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Context (1/4)

We consider (simple) branching processes with
deterministic evolution between jump times.

Such models appear as toy models for population growth
in cellular biology.

We wish to statistically estimate the parameters of the
model, in order to ultimately discriminate between
different hypotheses related to the mechanisms that
trigger cell division.
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Context (2/4)

We structure the model by state variables for each
individual like size, age, growth rate, DNA content and so
on.

The evolution of the particle system is described by a
common mechanism:

1 Each particle grows by “ingesting a common nutrient” =
deterministic evolution.

2 After some time, depending on a structure variable, each
particle gives rise to k = 2 offsprings by cell division =
branching event.

Our goal in this talk: estimate the branching rate as a
function of age or size (or both).
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Figure : Evolution of a E. Coli population.
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Context (3/4)

Deterministically the density of structured state variables
evolves according to a so-called fragmentation-transport
PDEs

Stochastically, the particles evolve according to a
piecewise deterministic Markov process that evolves
along a branching tree.

We study nonparametric inference of the division rate,
with the concern of matching deterministic and stochastic
approaches.
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Context (4/4)

I will follow a “pedestrian route” by reviewing some of the
results we progressively obtained by “trial-and-error”.

In particular, the results are highly sensitive to the choice
of the observation schemes (genealogical versus temporal).

Our control experiments are data sets extracted from the

observation of 88 microcolonies of E. Coli bacteria cultures (a

colony is followed from a single ancestor up to a few hundreds

descendants).
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Outline

1 Genealogical versus temporal data

2 The size dependent division rate model
Estimation at a (large) fixed time in a proxy model
Estimation through genealogical data

3 Estimating the age dependent division rate
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Genealogical representation

In the talk we focus on structuring variables that are either
age or size.

The population evolution is associated with an infinite
marked binary tree

U =
∞⋃
n=0

{0, 1}n with {0, 1}0 := ∅.

To each cell or node u ∈ U , we associate a cell with size
at birth given by ξu and lifetime ζu.

To each u ∈ U , we associate a birth time bu and a time of
death du so that ζu = du − bu.
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Observation scheme I: temporal data

Fix a (large) T > 0. Define

UT =
{

u ∈ U , bu ≤ T
}
.

We have UT = ŮT ∪ ∂ UT , with

ŮT =
{

u, du ≤ T
}

and ∂ UT =
{

u, bu ≤ T < du

}
We observe {

ζTu and/or ξTu , u ∈ UT
}

where ζTu = min{du,T} − bu, and ξTu = ξu if du ≤ T and
the “size of u at time T ” otherwise.
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Observation scheme II: genealogical data

|u| = n if u = (u1, . . . , un) ∈ U ,
uv = (u1, . . . , un, v1, . . . , vm) if v = (v1, . . . , vm) ∈ U .

Sparse tree case Given u(n) ∈ U , with |u(n)| = n, let

Uu(n) =
{

u ∈ U , uw = u(n) for some w ∈ U
}
.

We observe {
ζu and/or ξu, u ∈ Uu(n)

}
.

Full tree case For n = 2kn , define

U[n] = {u ∈ U , |u| ≤ kn}.

We observe {
ξu and/or ζu, u ∈ U[n]

}
.



Statistical
inference in
transport-

fragmentation
models

Marc
Hoffmann

Genealogical
versus
temporal
data

The size
dependent
division rate
model

Estimating
the age
dependent
division rate

Temporal data

Figure : Genealogical tree observed up to T = 7 for a time-dependent
division rate B(a) = a2 (60 cells). In blue: ŮT . In red: ∂ UT .
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Genealogical data

Figure : The same outcome organised at a genealogical level.



Statistical
inference in
transport-

fragmentation
models

Marc
Hoffmann

Genealogical
versus
temporal
data

The size
dependent
division rate
model

Estimation at a
(large) fixed
time in a proxy
model

Estimation
through
genealogical
data

Estimating
the age
dependent
division rate

Outline

1 Genealogical versus temporal data

2 The size dependent division rate model
Estimation at a (large) fixed time in a proxy model
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Size dependent division rate (1/2)

Perthame, Transport equations in biology, Birkäuser, 2006.

n(t, x): density of cells of size x .

Parameter of interest: Division rate B(x).

1 cell of size x gives birth to 2 cells of size x/2.

The growth of the cell size by nutrient uptake is given by a
growth rate g(x) = τx in this talk: it follows the
deterministic evolution

dX (t)

dt
= g(X (t))dt
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Size dependent division rate (2/2)

The deterministic model: transport-fragmentation
equation

∂tn(t, x) + ∂x
(
τxn(t, x)

)
+ B(x)n(t, x) = 4B(2x)n(t, 2x)

n(t, x = 0) = 0, t > 0 and n(0, x) = n(0)(x), x ≥ 0.

obtained by mass conservation law:

• LHS: density evolution + growth by nutrient + division of
cells of size x .

• RHS: division of cells of size 2x .
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Nonparametric estimation of B : First approach

Represent the solution of the transport-fragmentation
equation in a stationary regime.

Obtain a reconstruction formula for B(x) via this
representation in terms of the steady-state or stationary
density of the model.

Postulate a proxy model where one observes exactly a
drawn from the stationary density.

Transfer standard nonparametric estimation techniques in
this setting.
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Solution by stable distribution

Start with the transport-fragmentation equation

∂tn(t, x) + ∂x
(
τxn(t, x)

)
+ B(x)n(t, x) = 4B(2x)n(t, 2x)

Ansatz n(t, x) = eλtN(x).

∂x
(
τxN(x)

)
+
(
λ+ B(x)

)
N(x) = 4B(2x)N(2x)

N(0) = 0, N(x) > 0 for x > 0 and
∫

[0,∞) N(x)dx = 1.

Perthame et al. (2005) prove n(t, x) ≈ eλtN(x) with
explicit (fast) rates of convergence (steady-state) under
fairly general conditions.
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A proxy statistical model (1/4)

Yields a strategy for the nonparametric estimation of B.

At time T , the data approximately behave like drawn from
N(x)dx .

Recover B through the representation

L(N, λ) = L(BN),

with

L(f , λ)(x) = ∂x
(
τxf (x)

)
+ λf (x),

L(f )(x) = 4f (2x)− f (x).

The operator L(·, λ) has ill-posedness degree of order 1.
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A proxy statistical model (2/4)

We postulate the observation of outcomes of cell size
X1, . . . ,Xn in a stationary regime and that are
independent:

P(X1 ∈ dx1, . . . ,Xn ∈ dxn) :=
n∏

i=1

N(xi )dxi .

We can take advantage of kernel methods in
nonparametric estimation.

τ and λ assumed to be known (or λn proxy of λ given
within sufficient accuracy).
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A proxy statistical model (3/4)

Reconstruction method:
1 Construct an estimator L̂n(x) of the action

L(N, λ)(x) = ∂x
(
τxN(x)

)
+ λN(x),

2 Build an approximate inverse L−1
k of the inverse of

L(f )(x) = 4f (2x)− f (x).
3 Use representation

L(N, λ) = L(BN)

and take as final estimator

B̂n(x) :=
L−1
kn

(
L̂n(x)

)
N̂n(x)

where N̂n(x) = n−1
∑n

i=1 h−1
n K

(
h−1
n (x − Xi )

)
kernel

estimator of N(x) for an approriate bandwidth hn > 0.
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A proxy statistical model (4/4)

In Doumic, H, Rivoirard and Reynaud-Bouret (2011), we
construct an approximate inverse L−1

k such that

‖L−1
k (ϕ)− L−1(ϕ)‖L2(D) . k−1/2‖ϕ‖H1

and reconstruct L(N, λ)(x) by kernel methods. We obtain
an estimator B̂n s.t.(

E
[
‖B̂n − B‖2

L2(D)

])1/2
. n−s/(2s+3)

uniformly in B over Sobolev balls (over the compact
D ⊂ (0,∞)).

The result is compatible with previous deterministic results
by Perthame and collaborators.
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Limitations of the deterministic based approach

We implicitly assume a stationary regime (the steady-state
approximation).

We do not take advantage of richer available observation
schemes. I particular, if we have access of the finer
structure of the tree, can we beat the ill-posedness
imposed by our approach?

And more: constant growth rate, assuming two (sibling)
offsprings are of the same size at birth, etc.
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The stochastic (cell level) approach (1/3)

We start with a singe cell of size x0. The cell grows
exponentially according to a constant rate τ .

The mother cell gives rize to two offsprings, at a rate B(x)
that depend on its size x .

The two offsprings have initial size x1/2, where x1 is the
size of the mother at division.

The two offsprings start independent growth according to
the rate τ and divide according to the rate B(x).
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The stochastic (cell level) approach (2/3)

To each node u ∈ U , we associate a cell with size at birth
given by ξu and lifetime ζu.

u− denotes the parent of u. Thus

2ξu = ξu− exp
(
τζu−

)
.

X (t) =
(
X1(t),X2(t), . . .

)
process of the sizes of the

population at time t.
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The stochastic approach (3/3)

X (t)↔ finite point measure valued process
∑]X (t)

i=1 δXi (t)

Identity between point measures

∞∑
i=1

1{Xi (t)>0}δXi (t) =
∑
u∈U

δξueτ(t−bu)1{bu≤t<bu+ζu}.

In particular, observing (X (t), t ∈ [0,T ]) is equivalent to
observing {ξTu , ζTu , u ∈ UT}.
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Matching det. and stoch. approaches (1/3)

We can relate X (t) and n(t, x) via so-called many-to-one
formulae.

Classical technique for fragmentation and branching
processes (see e.g. Bansaye et al. 2009, Bertoin, 2006,
Cloez 2011): Pick a cell at random at each division and
follow its size χ(t) through time. For ξ∅ = x

χ(t) = x
eτ t

2Nt

where Nt is the number of divisions of the tagged
fragment up to time t.
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Matching det. and stoch. approaches (2/3)

Step 1 for every (regular compactly supported) f :

E
[ ∞∑

i=1

f
(
Xi (t)

)]
= E

[∑
u∈U

f
(
ξut
)]

Step 2 : many-to-one formula

E
[
f
(
χ(t)

)]
= E

[∑
u∈U

ξut
e−τ t

x
f
(
ξut
)]

Step 3 Finally

E
[ f
(
χ(t)

)
χ(t)

xeτ t
]

= E
[ ∞∑

i=1

f
(
Xi (t)

)]
.
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Transport-fragmentation equation

Set, for (regular compactly supported) f

〈n(t, ·), f 〉 := E
[ ∞∑
i=1

f
(
Xi (t)

)]
.

We have (in a weak sense)

∂tn(t, x) + ∂x
(
τx n(t, x)

)
+ B(x)n(t, x) = 4B(2x)n(t, 2x).

Therefore the mean empirical distribution of X (t) satisfies
the deterministic transport-fragmentation equation.
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Statistical estimation of B(x)

Observation scheme: genealogical data from two
possible schemes:

Sparse tree: we observe, for some u(n) with |u(n)| = n,{
ξu, uw = u(n) for some w ∈ U

}
Full tree: we observe, for n = 2kn ,{

ξu, |u| ≤ kn
}

Asymptotics: n→∞.
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Statistical estimation: identifying B(x)

We have

P(ζu ∈ [t, t + dt] |ζu ≥ t, ξu = x) = B(xeτ t)dt

from which we obtain the density of the lifetime ζu−
conditional on ξu− = x :

t  B(xeτ t) exp
(
−
∫ t

0
B(xeτs)ds

)
.
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Toward a Markov kernel

Using 2 ξu = ξu− exp
(
τζu−

)
, we further infer

P
(
ξu ∈ dx ′

∣∣ ξu− = x
)

=
B(2x ′)

τx ′
1{x ′≥x/2} exp

(
−
∫ x ′

x/2

B(2s)
τs ds

)
dx ′.

We thus obtain a simple an explicit representation for the
transition kernel PB

(
x , dx ′) = PB

(
x , x ′)dx ′:

PB
(
x , x ′) =

B(2x ′)

τx ′
1{x ′≥x/2} exp

(
−
∫ x ′

x/2

B(2s)
τs ds

)
.
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Assumptions on B

Under appropriate conditions on B, the Markov chain on
(0,∞) is geometrically ergodic: there exists a unique
invariant probability νB(dx) = νB(x)dx on [0,∞) such
that

νBPB = νB .

(the chain is however not reversible.)

More precisely, we have the contraction property

sup
|g |≤V

∣∣Pk
Bg(x)−

∫
S

g(z)νB(z)dz
∣∣ ≤ RV (x)γk

for an appropriate Lyapunov function V and some
(explicitly computable) γ < 1.
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Identifying B(x) through the invariant measure

Expand the equation νBPB = νB :

νB(y) =

∫ ∞
0

νB(x)PB
(
x , y
)
dx

=
B(2y)

τy

∫ 2y

0
νB(x) exp

(
−
∫ y

x/2

B(2s)
τs ds

)
dx

=
B(2y)

τy

∫ ∞
0

∫ ∞
0

1{x ≤ 2y , s ≥ y}νB(x)PB
(
x , s
)
dsdx .

This yields the key representation

νB(y) =
B(2y)

τy
PνB

(
ξu− ≤ 2y , ξu ≥ y

)
.
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Key representation

We conclude

B(y) =
τy

2

νB(y/2)

PνB
(
ξ−u ≤ y , ξu ≥ y/2

) .
This yields the estimator

B̂n(y) =
τy

2

n−1
∑

u∈U[n]
Khn(ξu − y/2)

n−1
∑

u∈U[n]
1{ξu− ≤ y , ξu ≥ y/2}

∨
$n

,

where the kernel Khn(y) = h−1K
(
h−1
n y

)
is specified with

an appropriate bandwidth (and technical thershold $n).
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Under the previous assumptions (+ the additional
condition γ < 1

2 for the geometric ergodicity decay in the
full tree case), we have

Eµ
[
‖B̂n − B‖2

L2(D)

]1/2
. (log n)1/2n−s/(2s+1)

uniformly in B over s-smooth Hölder balls intersected
with “nice geometrically ergodic classes”.

Here, µ is any initial condition so that V 2 is µ-integrable.
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Remarks and extensions

Smoothness adaptation (by means of appropriate
concentration inequalities on trees)

The rate are minimax (which is of course no surprise).

(Possible extension: variability in the growth rate:
extension to a cell-dependent τ = τu drawn via a Markov
kernel κ(τu− , dτ).)

(Possible extension: the cell mother divides into offsprings
of different sizes.)
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Effect of variability (sparse tree case)
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Figure : The sparse tree case
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Effect of variability (dense tree case)
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Figure : The dense tree case
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Une légère surprise (1/3)

Revisit the representation formula

B(y) =
τy

2

νB(y/2)

PνB
(
ξu− ≤ y , ξu ≥ y/2

) .
We always have {ξu− ≥ y} ⊂ {ξu ≥ y/2}, hence

PνB
(
ξu− ≤ y , ξu ≥ y/2

)
=PνB

(
ξu ≥ y/2)− PνB (ξu− ≥ y

)
=

∫ ∞
y/2
−
∫ ∞
y

=

∫ y

y/2
νB(x)dx (!).
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Une légère surprise (2/3)

Finally (for constant growth rate) we have

B(y) =
τy

2

νB(y/2)∫ y
y/2 νB(x)dx

We have a “gain”: rate n−s/(2s+1) versus n−s/(2s+3) in the
proxy model based on the transport-fragmentation
equation...

But it only comes from the fact that we estimate the
invariant measure “at division”, versus the invariant
measure “at fixed time” in the proxy model.
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Une légère surprise (3/3)

There seems to be more “nonparametric statistical
information” in data extracted from ŮT rather than ∂ UT
However

∣∣ŮT ∣∣ ≈ ∣∣∂ UT ∣∣ (supercritical branching
processes).

Can we make that argument more precise (up to changing
the model)?
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Outline

1 Genealogical versus temporal data

2 The size dependent division rate model
Estimation at a (large) fixed time in a proxy model
Estimation through genealogical data

3 Estimating the age dependent division rate
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Age dependent division rate B(a)

n(t, a) is now solution to

∂tn(t, a) + ∂a
(
an(t, a)

)
+ B(a)n(t, a) = 0,

n(t, a = 0) = 2

∫ ∞
0

B(a)n(t, a)da n(t = 0, a) = n(0)(a).

This translates into the stochastic model as

P(ζu ∈ [a, a + da]
∣∣ ζu ≥ a) = B(a)da.

Here, the ζu are i.i.d. We have nothing but a renewal
process on a tree.
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Observation scheme

The ζu are i.i.d.: the case of genealogical data is readily
embedded into standard density estimation.

Temporal data: we observe, for some (large) T > 0{
ζTu , u ∈ UT

}
which can be split into two data sets{

ζu, u ∈ ŮT
}
∪
{

T − bu, u ∈ ∂ UT
}
.



Statistical
inference in
transport-

fragmentation
models

Marc
Hoffmann

Genealogical
versus
temporal
data

The size
dependent
division rate
model

Estimating
the age
dependent
division rate

Estimation of B(a) from ŮT (1/4)

Analogue of what we did for the size dependent B(x) in
the sense that we have (empirical) access to the time at
division.

Additional difficulty: bias selection (small lifetimes are
observed more often than large lifetimes).

Strategy: many-to-one formulae (Bansaye et al., 2009,
Cloez, 2012)
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Estimation of B(a) from ŮT (2/4)

Many-to-one formula (Cloez, 2012): we have, for a nice
test function g :

E
[ ∑
u∈ŮT

g(ζu)
]

=

∫ T

0
eλB s E

[
g(χ(s))HB

(
χ(s)

)]
ds.

where χ(t) is a tagged branch picked at random on the
tree, and HB(a) an explicit function.

Also E[|ŮT |] ∼ κBeλBT .

All the ingredients needed for a law of large numbers.
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Estimation of B(a) from ŮT (3/4)

Let fB(a) = B(a) exp
(
−
∫∞

0 B(s)ds
)
.

We have

1

|ŮT |

∑
u∈ŮT

g(ζu)
P→ 2

∫ ∞
0

g(a)eλBafB(a)da.

We even obtain a rate of convergence (in probability)(
exp(λBT )

)1/2

with some uniformity in B ∈ B (in a “neighbourhood” of
constant functions B).

Proof: rates of convergence in the many-to-one formula for

g(ζu, ζv ) for u, v ∈ ŮT + geometric ergodicity.
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Estimation of B(a) from ŮT (4/4)

We derive kernel estimators that achieve the rate(
exp(λBT )

)s/(2s+1)

uniformly over B ∩H(s,M).

The rate is nearly minimax (use likelihood expansions
established by Löcherbach in the early 2000’s).
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What if data are taken from ∂ UT solely?

We now have (using Cloez’s many-to-one formulae), for a
test function g

|∂ UT |−1
∑

u∈∂ UT

g(ζu)
P→ 2λB

∫ ∞
0

g(a)eλBa
fB(a)

B(a)
da

= 2λB

∫ ∞
0

g(a)eλBae−
∫ a

0 B(s)dsda.

We have a rate of convergence (in probability)(
exp(λBT )

)1/2
uniformly in B ∈ B.

We retrieve an ill-posed problem of order 1, leading to

concergence rate
(

exp(λBT )
)s/(2s+3)

.
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The age dependent model, simulated data

Figure : Reconstruction of B over D = [0.1, 4] with 95%-level
confidence bands constructed over M = 100 Monte-Carlo trees. In
bold red line: x  B(x); in bold blue line: fHB

; in blue line: fB . Left:
T = 15. Right: T = 23.
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Conclusion/Overall picture

data Size model Age model

proxy model n−s/(2s+3) + adaptation irrelevant

∂ UT ? (eλBT )−s/(2s+3)

genealogical n−s/(2s+1) + adaptation irrelevant

ŮT ? (eλBT )−s/(2s+1)
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Thank you for your attention!
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Effect of variability (sparse tree case)
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Figure : The sparse tree case
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Effect of variability (dense tree case)
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Figure : The dense tree case
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Exploration on real data (E. Coli, sparse and dense
tree case)
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Figure : Implementation on real data
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Comparison with the inverse problem approach
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Figure : Exploration on simulated data via the global approach
(inverse problem), n ≈ 3000.
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Numerical implementation

Figure : Exploration on real-data. Sparse tree, n ≈ 3000.
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