⊆ {1, . . . ,m} set of rejected hypotheses (usually random)

Type I errors

T ∩ R ⊆ {1, . . . ,m}
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FWER, FDR, k-FWER

User role

Before seeing the data choose error rate to be controlled

FWER: P(T ∩ R 6= ∅) FDR: E
(#(T ∩ R)

#R ∨ 1

)
Procedure

Chooses R that controls the chosen error rate

Problem

R is often too small or too large

R based on p-values only

“Take it or leave it”
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Alterative: simultaneous control

Role of the user

The user selects collection of hypotheses R freely and post hoc

Role of the multiple testing procedure

Inform user of the number/proportion of false rejections incurred

Number of false rejections

= #(T ∩ R)
= function of the model parameters
= something we can estimate or make a confidence interval for

Post hoc

If we make a simultaneous CI, post hoc choice of R is allowed
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Closed Testing: ingredients

Marcus, Peritz and Gabriel (1976)

Fundamental principle of FWER control

Intersection hypothesis

HC =
⋂

i∈C Hi , for C ⊆ {1, . . . ,m}

Closure

Collection of all intersection hypotheses
C =

{
HC : C ⊆ {1, . . . ,m}

}
Local test

Valid α-level test for every intersection hypothesis
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Closed testing (graphically)

A B

C
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Closed testing (graphically)

A B

C

A ∩ B ∩ C

A ∩ C B ∩ C

A ∩ B
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Closed testing: procedure

Raw rejections

Hypotheses U ⊆ C rejected by the local test

Multiplicity-rejected rejections

Reject H ∈ C if J ∈ U for every J ⊆ H

Statement

P(R∩ T = ∅) ≥ 1− α

with R = {C ∈ C : C rejected} and T = {C ∈ C : C true}

Proof

{R ∩ T = ∅} ⊇ {HT /∈ U}
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Consonance

Traditionally, only rejection of elementary hypotheses is of interest

A ∩ B ∩ C

A B C

A ∩ B A ∩ C B ∩ C

The closed graph of hypotheses A, B and C
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Consonance

Traditionally, only rejection of elementary hypotheses is of interest

A ∩ B ∩ CA ∩ B ∩ CA ∩ B ∩ C

AAA B C

A ∩ BA ∩ B A ∩ CA ∩ CA ∩ C B ∩ C

Consonant rejections
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Consonance

Traditionally, only rejection of elementary hypotheses is of interest

A ∩ B ∩ CA ∩ B ∩ CA ∩ B ∩ C

A B C

A ∩ BA ∩ B A ∩ CA ∩ CA ∩ C B ∩ CB ∩ CB ∩ C

Non-consonant rejections of A ∩ B, A ∩ C , B ∩ C
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Parameter, confidence bound and coverage

Parameter

τ(R) = #(T ∩ R) for a fixed set R

Closed testing

Let X be the collection of hypotheses rejected

Confidence bound

tα(R) = max(#C : C ⊆ R,HC /∈ X}
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In the example

A ∩ B ∩ CA ∩ B ∩ CA ∩ B ∩ C

AA B C

A ∩ BA ∩ B A ∩ CA ∩ CA ∩ C B ∩ CB ∩ CB ∩ C

tα({A,B,C}) = 1

Hommel’s Method for False Discovery Proportions Jelle Goeman



Exploratory data analysis Closed testing A Confidence Set Simes Relationships Applications Discussion

Coverage

Coverage statement

P(τ(R) ≤ tα(R)) ≥ 1− α

Proof

{τ(R) ≤ tα(R)} ⊆ {HT /∈ U}

Confidence set

Trivial lower bound τ(R) ≥ 0: confidence set {0, . . . , tα(R)}
Confidence set for φ(R) = #R − τ(R) immediate

Confidence set for FDP = φ(R)/#R immediate

Simultaneous control over all R

Consequence: coverage robust against post hoc selection of R
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Reject hypotheses

R confidence set for τ(R) confidence set for φ(R)

{A} {0,1} {0,1}
{B} {0,1} {0,1}
{C} {0,1} {0,1}
{A,B} {0,1} {1,2}
{A,C} {0,1} {1,2}
{B,C} {0,1} {1,2}
{A,B,C} {0,1} {2,3}
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Bonus: an estimate

Point estimate of FDP

Take confidence bound at α = 1/2

Property (immediate)

FDP overestimated at most with probability 0.5

Reporting (classical!)

FDP estimate and confidence bound

Single hypothesis

Estimated false if p < 0.5; confidently false if p < 0.05
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Shortcuts

General

Procedure can be used for any local test

Number of intersection hypotheses

2m − 1: computationally prohibitive above ≈20 hypotheses

Concept: shortcut

Smart choice of local test to save calculations

Smart choice of local test

Also crucial for the power properties of the procedure
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Simes’ inequality

●

rank of p−value

p−
va

lu
e

1 1000 2000 3000 4000 4919

0
0.

5
1

Sorted p-value curve and lower confidence bound
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Local test based on Simes’ inequality

Simes’ inequality

With probability ≥ 1− α, we have p(i :T ) >
iα
#T for all

i = 1, . . . ,#T .
where p(i :I ) is the I th smallest p-value among pi , i ∈ I .

Use Simes as local test

Reject if any p(i :I ) ≤ iα
#I

Assumptions (Sarkar, Yekutieli and others)

Generally assumed valid for two-sided asymptotically normal tests

Variant without assumptions (conservative)

Reject if any p(i) ≤ iα
kb(k) with b(k) =

∑k
s=1 1/s
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Example: α/2 < pA ≤ pB ≤ pC ≤ 2α/3 and pD > α

ABCD pC ≤ 3
4
α

ABC
pC ≤ α

pB ≤ 2
3
α ABD pB ≤ 2

3
α ACD pC ≤ 2

3
α BCD pC ≤ 2

3
α

AB pB ≤ α AC pC ≤ α AD BC pC ≤ α BD CD

A pA ≤ α B pB ≤ α C pC ≤ α D
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Shortcut

Lemma

HI is rejected in closed testing with Simes local tests at level α iff
there is an i ∈ I such that

p(i :I ) ≤
iα

j(α)

Crucial quantity j(α)

All HI with |I | > j(α) are rejected
At least one HI with |I | = j(α) is not rejected

j(α) = max{s ∈ 1, . . . ,m : p(m−s+k) > kα/s for k = 1, . . . , s}
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Calculating j(α)

Steps of j(α)

j(α) jumps from s to s − 1 (s = 1, . . . ,m) at

αs = min
j=1,...,s

s · pm−s+k

k

Naive calculation of αs , s = 1, . . . ,m

Order m2 steps

Use lemma (next slide)

Reduce to m log(m) steps
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Calculating αs

To calculate

αm, . . . , α1 are minima of columns of matrix

M =


p1

p2/2 p2
p3/3 p3/2 p3

...
...

. . .

pm/m pm/(m − 1) · · · pm


Lemma

Row location of minimum is non-increasing

Find minima in m log(m) time

By starting in the middle column
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Calculating the confidence bound tα(R)

Category

Find category ci =
⌈
j(α)
α pi

⌉
for all i ∈ R

Then (1− α) confidence lower bound for τ(R)

tα(R) = #R −maxr=1,...,#R

{
1− r + #{ci ≤ r}

}
Computation

Linear complexity
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Relationship with Hommel

Hommel’s procedure

FWER control

Uniformly better than Hochberg’s procedure

Also based on closed testing plus Simes

Relationship with Hommel

R rejected by Hommel → bound tα(R) = 0

Improvements

Better bounds by exploiting non-consonant rejections

Faster algorithm (order m log(m) instead of classical m2

Hommel’s Method for False Discovery Proportions Jelle Goeman



Exploratory data analysis Closed testing A Confidence Set Simes Relationships Applications Discussion

Relationship with Benjamini/Hochberg

Assumptions

≈ same assumptions; same weak FWER control

Lemma

Let R with r = |R| and mp(r :R)/r = q ≤ α. Then tα(R)/r ≤ j(α)q
mα .

Colloquially

Set R with maximal FDR-corrected p-value q has
(1− α)-confidence of FDP ≤ q/α

Consequences

FDR rejected set R has FDP estimate < 0.10

FDR rejected set R has (1− α)-confidence of FDP < 1
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Scalability

Assume non-vanishing alternative

#T/m→ const < 1 as m→∞

FWER methods as m→∞: not scalable

Rejected set → ∅
Adjusted p-values → 1

FDR methods as m→∞: scalable (under condition)

Rejected set R has #R → const > 0

Adjusted p-value p̃(cm) → const < 1

If FDR scales, FDP confidence scales too

∃R with #R/m→ const > 0 so that tα(R)/#R → const < 1
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Data analysis in genomics

Top differential
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Example: Rosenwald DLBCL data

Data

240 diffuse large B-cell lymphoma patients; 7399 hypotheses

Classical results

Bonferroni, Holm, Hocherg, Hommel: 4 hypotheses

Benjamini and Hochberg: 72 hypotheses
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# false hypotheses among top k p-values
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FDP estimates and bounds: top k p-values
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Conclusion

New method

Between weak and strong FWER control
Counting false positives: tail probabilities for FDP

Nothing new

Just closed testing and simultaneous confidence sets
But free additional statements relative to classical Hommel

Fast algorithms

Reduced from exponential to m log(m) complexity
Side effect: fast algorithm for Hommel’s procedure

Simultaneous but still scalable

Rejections don’t vanish when m→∞
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Read more?

Goeman JJ and Solari A (2011)
Multiple Testing for Exploratory Research.
Statistical Science 26:584–597 and 608–612

Goeman JJ and Solari A (2014)
Tutorial in Biostatistics: Multiple Hypothesis Testing in Genomics.
Statistics in Medicine, 23 (11) 1946–1978

Meijer RJ, Krebs T, Solari A and Goeman JJ (2015)
Extending Hommel’s method
In preparation

Goeman JJ, Solari A, Meijer RJ
cherry R package
cran.r-project.org

Hommel’s Method for False Discovery Proportions Jelle Goeman


	Exploratory data analysis
	Closed testing
	A Confidence Set
	Simes
	Relationships
	Applications
	Discussion

