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Introduction: Two clinical studies
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Infinite mixture models

This data could be analysed using two infinite mixture models

CALGB8881: f1(y) =
∞∑

j=1

w (1)
j k(y |θj)

and

CALGB9160: f2(y) =
∞∑

j=1

w (2)
j k(y |θj)

where
• w (k)

j > 0 for j = 1,2, . . . and
∑∞

j=1 w (k)
j = 1 for k = 1,2.

• k(y |θ) is a p.d.f. for y with parameter θ.

We need to put a prior on the w (1), w (2) and θ (random
probability measure).



Some dependent random probability measures: stick-breaking

θ are i.i.d. and

w (k)
j = V (k)

j

∏
i<j

(
1− V (k)

i

)

• Hierarchical Dirichlet Process (Teh et al, 2006):
V (k)

j ∼ Be
(
α0βj , α0

(
1−

∑j
l=1 βl

))
,

β′j ∼ Be(1, γ), βj = β′j

j−1∏
l=1

(1− β′l ),

• Probit stick-breaking processes, etc.:
(

V (1)
j ,V (2)

j

)
are

correlated and independent of
(

V (1)
i ,V (2)

i

)
for i 6= j .



Completely random measures

µ̃ is a completely random measure (CRM) on Θ if, for any
disjoint subsets A1, . . . ,An, µ̃(A1) . . . , µ̃(An) are mutually
independent.

We concentrate on completely random measures (CRM’s)
which can be represented in terms of jump sizes Ji and jump
locations θi as

µ̃ =
∞∑

i=1

Jiδθi

where δ is Dirac’s delta function and have Lévy-Khintchine
representation

E
[
e−

∫
f (θ)µ̃(dθ)

]
= e−

∫∞
0

∫
[1−e−sf (θ)]α(dθ)ρ(ds)

where α and ρ are measures for which
∫
α(dθ) <∞.



Completely random measures

Poisson process with intensity α(dθ)ρ(ds).
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Examples of CRM’s

Many processes that we use in Bayesian nonparametrics are
CRM’s
• Gamma process - ρ(ds) = s−1 exp{−s}ds.
• Beta process - ρ(ds) = βs−1(1− s)β−1 ds.

or can be derived from CRM’s
• Normalizing a Gamma process, i.e. taking p̃ = µ̃/µ̃(Θ),

leads to a Dirichlet process.
• A beta process prior for p1,p2, . . . can be used to define an

Indian buffet process.



Vectors of CRMs

It is useful to define d related CRM’s.

Suppose that µ̃1, . . . , µ̃d are CRM’s on Θ with marginal Lévy
intensities ν̄j(ds,dθ) = νj(ds)α(dθ)

Then µ̃1, . . . , µ̃d are a vector of CRM’s if there is a
Lévy-Khintchine representation of the form

E
[
e−µ̃(f1)−···−µ̃d (fd )

]
= e−ψ

?
ρ,d (f1,...,fd )

where

ψ?ρ,d (f1, . . . , fd ) =

∫
(R+)d

∫ [
1− e−s1f1(θ)−···−sd fd (θ)

]
α(dθ)ρd (ds1, . . .dsd )

and
νj(ds) =

∫
ρd (ds1, . . . ,dsd ).



Compound Random Measures: Definition

A compound random measure (CoRM) is a vector of CRM’s
with intensity

ρd (ds1, . . . ,dsd ) =

∫
z−dh

(s1

z
, . . . ,

sd

z

)
ds1 . . . dsd ν

?(dz)

where
• s1, . . . , sd are called scores.
• H is a score distribution with density h.
• ν? is the Lévy intensity of a directing Lévy process.

which satisfies the condition∫
min(1, ‖ s ‖)z−dh

( s1
z , . . . ,

sd
z

)
ν?(dz) <∞ where ‖ s ‖ is the

Euclidean norm of the vector s = (s1, . . . , sd ).



A representation of a CoRM

Realizations of a CoRM can be expressed as

µ̃j =
∞∑

i=1

mj,i Ji δθi

where
• m1,i , . . . ,md ,i

i.i.d .∼ H
• η̃ =

∑∞
i=1 Ji δθi is a CRM with Lévy intensity ν?(ds)α(dθ).



CoRMs with independent gamma scores

We will concentrate on the class of CoRMs for which

h(s1/z, . . . , sd/z) =
d∏

j=1

f (sj/z)

where f is the p.d.f. of a gamma distribution with shape φ,
f (x) = 1

Γ(φ)xφ−1 exp{−x}.



Properties of CoRMs with independent score distributions

• The Lévy copula can be expressed as a univariate integral.
• Let M f

z(t) =
∫

etsz−1f (s/z)ds be the moment generating
function of z−1f (s/z) then

ψρ,d (λ1, . . . , λd ) =

∫
(R+)d

∫ [
1− e−s1λ1−···−sdλd

]
ρd (ds1, . . .dsd )

= ψρ,d (λ1, . . . , λd ) =

∫ 1−
d∏

j=1

M f
z(−λj )

 ν?(z)dz

• This expression can be used to calculate quantities such as
Corr(µ̃k (A), µ̃m(A)).



CoRMs with gamma distributed scores

Consider a CoRM process with independent Ga(φ,1)
distributed scores. If the CoRM process has gamma process
marginals then

ρd (s1, . . . , sd ) =
(
∏d

j=1 sj)
φ−1

[Γ(φ)]d−1 |s|
− dφ+1

2 e−
|s|
2 W (d−2)φ+1

2 ,− dφ
2

(|s|)

(1)
where |s| = s1 + · · ·+ sd and W is the Whittaker function. If the
CoRM process has σ-stable process marginals then

ρd (s1, . . . , sd ) =
(
∏d

j=1 sj)
φ−1

[Γ(φ)]d−1
σΓ(σ + dφ)

Γ(σ + φ)Γ(1− σ)
|s|−σ−dφ. (2)



CoRMs with exponentially distributed scores

Consider a CoRM process with independent exponentially
distributed scores. If the CoRM has gamma process marginals
we recover the multivariate Lévy intensity of Leisen et al (2013),

ρd (s1, . . . , sd ) =
d−1∑
j=0

(d − 1)!

(d − 1− j)!
|s|−j−1e−|s|.

Otherwise, if σ-stable marginals are considered then we
recover the multivariate vector introduced in Leisen and Lijoi
(2011) and Zhu and Leisen (2014),

ρd (s1, . . . , sd ) =
(σ)d

Γ(1− σ)
|s|−σ−d .



CoRMs with independent gamma scores: specific marginals

The Lévy intensity of µ̃j

νj(ds) =

∫
z−1f (s/z)ds ν?(dz) = ν(ds).

If we have independent gamma scores, the directing Lévy
intensity ν? is linked to the marginal Lévy intensity by

ν?
(

1
t

)
= t2−φL−1

(
Γ(φ)

sφ−1 ν(s)

)
(t)

where L−1 is the inverse Laplace transform.



CoRMs with independent gamma scores: specific marginals

The intensity of the directing Lévy process is

ν?(z) = z−1(1− z)φ−1, 0 < z < 1

leads to a marginal gamma process for which

ν(s) = s−1 exp{−s}, s > 0

Remarks
• ν? is the the Lévy intensity of a beta process.
• If ν? is the Lévy intensity of a Stable-Beta process (Teh

and Görür, 2009), the marginal process is a generalized
gamma process.



NCoRM: Gamma marginal, φ = 1

DLP
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NCoRM: Gamma marginal, φ = 10

DLP
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NCoRM: Gamma marginal, φ = 50

DLP
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Marginal beta process

A CoRM with beta process marginals (ν(s) = βs−1(1− s)β−1)
can be constructed using
• A beta score distribution with parameters α and 1
• A directing Lévy intensity

ν?(z) = βz−1(1− z)β−1 +
β(β − 1)

α
(1− z)β−2

i.e. a superposition of a beta process and a compound
Poisson process with beta jump distribution.



Links to other processes

Other processes can be expressed as CoRM’s:
• Superpositions/Thinning: e.g. Griffin et al (2013), Chen et

al (2014), Lijoi and Nipoti (2014), Lijoi et al (2014a, b)
using mixture score distributions

h(s) = πδs=0 + (1− π)h?(s).

• Lévy copulae: e.g. Leisen and Lijoi (2011), Leisen et
al (2013), Zhu and Leisen (2014).



Normalized Compound Random Measures (NCoRM)

A vector of random probability measures can be defined by
normalizing each dimension of the CoRM so that

pk =
µ̃k

µ̃k (Θ)
=
∞∑

j=1

w (k)
j δθj .



CoRMs on more general spaces

For a more general space X, we define µ̃(·; x) to be a
completely random measure for x ∈ X.

The collection {µ̃(·; x)|x ∈ X} can be given a CoRM prior with

µ̃(·; x) =
∞∑

j=1

mj(x) Jj δθj

where mk (x) is a realisation of a random process on X.

Example
X = Rp, mk (x) = exp{rk (x)} where rk (x) is given a zero-mean
Gaussian process prior (see Ranganath and Blei, 2015).



Inference with NCoRM’s

We assume that the data are (x1, y1), . . . , (xn, yn) and are
modelled as

yi |ζi
ind .∼ k(yi |ζi), ζi ∼ p(·; xi) =

µ̃(·; xi)

µ̃(Θ; xi)
, i = 1,2, . . . ,n

where k(y |θ) is a probability density function for y with
parameter θ and {p(·; x)|x ∈ X} is given an NCoRM prior.



MCMC inference for infinite mixture models

Introducing allocation variables c1, . . . , cn, the posterior is
proportional

p(y , c|m, J, θ) =

[
n∏

i=1

k (yi |θci )
Jci mci (xi)∑∞
l=1 Jl ml(xi)

]
.

This form is not tractable due to the infinite sum in the
denominator of each term. This can be addressed using the
identity

1∑∞
l=1 Jl ml(xi)

=

∫ ∞
0

exp

{
−vi

∞∑
l=1

Jl ml(xi)

}
dvi



MCMC inference for infinite mixture models

Introducing latent variables vi leads to a suitable form of
augmented posterior for MCMC

p(y , c, v |m, J, θ)

=
n∏

i=1

[
k (yi |θci ) Jci mci (xi) exp

{
−vi

∞∑
l=1

Jl ml(xi)

}]

=
K∏

j=1

 ∏
{i|ci =j}

k
(
yi |θj

)
Jaj

j

∏
{i|ci =j}

mj(xi)

exp

{
−
∞∑

l=1

Jl

n∑
i=1

vi ml(xi)

}

where there are K distinct values of ci and aj =
∑n

i=1 I(ci = j).



MCMC inference for infinite mixture models: Finite X, independent
scores

In this case, we can define a marginal sampler (e.g. Favaro and
Teh, 2013) by integrating over J and m.

•
∫

Ja ν?(J) dJ is typical for marginal samplers of normalized
random measure mixtures.

• Integrals of
∏
{i|ci =j}mj(xi) will be a product of moments of

the scored distribution.
• E[exp

{
−
∑∞

l=1 Jl
∑n

i=1 vi ml(xi)
}

] can be evaluated either
exactly or as a univariate integral.



MCMC inference for infinite mixture models: General X

Pseudo-marginal methods (Andrieu and Roberts, 2009) are
useful for a target density of the form

π(θ) ∝ f (θ) g(θ)

where g(θ) cannot be directly evaluated.

Samples from the target density

π̂(θ) ∝ f (θ) ĝ(θ)

where E[ĝ(θ)] = g(θ) will have the distribution π.

In our target, the problem is evaluating
E[exp

{
−
∑∞

l=1 Jl
∑n

i=1 vi ml(xi)
}

] = exp{−ψ(v)}



Unbiased estimation of the Laplace transform

The Poisson estimator (see Papaspiliopoulos, 2011) of
Lφ = exp

{
−
∫

D φ(x) dx
}

is

L̂φ =
K∏

i=1

(
1− φ(xi)

a C κ(xi)

)
where κ is a p.d.f. on D, C > φ(x)

κ(x) for x ∈ D, a > 1,

K ∼ Pn(a C) and xi
i.i.d .∼ κ. Then,

E[L̂φ] = exp
{
−
∫

D
φ(x) dx

}
and

V[L̂φ] = L2
φ

(
exp

{
1

a C

∫
D

φ(x)2

κ(x)
dx
}
− 1
)
<∞.



Unbiased estimation of exp{−ψ(v)}

Assuming that x1, x2, . . . , xn are distinct, m?
i = m(xi) and

m? = (m?
1, . . . ,m

?
n), exp{−ψρ,d (v)} can be re-expressed as

exp

{
−
∫

(R+)n

∫ ∞
0

(
1 − exp

{
−z

n∑
i=1

vi m?
i

})
h(m?) ν?(z) dz dm?

}
=

n∏
k=1

Lk

where

Lk = exp

{
−
∫

(R+)n

∫ ∞
0

vk m?
k h(m?) exp

{
−t

n∑
i=1

vi m?
i

}
Tν?(t) dt dm?

}

and Tν?(t) =
∫∞

t ν?(z) dz (tail mass function).



Unbiased estimation of the Laplace transform

Lk can be estimated using the Poisson estimator with
x = (z,m?

k ), D = (0,∞)× (R+)n and

φ(z,m?
k ) = vk m?

k h(mk ) exp

{
−t

n∑
i=1

vi m?
k

}
Tν?(t) <∞.

A suitable approximating density is

κ(z,m?
k ) = κν̃(z)

m?
k h(m?

k )

E[m?
k ]

where κν(z) > Tν(z) for all z ∈ R+.



A sampler for more general processes

A pseudo-marginal sampler is used with
• exp{−ψρ,d (v)} estimated by the Poisson estimator.
• The jumps are not integrated out and values for empty

clusters are proposed from
h(m, J) ∝ h(m1/z, . . . ,mK/z)z exp{−vz}ν?(z).

• An interweaving scheme for m and z (Yu and Meng, 2011).



Two clinical studies
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Two clinical studies: Posterior mean densities

Results using a CoRM with independent gamma scores.
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Example: Nonparametric regression

We consider the classic motorcycle data which records head
acceleration at different times after impact.

f (y) =
∞∑

j=1

wj(x)N(y |µj , σ
2
j )

where
• wj = exp{rk (x)}Jk∑∞

m=1 exp{rm(x)}Jm

• rm(x) are given independent Gaussian process prior with
squared exponential covariance function.

• J1, J2, . . . follow a Gamma process with Lévy intensity
M x−1 exp{−x}.
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Example: Nonparametric variable selection

The classic Boston housing data record the median value of
owner-occupied homes in 506 areas of Boston and the values
of 14 attributes that are thought to effect house prices.

The covariance function k(x , x ′) = exp{−
∑p

i=1 wj(xj − x ′j )2}
and p(wj) ∝ (1 + wj)

−1.



Posterior median and 95% credible intervals for wj
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Summary

• CoRM processes are a unifying framework for a
wide-range of proposed vectors of CRMs.

• CoRM process are vectors of CRM’s which are
constructed in terms of a (univariate) CRM and a
distribution (which defines the dependence).

• Several MCMC methods for NCoRM mixture models are
developed. These include methods which depend on the
availability of analytical forms for some integrals with
respect to the score distribution and methods which do not.

• Modelling dependence through distributions allows a
wide-range of dependent nonparametric models to be
developed (e.g. regression, time series, etc.).
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