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Motivating example

Proteins

• are large biological molecules

• function often requires dynamics

• configuration space is high-dimensional

Group of Bert de Groot seeks to identify a relationship between

collective atomic motions of a protein

and

some specific protein’s (biological) function.
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Motivating example

The data from the Molecular Dynamics (MD) simulations:

• Yt ∈ R is a functional quantity of interest at time t, t = 1, . . . , n

• Xt ∈ R3N are Euclidean coordinates of N atoms at time t

Stylized facts

• d = 3N is typically high, but d � n

• {Xt}t , {Yt}t are (non-)stationary time series

• some (large) atom movements might be unrelated to Yt

Functional quantity Yt to be modelled a function of Xt .
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Yeast aquaporin (AQY1)

• Gated water channel

• Yt is the opening diameter (red line)

• 783 backbone atoms

• n = 20, 000 observations on 100 ns timeframe
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AQY1 time series

Movements of the first atom and the diameter of channel opening
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Model

Assume

Yt = f (Xt) + εt , t = 1, . . . , n,

where

• {Xt}t is a d-dimensional stationary time series

• {εt}t i.i.d. zero mean sequence independent of {Xt}t
• f ∈ L2(P X̃ ), X̃ is independent of {Xt}t and {εt}t and P X̃ = PX1

The closeness of an estimator f̂ of f is measured by∥∥∥f̂ − f
∥∥∥2
2

= E
X̃

{
f̂ (X̃ )− f (X̃ )

}2
.
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Simple linear case

Hub, J.S. and de Groot, B. L. (2009) assumed a linear model

Yi = XT
i β + εi , i = 1, . . . , n,

Xi ∈ Rd , or in matrix form Y = Xβ + ε, ignored dependence

in the data and tried to regularise the estimator by using PCA.
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Motivating example

PC regression with 50 components
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Motivating example

Partial Least Squares (PLS) leads to superior results
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Regularisation with PCR and PLS

Consider a linear regression model with fixed design

Y = Xβ + ε.

In the following let A = XTX and b = XTY .

PCR and PLS regularise β with a transformation H ∈ Rd×s s.t.

β̂s = H arg min
α∈Rs

1

n
‖Y − XHα‖2 = H(HTAH)−1HTb,

where s ≤ d plays the role of a regularisation parameter.

In PCR matrix H consists of the first s eigenvectors of A = XTX .

10 / 39



Regularisation with PLS

In PLS one derives H = (h1, . . . , hs), hi ∈ Rd as follows

1 Find
h1 = arg max

h∈Rd

‖h‖=1

ĉov(Xh,Y )2 ∝ XTY = b

2 Project Y orthogonally: Xh1(hT1 A h1)−1hT1 X
TY = X β̂1

3 Iterate the procedure according to

hi = arg max
h∈Rd

‖h‖=1

ĉov(Xh,Y − X β̂i−1)2, i = 2, . . . , s

Apparently, β̂s is highly non-linear in Y .
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Regularisation with PLS

For PLS is known that hi ∈ Ki (A, b), i = 1, . . . , s, where

Ki (A, b) = span{b,Ab, . . . ,Ai−1b} is a Krylov space of order i .

With this the alternative definition of PLS is

β̂s = arg min
β∈Ks(A,b)

‖Y − Xβ‖2.

Note that any βs ∈ Ks(A, b) can be represented as

βs = Ps(A)b = Ps(XTX )XTY = XTPs(XXT )Y ,

where Ps is a polynomial of degree at most s − 1.
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Regularisation with PLS

For the implementation and proofs the residual polynomials

Rs(x) = 1− xPs(x)

are of interest. Polynomials Rs

• are orthogonal w.r.t. an appropriate inner product

• satisfy a recurrence relation

Rs+1(x) = asxRs(x) + bsRs(x) + csRs−1(x)

• are convex on [0, rs ], where rs is the first root of Rs(x) and
Rs(0) = 1.
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PLS and conjugate gradient

PLS is closely related to the conjugate gradient (CG) algorithm for

Aβ = XTXβ = XTY = b.

The solution of this linear equation by CG is defined by

β̂CGs = arg min
β∈Ks(A,b)

‖b − Aβ‖2 = arg min
β∈Ks(A,b)

‖XT (Y − Xβ)‖2.
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CG in deterministic setting

CG algorithm has been studied in Nemirovskii (1986) as follows:

• Consider Āβ = b̄ for a linear bounded Ā : H → H
• Assume that only approximation A of Ā and b of b̄ are given

• Set β̂CGs = arg minβ∈Ks(A,b) ‖b − Aβ‖2H.
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CG in deterministic setting

Assume

(A1) max{‖Ā‖op, ‖A‖op} ≤ L, ‖Ā− A‖op ≤ ε and ‖b̄ − b‖2H ≤ δ

(A2) The stopping index s satisfies the discrepancy principle

ŝ = min{s > 0 : ‖b − A β̂s‖H < τ(δ‖β̂s‖H + ε)}, τ > 0

(A3) β = Āµu for ‖u‖H ≤ R, µ,R > 0 (source condition).

Theorem (Nemirovskii, 1986)

Let (A1) – (A3) hold and ŝ <∞. Then for any θ ∈ [0, 1]

‖Āθ(β̂ŝ − β)‖2H ≤ C (µ, τ)R
2(1−θ)
1+µ (ε+ δRLµ)

2(θ+µ)
1+µ .
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Kernel regression

A nonparametric model

Yi = f (Xi ) + εi , i = 1, . . . , n, Xi ∈ Rd

is handled in the reproducing kernel Hilbert space (RKHS) framework.

Let H be a RKHS, that is

• (H, 〈·, ·〉H) is a Hilbert space of functions f : Rd → R with

• a kernel function k : Rd × Rd → R, s.t. k(·, x) ∈ H and

f (x) = 〈f , k(·, x)〉H, x ∈ Rd , f ∈ H.

Unknown f is estimated by f̂ =
∑n

i=1 α̂ik(·,Xi ).
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Kernel regression

Define operators

• Sample evaluation operator (analogue of X ):

Tn : f ∈ H 7→ {f (X1), . . . , f (Xn)}T ∈ Rn

• Sample kernel integral operator (analogue of XT/n):

T ∗n : u ∈ Rn 7→ n−1
∑n

i=1 k(·,Xi )ui ∈ H

• Sample kernel covariance operator (analogue of XTX/n):

Sn = T ∗nTn : f ∈ H 7→ n−1
∑n

i=1 f (Xi )k(·,Xi ) ∈ H

• Sample kernel (analogue of XXT/n):

Kn = TnT
∗
n = n−1{k(Xi ,Xj)}ni ,j=1
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Kernel PLS and kernel CG

Now we can define the kernel PLS estimator as

α̂s = arg min
α∈Ks(Kn,Y )

‖Y − Knα‖2 = arg min
α∈Ks(TnT∗

n ,Y )
‖Y − TnT

∗
nα‖2,

or, equivalently, for f = T ∗nα

f̂s = arg min
f ∈Ks(Sn,T∗

n Y )
‖Y − Tnf ‖2, s = 1, . . . , n.

The kernel CG estimator is then defined as

f̂ CGs = arg min
f ∈Ks(Sn,T∗

n Y )
‖T ∗n (Y − Tnf )‖2H.
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Results for Kernel CG and PLS

Blanchard and Krämer (2010)

• used stochastic setting with i.i.d. data (Yi ,Xi )

• proved convergence rates for KCG using ideas in Nemirovskii
(1986), Hanke (1995), Caponnetto & de Vito (2007)

• argued that the proofs for kernel CG can not be directly
transferred to kernel PLS

In this work we

• use stochastic setting with dependent data

• prove convergence rates for kernel PLS

building up on Hanke (1995) and Blanchard and Krämer (2010).
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Kernel PLS: assumptions

Consider now the model specified for the protein data

Yt = f (Xt) + εt , t = 1, . . . , n.

Let H be a RKHS with kernel k and assume

(C1) H is separable;

(C2) ∃ κ > 0 s.t. |k(x , y)| ≤ κ, ∀x , y ∈ Rd and k is measurable;

Under (C1) the Hilbert-Schmidt norm of operators from H to H is
well-defined and (C2) implies that all functions in H are bounded.
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Kernel PLS: assumptions

Let T and T ∗ be population versions of Tn and T ∗n :

T : f ∈ H 7→ f ∈ L2(P X̃ )

T ∗ : f ∈ L2(P X̃ ) 7→
∫

f (x)k(·, x)dP X̃ (x) ∈ H.

It implies population versions of Sn and Kn:

S = T ∗T and K = TT ∗.

Operators T and T ∗ are adjoint and S , K are self-adjoint.
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Kernel PLS: assumptions

As in Nemirovskii (1986) we use the source condition
as an assumption on regularity of f :

(SC) ∃ r ≥ 0, R > 0 and u ∈ L2(P X̃ ) s.t. f = K ru and ‖u‖2 ≤ R

If r ≥ 1/2, then f ∈ L2(P X̃ ) coincides a.s. with fH ∈ H (f = TfH).

The setting with r < 1/2 is referred to as the outer case.
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Kernel PLS: assumptions

Under suitable regularity conditions due to Mercer’ theorem

K (x , y) =
∑
i

ηiφi (x)φi (y)

for an orthonormal basis {φi}∞i=1 for L2(P X̃ ) and η1 ≥ η2 ≥ . . ..

Hence,

H =

{
f : f =

∑
i

θiφi (x) ∈ L2(P X̃ ) and
∑
i

θ2i
ηi
<∞

}
.

The source condition corresponds to f ∈ Hr , where

Hr =

{
f : f =

∑
i

θiφi (x) ∈ L2(P X̃ ) and
∑
i

θ2i
η2ri
≤ R2

}
.
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Kernel PLS: first result

Theorem (Singer, K., Munk, 2017)

Assume (C1), (C2) and (SC) hold with r ≥ 3/2, as well as

P(‖Sn − S‖HS ≤ Cδγn) ≥ 1− ν/2

P(‖T ∗nY − Sf ‖H ≤ Cεγn) ≥ 1− ν/2,

for constants Cε,Cδ > 0, ν ∈ (0, 1] and a sequence {γn}n ∈ [0,∞),
γn → 0. Define the stopping index with C = C (ν,Cε,Cδ, r , κ,R)

ŝ = min

{
1 ≤ s ≤ n :

s∑
i=0

‖Sn f̂i − T ∗nY ‖−2H ≥ (Cγn)−2

}
.

Then it holds with probability at least 1− ν that

‖f̂ŝ − f ‖2 = O
{
γ
2r/(2r+1)
n

}
.
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Kernel PLS: first result

• The rate of convergence is driven by γn, which enters the
concentration inequalities.

• γn = O(n−1/2) results in the same convergence rates as
as in Blanchard & Krämer (2010) for independent data.

• The rate is adaptive: ŝ is independent of r .

• The stopping rule for the kernel CG has the form
‖Sn f̂ CGs − T ∗nY ‖H ≤ Cγn.
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Kernel PLS: assumptions

The optimal rates depend both on the regularity of the function
and on the structure of H described e.g. via tr

{
K (K + λI )−1

}
.

Zhang (2005) suggested the concept of effective dimensionality

(ED) ∃ ζ ∈ (0, 1], D > 0 s.t. tr
{
K (K + λI )−1

}
≤ Dλ−ζ , ∀λ > 0.

and found the optimal convergence rates that depends on r and ζ.

For example, if ηi ≤ c i−1/ζ , then

tr
{
K (K + λI )−1

}
=
∑
i

ηi
ηi + λ

≤ c̃(α, c)λ−ζ .
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Kernel PLS: second result

To adapt the results of Caponnetto & De Vito (2007) to our setting,

the following concentration inequalities (CI) need to hold:

P(‖Sn − S‖HS ≤ Cδγn) ≥ 1− ν/3

P(‖(S + λ)−1/2(T ∗nY − Sf )‖H ≤ Cελ
r ) ≥ 1− ν/3

P(‖(S + λ)(Sn + λ)−1‖HS ≤ C 2
ψ) ≥ 1− ν/3

for Cε,Cδ,Cψ > 0, λ > 0, ν ∈ (0, 1] and a sequence {γn}n, γn → 0.

28 / 39



Kernel PLS: second result

Theorem (Singer, K., Munk, 2017)

Let (C1), (C2), (SC), (ED) hold with r ≥ 1/2 and ζ ∈ (0, 1], as well

as (CI) with λ ∝ γ2/(2r+ζ)n . Define the stopping index ŝ by

ŝ = min

{
1 ≤ s ≤ n :

s∑
i=0

‖Sn f̂i − T ∗nY ‖−2H ≥ (Cγn)−2r/(2r+ζ+1)

}

for C = C (ν,Cε,Cδ,Cψ, κ, r ,R,D). Then it holds with probability at
least 1− ν

‖f̂ŝ − f ‖2 = O
{
γ
2r/(2r+ζ)
n

}
.
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Kernel PLS: second result

Similar to Blanchard & Krämer (2010):

• Rates obtained in the theorem without (ED) correspond to the
worst case ζ = 1, but are adaptive.

• Rates obtained in the theorem with (ED) are optimal if
γn = O(n−1/2), but require the knowledge of r and ζ for ŝ.

• For the outer case f /∈ H additional assumptions are needed to
obtain the optimal rate, see e.g. Mendelson & Neeman (2009).
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Kernel PLS: Concentration inequalities

Under (C1) and (C2) it holds with probability at least 1− ν that

‖Sn − S‖2HS ≤
δn
ν

and ‖T ∗nY − Sf ‖2H ≤
εn
ν
,

where

δn =
C1

n
+

2

n2

n∑
h=2

(n − h)

∫
R2d

k2(x , y)dµh(x , y)

εn =
C2

n
+

2

n2

n∑
h=2

(n − h)

∫
R2d

k(x , y)f (x)f (y)dµh(x , y)

for dµh(x , y) = dPXh,X1(x , y)− dPX1(x)dPX1(y).
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Kernel PLS: Concentration inequalities

Hence, γn ∝ (δn + εn) converges to zero iff the sums in
δn and εn are of order not larger than n2−ε, ε > 0.

We make additional assumptions on {Xt}t :

(D1) X1 ∼ Nd(0, σ1Σ), (Xh,X1)T ∼ N2d(0,Σh), h = 2, . . . , n with

Σh =

(
σ1 σh
σh σ1

)
⊗ Σ,

where Σ is a positive definite symmetric matrix.

(D2) For ρh = σ−11 σh there exists q > 0 and 0 < c1 < c2 such that

c1h
−q ≤ |ρh| ≤ c2h

−q, h = 1, . . . , n.
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Kernel PLS: Concentration inequalities

If additionally to (C1) and (C2), also (D1) and (D2) hold, then

δn ≤ C1{φn(q) + n−1} and εn ≤ C2{φn(q) + n−1},

for suitable C1,C2 > 0 and

φn(q) = c

 n−1ζ̃(q) , q > 1
n−1 log(n){5− log(4)} , q = 1

n−q
[
{2(1− q)−1 − (2− q)−1}+ (2− q)−122−q

]
, q ∈ (0, 1),

for the Riemann-zeta function ζ̃(q).
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Kernel PLS with Gaussian data

Under assumptions of Theorem 1 and (D1), (D2) we get

‖f̂ŝ − f ‖2 =

{
O{n−r/(2r+1)}, q > 1,

O{n−qr/(2r+1)}, q ∈ (0, 1).

Under assumptions of Theorem 2 and (D1), (D2) we get

‖f̂ŝ − f ‖2 =

{
O{n−r/(2r+ζ)}, q > 1,

O{n−qr/(2r+ζ)}, q ∈ (0, 1).

Stationary data with q > 1 do not alter the convergence rate,
in contrast to the long-range dependent data with q ∈ (0, 1).
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Simulations

Let H be the RKHS corresponding to K (x , y) = exp(−l‖x − y‖2),
l > 0 and take f ∈ H:
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Simulations

L2 errors of KPLS and KCG for different sample sizes and dependence
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Simulations

Stopping times (CV) of KPLS and KCG for different sample sizes
and i.i.d. data
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Protein data

Aquaporin data are well-described by a linear model;
CPLS is a linear PLS that takes into account dependence in the data:
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Protein data

Another protein: T4 Lysozyme of the bacteriophafe T4;
n = 4601, d = 3 · 486 estimated by KPLS, KPCR and PLS.
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