

Kernel partial least squares for stationary data

Tatyana Krivobokova, Marco Singer, Axel Munk

Georg-August-Universität Göttingen

Bert de Groot

Max Planck Institute for Biophysical Chemistry

Van Dantzig Seminar, 06 April 2017

Motivating example

Proteins

- are large biological molecules
- function often requires dynamics
- configuration space is high-dimensional

Group of Bert de Groot seeks to identify a relationship between

collective atomic motions of a protein

and

some specific protein's (biological) function.

Motivating example

The data from the Molecular Dynamics (MD) simulations:

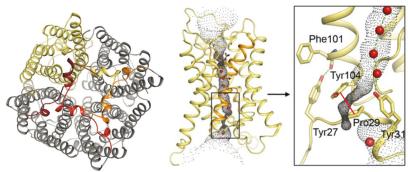
- $Y_t \in \mathbb{R}$ is a functional quantity of interest at time $t, t = 1, \dots, n$
- $X_t \in \mathbb{R}^{3N}$ are Euclidean coordinates of N atoms at time t

Stylized facts

- d = 3N is typically high, but $d \ll n$
- ${X_t}_t, {Y_t}_t$ are (non-)stationary time series
- some (large) atom movements might be unrelated to Y_t

Functional quantity Y_t to be modelled a function of X_t .

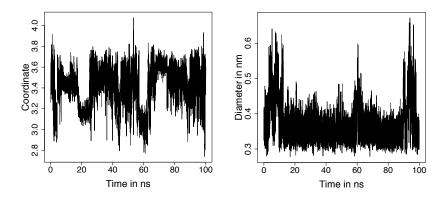
Yeast aquaporin (AQY1)



- Gated water channel
- Y_t is the opening diameter (red line)
- 783 backbone atoms
- n = 20,000 observations on 100 ns timeframe

AQY1 time series

Movements of the first atom and the diameter of channel opening



Model

Assume

$$Y_t = f(X_t) + \epsilon_t, \ t = 1, \dots, n,$$

where

- ${X_t}_t$ is a *d*-dimensional stationary time series
- $\{\epsilon_t\}_t$ i.i.d. zero mean sequence independent of $\{X_t\}_t$
- $f \in \mathcal{L}^2(P^{\widetilde{X}})$, \widetilde{X} is independent of $\{X_t\}_t$ and $\{\epsilon_t\}_t$ and $P^{\widetilde{X}} = P^{X_1}$

The closeness of an estimator \hat{f} of f is measured by

$$\left\|\widehat{f}-f\right\|_{2}^{2}=\mathsf{E}_{\widetilde{X}}\left\{\widehat{f}(\widetilde{X})-f(\widetilde{X})\right\}^{2}.$$

Simple linear case

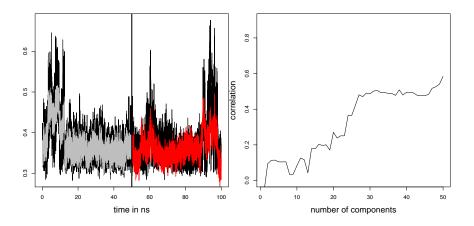
Hub, J.S. and de Groot, B. L. (2009) assumed a linear model

$$Y_i = X_i^T \beta + \epsilon_i, \quad i = 1, \dots, n,$$

 $X_i \in \mathbb{R}^d$, or in matrix form $Y = X\beta + \epsilon$, ignored dependence in the data and tried to regularise the estimator by using PCA.

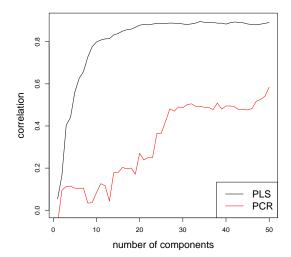
Motivating example

PC regression with 50 components



Motivating example

Partial Least Squares (PLS) leads to superior results



Regularisation with PCR and PLS

Consider a linear regression model with fixed design

 $Y = X\beta + \epsilon.$

In the following let $A = X^T X$ and $b = X^T Y$.

PCR and PLS regularise β with a transformation $H \in \mathbb{R}^{d \times s}$ s.t.

$$\widehat{\beta}_{s} = H \arg\min_{\alpha \in \mathbb{R}^{s}} \frac{1}{n} \|Y - XH\alpha\|^{2} = H(H^{T}AH)^{-1}H^{T}b,$$

where $s \leq d$ plays the role of a regularisation parameter.

In PCR matrix H consists of the first s eigenvectors of $A = X^T X$.

Regularisation with PLS

In PLS one derives $H = (h_1, \ldots, h_s)$, $h_i \in \mathbb{R}^d$ as follows

1 Find

$$h_1 = \arg \max_{\substack{h \in \mathbb{R}^d \\ \|h\| = 1}} \widehat{\operatorname{cov}}(Xh, Y)^2 \propto X^T Y = b$$

2 Project Y orthogonally: $Xh_1(h_1^T A h_1)^{-1}h_1^T X^T Y = X\widehat{\beta}_1$

3 Iterate the procedure according to

$$h_i = \arg \max_{\substack{h \in \mathbb{R}^d \\ \|h\| = 1}} \widehat{\operatorname{cov}}(Xh, Y - X\widehat{\beta}_{i-1})^2, \quad i = 2, \dots, s$$

Apparently, $\hat{\beta}_s$ is highly non-linear in Y.

Regularisation with PLS

For PLS is known that
$$h_i \in \mathcal{K}_i(A, b)$$
, $i = 1, ..., s$, where

 $\mathcal{K}_i(A, b) = \operatorname{span}\{b, Ab, \dots, A^{i-1}b\}$ is a Krylov space of order *i*.

With this the alternative definition of PLS is

$$\widehat{eta}_{s} = \arg\min_{eta \in \mathcal{K}_{s}(A,b)} \|Y - Xeta\|^{2}.$$

Note that any $\beta_s \in \mathcal{K}_s(A, b)$ can be represented as

$$\beta_s = P_s(A)b = P_s(X^T X)X^T Y = X^T P_s(XX^T)Y,$$

where P_s is a polynomial of degree at most s - 1.

Regularisation with PLS

For the implementation and proofs the residual polynomials

$$R_s(x) = 1 - x P_s(x)$$

are of interest. Polynomials R_s

- are orthogonal w.r.t. an appropriate inner product
- satisfy a recurrence relation

$$R_{s+1}(x) = a_s x R_s(x) + b_s R_s(x) + c_s R_{s-1}(x)$$

• are convex on $[0, r_s]$, where r_s is the first root of $R_s(x)$ and $R_s(0) = 1$.

PLS and conjugate gradient

PLS is closely related to the conjugate gradient (CG) algorithm for

$$A\beta = X^T X\beta = X^T Y = b.$$

The solution of this linear equation by CG is defined by

$$\widehat{\beta}_s^{\mathsf{CG}} = \arg\min_{\beta \in \mathcal{K}_s(A,b)} \|b - A\beta\|^2 = \arg\min_{\beta \in \mathcal{K}_s(A,b)} \|X^{\mathsf{T}}(Y - X\beta)\|^2.$$

CG algorithm has been studied in Nemirovskii (1986) as follows:

- Consider $ar{A}eta=ar{b}$ for a linear bounded $ar{A}:\mathcal{H}
 ightarrow\mathcal{H}$
- Assume that only approximation A of \bar{A} and b of \bar{b} are given
- Set $\widehat{\beta}_{s}^{CG} = \arg \min_{\beta \in \mathcal{K}_{s}(A,b)} \|b A\beta\|_{\mathcal{H}}^{2}$.

CG in deterministic setting

Assume

 $\begin{array}{ll} (A1) & \max\{\|\bar{A}\|_{op}, \|A\|_{op}\} \leq L, \ \|\bar{A} - A\|_{op} \leq \epsilon \ \text{and} \ \|\bar{b} - b\|_{\mathcal{H}}^2 \leq \delta \\ (A2) & \text{The stopping index } s \ \text{satisfies the discrepancy principle} \\ & \hat{s} = \min\{s > 0: \ \|b - A \ \widehat{\beta}_s\|_{\mathcal{H}} < \tau(\delta \|\widehat{\beta}_s\|_{\mathcal{H}} + \epsilon)\}, \ \tau > 0 \\ (A3) & \beta = \bar{A}^{\mu}u \ \text{for} \ \|u\|_{\mathcal{H}} \leq R, \ \mu, R > 0 \ \text{(source condition)}. \end{array}$

Theorem (Nemirovskii, 1986) Let (A1) – (A3) hold and $\hat{s} < \infty$. Then for any $\theta \in [0, 1]$ $\|\bar{A}^{\theta}(\hat{\beta}_{\hat{s}} - \beta)\|_{\mathcal{H}}^{2} \leq C(\mu, \tau) R^{\frac{2(1-\theta)}{1+\mu}} (\epsilon + \delta R L^{\mu})^{\frac{2(\theta+\mu)}{1+\mu}}.$

Kernel regression

A nonparametric model

$$Y_i = f(X_i) + \epsilon_i, i = 1, \dots, n, X_i \in \mathbb{R}^d$$

is handled in the reproducing kernel Hilbert space (RKHS) framework.

Let ${\mathcal H}$ be a RKHS, that is

- $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ is a Hilbert space of functions $f : \mathbb{R}^d \to \mathbb{R}$ with
- a kernel function $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, s.t. $k(\cdot, x) \in \mathcal{H}$ and

$$f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}}, \ x \in \mathbb{R}^d, \ f \in \mathcal{H}.$$

Unknown f is estimated by $\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(\cdot, X_i)$.

Kernel regression

Define operators

• Sample evaluation operator (analogue of X):

 $T_n: f \in \mathcal{H} \mapsto \{f(X_1), \ldots, f(X_n)\}^T \in \mathbb{R}^n$

- Sample kernel integral operator (analogue of X^T/n): $T_n^* : u \in \mathbb{R}^n \mapsto n^{-1} \sum_{i=1}^n k(\cdot, X_i) u_i \in \mathcal{H}$
- Sample kernel covariance operator (analogue of $X^T X/n$):

$$S_n = T_n^* T_n : f \in \mathcal{H} \mapsto n^{-1} \sum_{i=1}^n f(X_i) k(\cdot, X_i) \in \mathcal{H}$$

• Sample kernel (analogue of XX^T/n):

$$K_n = T_n T_n^* = n^{-1} \{k(X_i, X_j)\}_{i,j=1}^n$$

Kernel PLS and kernel CG

Now we can define the kernel PLS estimator as

$$\widehat{\alpha}_{s} = \arg\min_{\alpha \in \mathcal{K}_{s}(\mathcal{K}_{n}, Y)} \|Y - \mathcal{K}_{n}\alpha\|^{2} = \arg\min_{\alpha \in \mathcal{K}_{s}(\mathcal{T}_{n}\mathcal{T}_{n}^{*}, Y)} \|Y - \mathcal{T}_{n}\mathcal{T}_{n}^{*}\alpha\|^{2},$$

or, equivalently, for $f = T_n^* \alpha$

$$\widehat{f}_s = \arg\min_{f \in \mathcal{K}_s(S_n, T_n^*Y)} \|Y - T_n f\|^2, \ s = 1, \dots, n.$$

The kernel CG estimator is then defined as

$$\widehat{f}_s^{CG} = \arg\min_{f \in \mathcal{K}_s(S_n, T_n^*Y)} \|T_n^*(Y - T_n f)\|_{\mathcal{H}}^2.$$

Blanchard and Krämer (2010)

- used stochastic setting with i.i.d. data (Y_i, X_i)
- proved convergence rates for KCG using ideas in Nemirovskii (1986), Hanke (1995), Caponnetto & de Vito (2007)
- argued that the proofs for kernel CG can not be directly transferred to kernel PLS

In this work we

- use stochastic setting with dependent data
- prove convergence rates for kernel PLS

building up on Hanke (1995) and Blanchard and Krämer (2010).

Consider now the model specified for the protein data

$$Y_t = f(X_t) + \epsilon_t, \ t = 1, \dots, n.$$

Let \mathcal{H} be a RKHS with kernel k and assume

(C1) \mathcal{H} is separable; (C2) $\exists \kappa > 0 \text{ s.t. } |k(x, y)| \le \kappa, \forall x, y \in \mathbb{R}^d \text{ and } k \text{ is measurable;}$

Under (C1) the Hilbert-Schmidt norm of operators from \mathcal{H} to \mathcal{H} is well-defined and (C2) implies that all functions in \mathcal{H} are bounded.

Let T and T^* be population versions of T_n and T_n^* :

$$T: f \in \mathcal{H} \mapsto f \in \mathcal{L}^2(P^{\widetilde{X}})$$

 $T^*: f \in \mathcal{L}^2(P^{\widetilde{X}}) \mapsto \int f(x)k(\cdot, x)dP^{\widetilde{X}}(x) \in \mathcal{H}.$

It implies population versions of S_n and K_n :

$$S = T^*T$$
 and $K = TT^*$.

Operators T and T^* are adjoint and S, K are self-adjoint.

As in Nemirovskii (1986) we use the source condition as an assumption on regularity of f:

$$(\mathsf{SC})\ \exists\ r\geq 0,\ R>0$$
 and $u\in \mathcal{L}^2(P^{\widetilde{X}})$ s.t. $f=K^ru$ and $\|u\|_2\leq R$

If $r \ge 1/2$, then $f \in \mathcal{L}^2(P^{\widetilde{X}})$ coincides a.s. with $f_{\mathcal{H}} \in \mathcal{H}$ $(f = Tf_{\mathcal{H}})$. The setting with r < 1/2 is referred to as the outer case.

Under suitable regularity conditions due to Mercer' theorem

$$K(x, y) = \sum_{i} \eta_i \phi_i(x) \phi_i(y)$$

for an orthonormal basis $\{\phi_i\}_{i=1}^{\infty}$ for $\mathcal{L}^2(P^{\widetilde{X}})$ and $\eta_1 \ge \eta_2 \ge \dots$ Hence,

$$\mathcal{H} = \left\{f: \ f = \sum_i heta_i \phi_i(x) \in \mathcal{L}^2(\mathcal{P}^{\widetilde{X}}) \ \text{and} \ \sum_i rac{ heta_i^2}{\eta_i} < \infty
ight\}.$$

The source condition corresponds to $f \in \mathcal{H}_r$, where

$$\mathcal{H}_r = \left\{ f: \ f = \sum_i \theta_i \phi_i(x) \in \mathcal{L}^2(\mathcal{P}^{\widetilde{X}}) \text{ and } \sum_i \frac{\theta_i^2}{\eta_i^{2r}} \leq R^2 \right\}.$$

Theorem (Singer, K., Munk, 2017)

Assume (C1), (C2) and (SC) hold with $r \ge 3/2$, as well as

$$\begin{array}{rcl} P(\|S_n - S\|_{HS} \leq C_{\delta} \gamma_n) & \geq & 1 - \nu/2 \\ P(\|T_n^* Y - Sf\|_{\mathcal{H}} \leq C_{\epsilon} \gamma_n) & \geq & 1 - \nu/2, \end{array}$$

for constants C_{ϵ} , $C_{\delta} > 0$, $\nu \in (0, 1]$ and a sequence $\{\gamma_n\}_n \in [0, \infty)$, $\gamma_n \to 0$. Define the stopping index with $C = C(\nu, C_{\epsilon}, C_{\delta}, r, \kappa, R)$

$$\hat{s} = \min\left\{1 \leq s \leq n : \sum_{i=0}^{s} \|S_n \widehat{f}_i - T_n^* Y\|_{\mathcal{H}}^{-2} \geq (C\gamma_n)^{-2}\right\}.$$

Then it holds with probability at least $1 - \nu$ that

$$\|\widehat{f}_{\widehat{s}} - f\|_2 = O\left\{\gamma_n^{2r/(2r+1)}\right\}.$$

Kernel PLS: first result

- The rate of convergence is driven by γ_n , which enters the concentration inequalities.
- γ_n = O(n^{-1/2}) results in the same convergence rates as
 as in Blanchard & Krämer (2010) for independent data.
- The rate is adaptive: \hat{s} is independent of r.
- The stopping rule for the kernel CG has the form $\|S_n \hat{f}_s^{CG} T_n^* Y\|_{\mathcal{H}} \leq C\gamma_n.$

The optimal rates depend both on the regularity of the function and on the structure of \mathcal{H} described e.g. via tr $\{K(K + \lambda I)^{-1}\}$.

Zhang (2005) suggested the concept of *effective dimensionality* (ED) $\exists \zeta \in (0,1], D > 0$ s.t. tr $\{K(K + \lambda I)^{-1}\} \leq D\lambda^{-\zeta}, \forall \lambda > 0.$

and found the optimal convergence rates that depends on r and ζ .

For example, if $\eta_i \leq c \ i^{-1/\zeta}$, then

$$\operatorname{tr}\left\{K(K+\lambda I)^{-1}\right\} = \sum_{i} \frac{\eta_{i}}{\eta_{i}+\lambda} \leq \tilde{c}(\alpha,c)\lambda^{-\zeta}.$$

Kernel PLS: second result

To adapt the results of Caponnetto & De Vito (2007) to our setting, the following concentration inequalities (CI) need to hold:

$$\begin{split} P(\|S_n - S\|_{HS} \leq C_{\delta}\gamma_n) &\geq 1 - \nu/3\\ P(\|(S + \lambda)^{-1/2}(T_n^*Y - Sf)\|_{\mathcal{H}} \leq C_{\epsilon}\lambda^r) &\geq 1 - \nu/3\\ P(\|(S + \lambda)(S_n + \lambda)^{-1}\|_{HS} \leq C_{\psi}^2) &\geq 1 - \nu/3 \end{split}$$

 $\text{for } C_{\epsilon}, C_{\delta}, C_{\psi} > 0, \ \lambda > 0, \ \nu \in (0,1] \text{ and a sequence } \{\gamma_n\}_n, \ \gamma_n \to 0.$

Theorem (Singer, K., Munk, 2017)

Let (C1), (C2), (SC), (ED) hold with $r \ge 1/2$ and $\zeta \in (0, 1]$, as well as (CI) with $\lambda \propto \gamma_n^{2/(2r+\zeta)}$. Define the stopping index \hat{s} by

$$\hat{s} = \min\left\{1 \leq s \leq n : \sum_{i=0}^{s} \|S_n \widehat{f}_i - T_n^* Y\|_{\mathcal{H}}^{-2} \geq (C\gamma_n)^{-2r/(2r+\zeta+1)}\right\}$$

for $C = C(\nu, C_{\epsilon}, C_{\delta}, C_{\psi}, \kappa, r, R, D)$. Then it holds with probability at least $1 - \nu$ $\|\widehat{f_{\$}} - f\|_2 = O\left\{\gamma_n^{2r/(2r+\zeta)}\right\}$.

Similar to Blanchard & Krämer (2010):

- Rates obtained in the theorem without (ED) correspond to the worst case $\zeta = 1$, but are adaptive.
- Rates obtained in the theorem with (ED) are optimal if $\gamma_n = O(n^{-1/2})$, but require the knowledge of r and ζ for \hat{s} .
- For the outer case f ∉ H additional assumptions are needed to obtain the optimal rate, see e.g. Mendelson & Neeman (2009).

Kernel PLS: Concentration inequalities

Under (C1) and (C2) it holds with probability at least $1-\nu$ that

$$\|S_n - S\|_{HS}^2 \leq \frac{\delta_n}{\nu}$$
 and $\|T_n^*Y - Sf\|_{\mathcal{H}}^2 \leq \frac{\epsilon_n}{\nu}$,

where

$$\delta_n = \frac{C_1}{n} + \frac{2}{n^2} \sum_{h=2}^n (n-h) \int_{\mathbb{R}^{2d}} k^2(x,y) d\mu_h(x,y)$$

$$\epsilon_n = \frac{C_2}{n} + \frac{2}{n^2} \sum_{h=2}^n (n-h) \int_{\mathbb{R}^{2d}} k(x,y) f(x) f(y) d\mu_h(x,y)$$

for $d\mu_h(x, y) = dP^{X_h, X_1}(x, y) - dP^{X_1}(x)dP^{X_1}(y)$.

Kernel PLS: Concentration inequalities

Hence, $\gamma_n \propto (\delta_n + \epsilon_n)$ converges to zero iff the sums in δ_n and ϵ_n are of order not larger than $n^{2-\varepsilon}$, $\varepsilon > 0$.

We make additional assumptions on $\{X_t\}_t$:

(D1) $X_1 \sim \mathcal{N}_d(0, \sigma_1 \Sigma)$, $(X_h, X_1)^T \sim \mathcal{N}_{2d}(0, \Sigma_h)$, h = 2, ..., n with $\Sigma_h = \begin{pmatrix} \sigma_1 & \sigma_h \\ \sigma_h & \sigma_1 \end{pmatrix} \otimes \Sigma$,

where Σ is a positive definite symmetric matrix. (D2) For $\rho_h = \sigma_1^{-1} \sigma_h$ there exists q > 0 and $0 < c_1 < c_2$ such that $c_1 h^{-q} < |\rho_h| < c_2 h^{-q}, \quad h = 1, ..., n.$

Kernel PLS: Concentration inequalities

If additionally to (C1) and (C2), also (D1) and (D2) hold, then

$$\delta_{\textit{n}} \leq \textit{C}_1\{\phi_{\textit{n}}(\textit{q}) + \textit{n}^{-1}\}$$
 and $\epsilon_{\textit{n}} \leq \textit{C}_2\{\phi_{\textit{n}}(\textit{q}) + \textit{n}^{-1}\},$

for suitable $C_1, C_2 > 0$ and

$$\phi_n(q) = c \begin{cases} n^{-1} \widetilde{\zeta}(q) & , \quad q > 1 \\ n^{-1} \log(n) \{5 - \log(4)\} & , \quad q = 1 \\ n^{-q} \left[\{2(1-q)^{-1} - (2-q)^{-1}\} + (2-q)^{-1} 2^{2-q} \right] & , \quad q \in (0,1), \end{cases}$$

for the Riemann-zeta function $\tilde{\zeta}(q)$.

Kernel PLS with Gaussian data

Under assumptions of Theorem 1 and (D1), (D2) we get

$$\|\widehat{f}_{\widehat{s}} - f\|_2 = \left\{ egin{array}{c} O\{n^{-r/(2r+1)}\}, & q > 1, \ O\{n^{-qr/(2r+1)}\}, & q \in (0,1). \end{array}
ight.$$

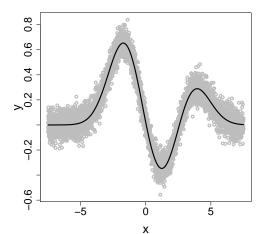
Under assumptions of Theorem 2 and (D1), (D2) we get

$$\|\widehat{f}_{\hat{s}} - f\|_2 = \left\{ egin{array}{c} O\{n^{-r/(2r+\zeta)}\}, & q > 1, \ O\{n^{-qr/(2r+\zeta)}\}, & q \in (0,1). \end{array}
ight.$$

Stationary data with q > 1 do not alter the convergence rate, in contrast to the long-range dependent data with $q \in (0, 1)$.

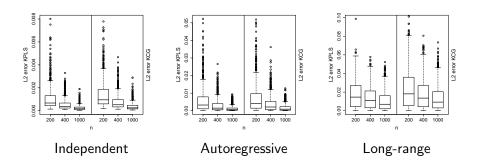
Simulations

Let \mathcal{H} be the RKHS corresponding to $K(x, y) = \exp(-I||x - y||^2)$, l > 0 and take $f \in \mathcal{H}$:



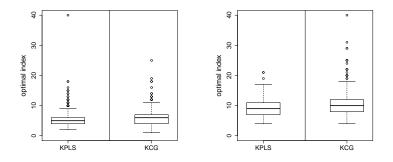
Simulations

L₂ errors of KPLS and KCG for different sample sizes and dependence



Simulations

Stopping times (CV) of KPLS and KCG for different sample sizes and i.i.d. data

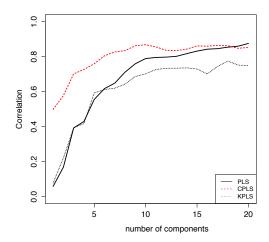


n = 200

n = 1000

Protein data

Aquaporin data are well-described by a linear model; CPLS is a linear PLS that takes into account dependence in the data:



Protein data

Another protein: T4 Lysozyme of the bacteriophafe T4; n = 4601, $d = 3 \cdot 486$ estimated by KPLS, KPCR and PLS.

