Modelling dynamic networks Regularization of non-homogeneous dynamic Bayesian network models by coupling interaction parameters

> Marco Grzegorczyk Johann Bernoulli Institute (JBI) Rijksuniversiteit Groningen

Presentation at the Van Dantzig Seminar VU University Amsterdam 9-Oct-2014

Cell Biology

Very brief introduction:

Each gene is the code for the synthesis of a specific protein. **Transcription:** gene \rightarrow mRNA. **Translation:** mRNA \rightarrow protein. Proteins are the *"***functional units**" of the cell. Proteins are enzymes, transription factors, etc.

Microarray Chips

Expressions (activities) of thousands of genes in an experimental cell can be measured with Microarray Chips.

gene 1 and gene 3 co-regulate gene 2

<u>**Remark</u>:** In gene regulatory networks **the protein level is ignored.** That is, proteins may build complexes with each other or may have to be activated (e.g. phosphorylated) before they can bind to binding sites of genes.</u>

Protein activation

gene 1 and gene 3 co-regulate gene 2

<u>**Remark</u>:** In gene regulatory networks **the protein level is ignored.** That is, proteins may build complexes with each other or may have to be activated (e.g. phosphorylated) before they can bind to binding sites of genes.</u>

Medical relevance e.g. for tumour development -- simplified example --

Medical relevance e.g. for tumour development -- simplified example --

possibly completely unknown

Statistical Task

Extract a network from an n-by-m data matrix

<u>Or</u> time series of the system of length m: $(X^{(1)},...,X^{(n)})_{t=1,...,m}$

Dynamic Bayesian networks

unfolded dynamic network

<u>**Illustration:**</u> Simple dynamic Bayesian network (DBN) with three nodes. All interactions are subject to a time delay.

Static/dynamic Bayesian networks

Static Bayesian networks

Important feature: Network

has to be acyclic

cycles cannot make sense

Dynamic Bayesian networks Network does <u>not</u> have to be acyclic

Implied factorisation:

P(A(t),B(t)|A(t-1),B(t-1)) =P(B(t)|B(t-1))·P(A(t)|A(t-1),B(t-1))

(t=2,...,m)

Model assumption: **Homogeneous** Markov chain Example: 4 genes, 10 time points

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀
X ⁽¹⁾	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	X _{1,5}	X _{1,6}	X _{1,7}	X _{1,8}	X _{1,9}	X _{1,10}
X ⁽²⁾	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	X _{2,5}	X _{2,6}	X _{2,7}	X _{2,8}	X _{2,9}	X _{2,10}
X ⁽³⁾	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	X _{3,5}	X _{3,6}	X _{3,7}	X _{3,8}	X _{3,9}	X _{3,10}
X ⁽⁴⁾	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	X _{4,5}	X _{4,6}	X _{4,7}	X _{4,8}	X _{4,9}	X _{4,10}

Impose changepoints to model non-homogeneous processes

Changepoint model

Our paradigm: Keep the network topology fixed but the interaction parameters can change with time.

Interaction parameters in the first segment

Changepoint model

Our paradigm: Keep the network topology fixed but the interaction parameters can change with time.

interaction parameters in the second segment

Introduce gene-specific changepoints to increase flexibility of the models

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀
X ⁽¹⁾	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	X _{1,5}	X _{1,6}	X _{1,7}	X _{1,8}	X _{1,9}	X _{1,10}
X ⁽²⁾	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	X _{2,5}	X _{2,6}	X _{2,7}	X _{2,8}	X _{2,9}	X _{2,10}
X ⁽³⁾	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	X _{3,5}	X _{3,6}	X _{3,7}	X _{3,8}	X _{3,9}	X _{3,10}
X ⁽⁴⁾	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	X _{4,5}	X _{4,6}	X _{4,7}	X _{4,8}	X _{4,9}	X _{4,10}

Non-Homogeneous Dynamic Bayesian Networks (NH-DBN)

Idea: Combine a standard DBN with a node-specific multiple changepoint process.

Lèbre, Becq, Devaux, Lelandais, Stumpf (2010) Statistical inference of the time-varying structure of gene regulation networks BMC Systems Biology

Robinson & Hartemink (2010)

Learning non-stationary dynamic Bayesian networks

Journal of Machine Learning Research

What is the problem with these approaches?

Practical problem: inference uncertainty in short time series segments

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀
X ⁽¹⁾	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	X _{1,5}	X _{1,6}	X _{1,7}	X _{1,8}	X _{1,9}	X _{1,10}
X ⁽²⁾	X _{2,1}	X ₂	0,2,3	X _{2,4}	X _{2,5}	X _{2,6}	X _{2,7}	X _{2,8}	× • • •	X _{2,10}
X ⁽³⁾	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	X _{3,5}	X _{3,6}	X _{3,7}	X _{3,8}	X _{3,9}	X _{3,10}
X ⁽⁴⁾	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	X _{4,5}	X _{4,6}	X _{4,7}	X _{4,8}	X ₄	,10

Shortcomings

1. Practical problem Short time series inference uncertainty

2. Methodological problem Prior independence is biologically implausible

Is it plausible to assume a priori that the segment-specific interaction parameters are independent?

Idea: Information coupling among segments

Non-homogeneous DBN (uncoupled NH-DBN)

Information coupling with respect to the interaction parameters (coupled NH-DBN)

Grzegorczyk and Husmeier (2012a)

A non-homogeneous dynamic Bayesian network model with **sequentially** coupled interaction parameters for applications in systems and synthetic biology.

SAGMB

Grzegorczyk and Husmeier (2012b)

Bayesian regularization of non-homogeneous dynamic Bayesian networks by **globally** coupling interaction parameters. *AISTATS*

Grzegorczyk and Husmeier (2013)

Regularization of Non-Homogeneous Dynamic Bayesian Networks with **Global** Information-Coupling based on Hierarchical Bayesian models. *Machine Learning*

complete network

complete segmentation matrix

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀
X ⁽¹⁾	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	X _{1,5}	X _{1,6}	X _{1,7}	X _{1,8}	X _{1,9}	X _{1,10}
X ⁽²⁾	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	X _{2,5}	X _{2,6}	X _{2,7}	X _{2,8}	X _{2,9}	X _{2,10}
X ⁽³⁾	X _{3,1}	X _{3,2}	Х _{3,3}	X _{3,4}	Х _{3,5}	X _{3,6}	Х _{3,7}	X _{3,8}	X _{3,9}	X _{3,10}
X ⁽⁴⁾	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	X _{4,5}	X _{4,6}	X _{4,7}	X _{4,8}	X _{4,9}	X _{4,10}

segmentation of node g=1

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀
X ⁽¹⁾	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	X _{1,5}	X _{1,6}	X _{1,7}	X _{1,8}	X _{1,9}	X _{1,10}
X ⁽²⁾	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	X _{2,5}	X _{2,6}	X _{2,7}	X _{2,8}	X _{2,9}	X _{2,10}
X ⁽³⁾	Х _{3,1}	X _{3,2}	Х _{3,3}	X _{3,4}	X _{3,5}	Х _{3,6}	Х _{3,7}	X _{3,8}	X _{3,9}	X _{3,10}
X ⁽⁴⁾	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	X _{4,5}	X _{4,6}	X _{4,7}	X _{4,8}	X _{4,9}	X _{4,10}

X⁽⁴⁾

changepoint $\tau_{g=1,1} = 6$

This changepoint divides the observations of node $X^{(1)}$ into $K_{g=1}=2$ disjunct segments.

For both segments h=1 and h=2 determine the observations which belong to the parent nodes of $X^{(1)}$. Note that all interactions are subject to a **time lag of size 1**.

For both segments h=1 and h=2 determine the observations which belong to the parent nodes of $X^{(1)}$. Note that all interactions are subject to a **time lag of size 1**.

For each gene g=1,...,G and each gene-specific segment h=1,...,K_g:

Likelihood model:

Prior on the regression coefficients $w_{a,h}$:

$$\mathbf{w}_{g,h} \sim \mathcal{N}(\mathbf{m}_g, \sigma_g^2 \delta_g \mathbf{C}_{g,h})$$

noise SNR variance hyperparameter Note that the explicit dependence on the noise variance leads to a fully conjugate prior.

Graphical representation of the regression models

$$\tau_g = \{\tau_{g,1}, \ldots, \tau_{g,K_g-1}\}$$
Graphical representation of the regression models

Graphical representation of the regression models

For
$$g = 1, ..., N$$
:
For $h = 1, ..., K_g$:

$$\mathbf{w}_{g,h} \sim \mathcal{N}(\mathbf{m}_g, \sigma_g^2 \delta_g \mathbf{C}_{g,h}) \\ \mathbf{y}_{g,h} \sim \mathcal{N}(\mathbf{X}_{\pi_g,h}^T \mathbf{w}_{g,h}, \sigma_g^2 \mathbf{I})$$

$$\tau_g = \{\tau_{g,1}, \ldots, \tau_{g,K_g-1}\}$$

Graphical representation of the regression models

For
$$g = 1, ..., N$$
:
 $\sigma_g^{-2} \sim Gam(A_\sigma, B_\sigma)$
 $\delta_g^{-1} \sim Gam(A_\delta, B_\delta)$

For
$$h = 1, ..., K_g$$
:
 $\mathbf{w}_{g,h} \sim \mathcal{N}(\mathbf{m}_g, \sigma_g^2 \delta_g \mathbf{C}_{g,h})$
 $\mathbf{y}_{g,h} \sim \mathcal{N}(\mathbf{X}_{\pi_g,h}^T \mathbf{w}_{g,h}, \sigma_g^2 \mathbf{I})$

Graphical model representation

For g = 1, ..., N: $\sigma_g^{-2} \sim Gam(A_\sigma, B_\sigma)$ $\delta_g^{-1} \sim Gam(A_\delta, B_\delta)$

For
$$h = 1, ..., K_g$$
:
 $\mathbf{w}_{g,h} \sim \mathcal{N}(\mathbf{m}_g, \sigma_g^2 \delta_g \mathbf{C}_{g,h})$
 $\mathbf{y}_{g,h} \sim \mathcal{N}(\mathbf{X}_{\pi_g,h}^T \mathbf{w}_{g,h}, \sigma_g^2 \mathbf{I})$

Graphical model representation

Graphical model representation

For g = 1, ..., N: $\sigma_g^{-2} \sim Gam(A_\sigma, B_\sigma)$ $\delta_g^{-1} \sim Gam(A_\delta, B_\delta)$

For
$$h = 1, ..., K_g$$
:
 $\mathbf{w}_{g,h} \sim \mathcal{N}(\mathbf{m}_g, \sigma_g^2 \delta_g \mathbf{C}_{g,h})$
 $\mathbf{y}_{g,h} \sim \mathcal{N}(\mathbf{X}_{\pi_g,h}^T \mathbf{w}_{g,h}, \sigma_g^2 \mathbf{I})$

Main idea from:

Grzegorczyk and Husmeier (2012b) Bayesian regularization of nonhomogeneous dynamic Bayesian networks by **globally** coupling interaction parameters. *AISTATS*

RJMCMC inference Part 1 of 3

1. Noise variances:

$$\sigma_g^{-2}|(\mathbf{y}_{g,.},\mathbf{X}_{\pi_g,.},\delta_g)$$

2. Regression coefficients:

 $P(\mathbf{w}_{g,h}|\mathbf{y}_{g,h},\mathbf{X}_{\pi_g,h},\sigma_g)$

3. Coupling hyperparameters:

 $P(\delta_g^{-1}|\mathbf{y}_{g,.},\mathbf{w}_{g,.},\boldsymbol{\sigma}_{g,.}^2,\mathbf{X}_{\pi_g,.})$

can be sampled with standard <u>collapsed</u> and <u>uncollapsed</u> Gibbs sampling steps

That is, sample each variable from the conditional distribution, conditional on its Markov blanket.

Conjugate prior distributions: sampling from standard distributions

<u>Collapsing</u>: integrate some variables in the Markov blanket out analytically

RJMCMC inference Part 2 of 3

4. <u>Network inference</u> by a Metropolis Hastings sampling scheme, which changes the network by **adding** and **removing** individual edges:

$$\begin{split} P(\mathcal{M}|\mathcal{D},\{\boldsymbol{\tau}_g\},\boldsymbol{\delta}) \propto P(\mathcal{M}) \prod_g \prod_h P(\mathbf{y}_{g,h}|\mathbf{X}_{\pi_g,h},\delta_g) \\ & \overbrace{}\\ \text{network} \\ \text{prior} \\ \end{split} \begin{array}{c} \text{marginal likelihoods} \\ \text{can be computed in closed form:} \\ \end{split}$$

5. <u>Changepoint inference</u> by a Metropolis Hastings sampling scheme, which changes the segmentation by **adding** and **removing** gene-specific **changepoints**:

$$P(\{\boldsymbol{\tau}_g\} | \mathcal{D}, \boldsymbol{\delta}, \mathcal{M}) \propto \prod_g P(\boldsymbol{\tau}_g) \prod_h P(\mathbf{y}_{g,h} | \mathbf{X}_{\pi_g,h}, \delta_g)$$

changepoint marginal likelihoods
prior can be computed in closed form:

RJMCMC inference Part 3 of 3

6. The <u>global mean vector \mathbf{m}_{g} can be sampled with a collapsed Gibbs sampling steps</u>:

$$\mathbf{m}_{g}|(\mathbf{w}_{g,1},\ldots,\mathbf{w}_{g,K_{g}})\sim\mathcal{N}(\mathbf{m}_{\star,g},\boldsymbol{\Sigma}_{\star,g})|$$

with the sufficient statistics:

$$\begin{split} \mathbf{\Sigma}_{\star,g} &:= (\mathbf{\Sigma}_{\dagger}^{-1} + K_g \mathbf{\Sigma}_0^{-1})^{-1} \\ \mathbf{m}_{\star,g} &:= \mathbf{\Sigma}_{\star,g} (\mathbf{\Sigma}_{\dagger}^{-1} \mathbf{m}_{\dagger} + \mathbf{\Sigma}_0^{-1} [\sum_{h=1}^{K_g} \mathbf{w}_{g,h}]) \end{split}$$

Overall sampling scheme:

"Metropolis-Hastings-RJMCMC scheme within a partially collapsed Gibbs sampler"

Empirical comparison: (1) globally coupled NH-DBN

- For g = 1, ..., N: $\sigma_g^{-2} \sim Gam(A_\sigma, B_\sigma)$ $\delta_g^{-1} \sim Gam(A_\delta, B_\delta)$
- For $h = 1, ..., K_g$: $\mathbf{w}_{g,h} \sim \mathcal{N}(\mathbf{m}_g, \sigma_g^2 \delta_g \mathbf{C}_{g,h})$ $\mathbf{y}_{g,h} \sim \mathcal{N}(\mathbf{X}_{\pi_g,h}^T \mathbf{w}_{g,h}, \sigma_g^2 \mathbf{I})$

Empirical comparison: (2) uncoupled NH-DBN

Empirical comparison: (3) Homogeneous DBN

Empirical comparison: (4) Sequentially coupled NH-DBN

$$P(\mathbf{w}_{g,h}|\mathbf{m}_{g,h-1}, \sigma_{g,h}^2, \delta_g, \lambda_g) = \begin{cases} \mathcal{N}(\mathbf{w}_{g,1}|\mathbf{m}_{g,0} = \mathbf{0}, \delta_g \sigma_{g,h}^2 \mathbf{C}_{g,h}), & h = 1\\ \mathcal{N}(\mathbf{w}_{g,h}|\mathbf{m}_{g,h-1}, \lambda_g \sigma_{g,h}^2 \mathbf{C}_{g,h}), & h \ge 2 \end{cases}$$
(1)

where $\mathbf{m}_{g,h-1}$ $(h \ge 2)$ depends on the preceding segment:

$$\mathbf{m}_{g,h} = \mathbf{\Sigma}_{g,h} ([\lambda_g \mathbf{C}_{g,h}]^{-1} \mathbf{m}_{g,(h-1)} + \mathbf{X}_{\pi_g,h} \mathbf{y}_{g,h})$$
(2)

For $h \ge 2$:

The prior expectation of the regression coefficients for segment h+1, $\mathbf{m}_{g,h}$, depends on the posterior distribution of the regression coefficients $\mathbf{w}_{g,h}$ for segment h.

The coupling strength depends on the hyperparameter λ_{g} .

Main idea from: Grzegorczyk and Husmeier (2012a)

A non-homogeneous dynamic Bayesian network model with **sequentially** coupled interaction parameters for applications in systems and synthetic biology. **SAGMB**

Information coupling

Sequential coupling

- Information is shared between neighbouring segments
- For example: morphogenesis

Global coupling

- Segments are treated as interchangeable and information is shared globally
- For example:

different experimental scenarios or environmental conditions

Empirical evaluation

1. Simulated data

2. Data from synthetic biology

3. Data from a real application

Empirical evaluation

1. Simulated data

Known gold standard (°

Simulation process does not reflect real biology (...)

2. Data from synthetic biology

Known gold standard (°

Real wet lab data

Regulatory network small (

3. Data from a real application

Real wet lab data

No gold standard (

Reconstruction Accuracy

Example: 2 genes \rightarrow 16 different (dynamic) network structures

Best network: maximum score $P(\mathcal{D}|\mathcal{M})$

Ideal scenario: Large data sets, low noise Identify the best network structure

<u>Realistic</u>: Limited number of experimental replications, high noise

Uncertainty about the best network

MCMC sample of high-scoring networks

Idea: Model Averaging

Compute marginal posterior probabilities of the edges

В

А

Probabilistic inference

From Perry Sprawls

From Perry Sprawls

1. Simulated data

Figure: The RAF protein signalling pathway as reported in Sachs et al. (Science, 2005). The RAF network consists of 11 nodes (proteins) and 20 directed edges.

 $\mathbf{y}_{g,h} \sim \mathcal{N}(\mathbf{X}_{\pi_g,h}^T \mathbf{w}_{g,h}, \sigma_g^2 \mathbf{I})$

Figure: The RAF protein signalling pathway as reported in Sachs et al. (Science, 2005). The RAF network consists of 11 nodes (proteins) and 20 directed edges.

 $\mathbf{y}_{g,h} \sim \mathcal{N}(\mathbf{X}_{\pi_{g},h}^T \mathbf{w}_{g,h}, \sigma_g^2 \mathbf{I})$

Figure: The RAF protein signalling pathway as reported in Sachs et al. (Science, 2005). The RAF network consists of 11 nodes (proteins) and 20 directed edges.

$$\mathbf{w}_{g,\star} \sim \mathcal{N}(0,1), \quad \tilde{\mathbf{w}}_{g,h} \sim \mathcal{N}(0,1),$$
$$\mathbf{w}_{g,\star} = \frac{\frac{\mathbf{w}_{g,\star}}{|\mathbf{w}_{g,\star}|_2} + \varepsilon \frac{\mathbf{w}_{g,h}}{|\mathbf{w}_{g,h}|_2}}{|\frac{\mathbf{w}_{g,\star}}{|\mathbf{w}_{g,\star}|_2} + \varepsilon \frac{\mathbf{\tilde{w}}_{g,h}}{|\mathbf{w}_{g,h}|_2}|_2}$$

 $\mathbf{y}_{g,h} \sim \mathcal{N}(\mathbf{X}_{\pi_{g},h}^T \mathbf{w}_{g,h}, \sigma_g^2 \mathbf{I})$

Figure: The RAF protein signalling pathway as reported in Sachs et al. (Science, 2005). The RAF network consists of 11 nodes (proteins) and 20 directed edges. Generate data sets with **4 segments h=1,...,4** and **10 observations** per segment.

Use three noise levels (SNR=10, 3, and 1)

Use the parameter ϵ to vary the similarity of the segment-specific interaction parameters.

ε=0 -> homogeneous data

•••

 ϵ =1 -> non-homogeneous data

AUC for SNR=3

AUC for SNR=3

AUC difference: coupled NH-DBN – homogeneous DBN

AUC difference: coupled NH-DBN – uncoupled NH-DBN

					uncoupled NH-DBN									
AU 0	1/8	1/4 ε	1/2	1	0	1/8	1/4 ε	1/2	1	0	1/8	1/4 ε	1/2	1
IC-ROC difference upled – uncoupled														
AUC-ROC difference coupled - homogeneous														
mean AUC-ROC total														
	SI	NR=10	D			S	NR=	3				SNR=	1	

2. Data from synthetic biology

Synthetic network in yeast, as designed in Cantone et al. (2009)

Carbon-source switch from galactose to glucose GALACTOSE

GLUCOSE

in vivo gene expression levels measured with RT-PCRat 37 time points (in two mediums)

AUC score comparison sequentially coupled NH-DBN <u>versus</u> uncoupled NH-DBN for different changepoint prior hyperparameters (different numbers of changepoints per gene)

AUC score comparison globally coupled NH-DBN versus uncoupled NH-DBN for different changepoint prior hyperparameters (different numbers of changepoints per gene)

AUC score comparison of all three NH-DBNs

3. Data from a real application

Circadian regulation in Arabidopsis

Circadian rhythms in Arabidopsis thaliana

Collaboration with the Institute of Molecular Plant Sciences at Edinburgh University

4 time series of microarray gene expression data from *Arabidopsis thaliana*.

- Focus on: 9 circadian genes:

LHY, CCA1, TOC1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3

- The four time series were measured under constant light condition at 13 time points: 0h, 2h,..., 24h, 26h
- Seedlings entrained with light:dark cycles of different periods

Thin black edges indicate interactions that are inferred with both NH-DBNs. Three edges (dotted) are inferred with the uncoupled NH-DBN only while four edges (bold) are inferred with the coupled NH-DBN only.

Thin black edges indicate interactions that are inferred with both NH-DBNs. Three edges (dotted) are inferred with the uncoupled NH-DBN only while four edges (bold) are inferred with the coupled NH-DBN only.

Thank you for your attention!

Any questions?