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Historical start: Microarray data (Golub et al., 1999)

Gene expression levels of more than 3000 genes are measured for n = 72
patients, either suffering from acute lymphoblastic leukemia (“X”, 47
cases) or acute myeloid leukemia (“O”, 25 cases). Obtained from
Affymetrix oligonucleotide microarrays.



Gene expression analysis

100-1000 
people

1000-20000
genes

cancer 
(sub-)type



Large-scale inference problems

sample size predictor variables goal
gene hundreds of thousands predict cancer

expression people of genes (sub-)type
webpage millions to billions of billions of word- predict

ads webpages and word-pair click-through
frequencies rate

credict thousands to billions of thousands to billions detect
card transactions information pieces about fraudulent

fraud transaction/customer transactions
medical thousands of tens of thousands to estimate

data people billions of indicators risk of
for symptoms/drug-use stroke

particle millions of millions of classify type
physics particle collisions intensity measurements of particles

created

Inference “works” if we need just a small fraction of variables to make a
prediction (but do not yet know which ones).



High-dimensional data

Let Y be a real-valued response in Rn (binary for classification),
X a n × p-dimensional design and assume a linear model in which

Y = Xβ∗ + ε+ δ,

P(Y = 1) = f (Xβ∗ + δ), where f (x) = 1/(1 + exp(−x))

for some (sparse) vector β∗ ∈ Rp, noise ε ∈ Rn and model error δ ∈ Rn.
Regression (or classification) is high-dimensional if p � n.



Basis Pursuit (Chen et al. 99) and Lasso (Tibshirani 96)

Let Y be the n-dimensional response vector and X the n × p-dimensional
design.
Basis Pursuit (Chen et al., 99)

β̂ = argmin ‖β‖1 such that Y = Xβ.

Lasso:
β̂τ = argmin ‖β‖1 such that ‖Y − Xβ‖2 ≤ τ.

Equivalent to (Tibshirani, 96):

β̂λ = argmin ‖Y − Xβ‖2 + λ‖β‖1.

Combines sparsity (some β̂-components are 0) and convexity. Many
variations exist.



Two important properties:

Mixing two equally good solutions always improves the fit (as loss
function is convex)

Mixing solutions produces another valid solution (as feasible sets are
convex)







When does it work?

For prediction oracle inequalities in the sense that

‖X (β̂ − β∗)‖22/n ≤ c log(p)
σ2s

n

for some constant c > 0, need Restricted Isometry Property (Candes,
2006) or weaker compatibility condition (Geer, 2008). Slower
convergence rates possible with weaker assumptions (Greenstein and
Ritov, 2004).

For correct variable selection in the sense that

P
(
∃λ : {k : β̂λk 6= 0} = {k : β∗k 6= 0}

)
≈ 1,

need strong irrepresentable (Zhao and Yu, 2006) or neighbourhood
stability condition (NM and Bühlmann, 2006).
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Compatibility condition

The usual minimal eigenvalue of the design

min{‖Xβ‖22 : ‖β‖2 = 1}

always vanishes for high-dimensional data with p > n.

The φ be the (L,S)-restricted eigenvalue (Geer, 2007):

φ2(L,S) = min{s‖Xβ‖22 : ‖βS‖1 = 1 and ‖βSc‖1 ≤ L},

where s = |S | and (βS)k = βk1{k ∈ S}.
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1 If φ(L,S) > c > 0 for some L > 1, then we get oracle rates for
prediction and convergence of ‖β∗ − β̂λ‖1.

2 If φ(1, S) > 0 and f = Xβ∗ for some β∗ with ‖β∗‖0 ≤ s, then the
following two are identical

argmin‖β‖0 such that Xβ = f

argmin‖β‖1 such that Xβ = f .

The latter equivalence requires otherwise the stronger Restricted Isometry
Property which implies that ∃δ < 1 such that

∀b with ‖b‖0 ≤ s : (1− δ)‖b‖22 ≤ ‖Xb‖22 ≤ (1 + δ)‖b‖22,

which can be a useful assumption for random designs X , as in compressed
sensing.
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Three examples:

1 Compressed sensing

2 Electro-retinography

3 Mind reading



Compressed sensing

Images are often sparse after taking a wavelet transformation X :

u = Xw , where

w ∈ Rn: original image as n-dimensional vector

X ∈ Rn×n: wavelet transformation

u ∈ Rn: vector with wavelet coefficients



Original wavelet transformation:

u = Xw , where

The wavelet coefficients u are often sparse in the sense that it has only a
few large entries. Keeping just a few of them allows a very good
reconstruction of the original image w .
Let ũ = u1{|U| ≥ τ} be the hard-thresholded coefficients (easy to store).
Then re-construct image as w̃ = X−1ũ.



Conventional way:

measure image w with 16 million pixels

convert to wavelet coefficients u = Xw

throw away most of u by keeping just the largest coefficients

Is efficient as long as pixels are cheap.



For situations where pixels are expensive (different wavelengths, MRI) can
do compressed sensing: observe only

y = Φu = Φ(Xw),

where for q � n, matrix Φ ∈ Rq×n has iid entries drawn from N (0, 1).
One entry of q-dimensional vector y is thus observed by a random
transformation of the original image.

(Pseudo) Random Optical Projections
Bi  tt   l d d i t  i   • Binary patterns are loaded into mirror array: 
– light reflected towards the 

lens/photodiode (1) 
– light reflected elsewhere (0)
– pixel-wise products summed 

by lensy

• Pseudorandom number generator outputs 
measurement basis vectors …

Each random mask corresponds to one row of Φ.

Reconstruct u by Basis Pursuit:

û = argmin‖ũ‖1 such that Φũ = y .



Observe
y = Φu = Φ(Xw),

where for q � n, matrix Φ ∈ Rq×n has iid entries drawn from N (0, 1).
Reconstruct wavelet coefficients u by Basis Pursuit:

û = argmin‖ũ‖1 such that Φũ = y .

Matrix Φ satisfies for q ≥ s log(p/s) with high probability the Random
Isometry Property, including the existence of a δ < 1 such that (Candes,
2006) for all s-sparse vectors

(1− δ)‖b‖22 ≤ ‖Φb‖22 ≤ (1 + δ)‖b‖22.

Hence, if original wavelet coeffcients are s-sparse, we only need to make of
order s log(n/s) measurements to recover u exactly (with high probability)!
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Rice CI Camera
Object

Light

Lens 1

DMD+ALP Board

Lens 2

Photodiode circuit

dsp.rice.edu/cs/camera



Image Acquisition

dsp.rice.edu/cs/camera



Retina Checks (Electroretinography)

Can one identify “blind” spots on the retina while measuring only the
aggregate electrical signal ?
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Assume there are p retinal areas (corresponding to the blocks in the shown
patterns) of which some can be unresponsive.
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retinal areas

overall electrical 
response

Can detect s unresponsive retinal areas with just s log(p/s) random
patterns.



Mind reading

Can use Lasso-type inference to infer for a single voxel in the early visual
cortex which stimuli lead to neuronal activity using fmri-measurements
(Nishimoto et al., 2011 at Gallant Lab, UC Berkeley).

Voxel A

Show movies and detect which parts of the image a particular voxel of
100k neurons is sensitive to.



Voxel A Voxel B Voxel C

page 22 
December 10, 
2012 

Back to fMRI prblem:  
       Spatial Locations of Selected Features  

Voxel A Voxel B Voxel C 

CV 

ES-CV 

Prediction on Voxels A-C: CV 0.72, ES-CV 0.7  
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Back to fMRI prblem:  
       Spatial Locations of Selected Features  

Voxel A Voxel B Voxel C 

CV 

ES-CV 

Prediction on Voxels A-C: CV 0.72, ES-CV 0.7  Learn a Lasso regression that predicts neuronal activity in each separate
voxel. Dots indicate large regression coefficients and thus important
regions for a voxel.



Allows to forecast brain activity at all voxels, given an image.

Voxel A

?



Given only brain activity, can reverse the process and ask which image best
explains the neuronal activity (given the learned regressions).

?





Four challenges:

Trade-off between statistical and computational efficiency

Inhomogeneous data

Confidence statements

Interactions in high dimensions



Interactions

Many datasets are only moderately high-dimensional with raw data

Activity of approximately 20k genes in microarray data

Presence of about 20k words in texts/websites

About 15k different symptoms and 15k different drugs recorded in
medical histories (US).

Interactions look for effects that are caused by simultaneous presence of
two or more variables.

are two or more genes active at the same time ?

do two words appear close together ?

have two drugs been taken simultaneously ?



Medical data

OMOP: Observational Medical Outcomes Project (omop.org)

1 Collect medical information (drugs taken, symptoms diagnosed) for
100.000 patients

2 In total, about 15.000 drugs and 15.000 distinct symptoms encoded.



Try to detect drug-drug interactions or make risk assesments based on
medical data:
Is drug A changing the risk of a stroke if taken together with drug B ?

NO STROKE

STROKE

p
e
o
p

le

medications taken suffered stroke?

Toy data for 10 “patients” (instead of 10k) with six drugs (instead of 15k).
Is there a pattern that differentiates the stroke from the non-stroke
patients?
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Can generate very high-dimensional data quickly if expanding interactions
as new dummy variables.
Cannot check all interactions as there are already > 1012 interactions of
third order (for p ≈ 30k). If checking hundred third-order interaction per
second, it would take more than 1400 years for a single dataset.

Can beat the complexity of O(ps) when seaching for interactions of
order s in certain circumstances.
If data are sufficiently sparse, we can search over observations, not
variables (Random Intersection Trees, Shah & NM, 2014), getting a lower
computational complexity than with naive search.



Example: Tic-Tac-Toe Data
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Dataset with endgames of Tic-Tac-Toe games.
Learn the rules of the game (or probabilities of
winning) by looking at the outcomes of previous
games.

Each variables is coded as binary (e.g. “is the first
square occupied by a black stone?”)

Basic Idea of Random Intersection Trees: take a
randomly chosen sets of games where black won
and look at what the outcomes have in common.



Arranging the search on a tree

Computing intersections is cheap if the sets are already small.
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Random Intersection Search
Tree.

Intersections are shown in the
nodes. Random observations
along edges. Stop if pattern
becomes too frequent for
opposite class (white wins).

Computational complexity
depends on the sparsity of
the variables and frequency of
the interaction but can be as
low as O(p) even for s > 2.



Four challenges:

Trade-off between statistical and computational efficiency

Inhomogeneous data

Confidence statements

Interactions in high dimensions



Confidence Intervals for high-dimensional regression

If prediction is only goal, point estimation of β∗ ∈ Rp is sufficient.

Often, we want to know exactly which coefficients are really large:

which regions really activate a given region in the brain ?
which genes are relevant to predict cancer type ?
which taken drugs or personal characteristics are influential to predict
increased risk of heart attack?



For p � n, can we get confidence intervals for β∗ in

Y = Xβ∗ + ε ?

The null-space of X is at least p − n-dimensional, and β∗ is either the `0-
or `1-sparsest vector fulfiling E (Y ) = Xβ.



At least four possible approaches:

Data-splitting Wasserman and Roeder, 2009; NM, Meier and
Buhlmann, 2009

Residualizing variables Zhang, 2011; Geer, Buhlmann and Ritov,
2013; Javanmard and Montanari, 2013

Residual-type bootstrap approaches Chatterjee and Lahiri, 2013; Liu
and Yu, 2013

Group-testing NM, 2013



Data-splitting

Wasserman and Roeder, 2009; NM, Meier and Buhlmann, 2009

Split the data repeatedly into two halfs.

Select an initial set Ŝ ⊂ {1, . . . , p} of variables on first half
Apply classical low-dimensional testing with variables in Ŝ on second
hald of data

Aggregate p-values by using appropriate quantiles across all splits; for
example twice the median (NM, Meier and Buhlmann, 2009).

Appropriate error control if P(S ⊆ Ŝ) large, where S = {k : β∗k 6= 0}.
Generally requires a condition on the minimal non-zero coefficient of β
(beta-min condition) and compatibility condition. Quite robust in practice.



Residualizing each variable

Zhang, 2011; Geer et al. 2013; Javanmard and Montanari, 2013
For p < n, let

Zk = residuals of Xk when regressing on all other variables {1, . . . , p} \ k.
for the OLS solution β̂OLS ,

β̂OLS
k =

Y tZk

X t
kZk

Translate to Lasso setting, let Zk be identical to above, except that the
regression is done as a Lasso-regression. Set again

β̂k =
Y tZk

X t
kZk

.

Then
β̂k = β∗k + known variance + controllable bias.

Works under the assumption that population covariance Σ of X has
minimal eigenvalue, β∗ is sparse and Σ−1 is sparse.
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Two drawbacks of these approaches:

Assumptions on the design matrix are typically not verifiable.

Testing of individual variables typically not very fruitful for high
correlation between variables.



Group-testing

NM, 2013
Can also get (conservative) confidence intervals for single variables or the
effect of whole groups without making an assumption on the design matrix.
Idea: let C be a region for which P(ε ∈ C ) = 1− α. Then, with
probability at least 1− α,

β∗ = BP(Y − ε) for some ε ∈ C

where BP(Y ) = argmin‖β‖1 such that Xβ = Y is the Basis Pursuit
solution.



Find a region C for which P(ε ∈ C ) = 1− α is high for a suitable
m = m(n) by

C = convex hull(ε1, . . . , εm)

and let
β̂(1), . . . , β̂(m)

be the Basis Pursuit solutions at Y − ε1, . . . ,Y − εm.
Then P(β∗ ∈ B) ≥ 1− α, where

B ∈ {β : ∃α ∈ R+such that Xβ = Y−
m∑
j=1

αjεj and ‖β‖1 ≤
m∑
j=1

αj‖β(j)‖1}

Note that B is convex.



We have P(β∗ ∈ B) ≥ 1− α for a convex set B.
A lower bound for a group effect ‖β∗G‖1 with G ⊆ {1, . . . , p} is then

min
β∈B
‖βG‖1,

which can be solved by linear programming.
Can also find upper bounds for ‖βG‖1 and bounds for ‖β∗G‖2 by quadratic
programming. Unknown noise can be dealt with by sample splitting.



Example: result for Riboflavin production expression data with p = 2000
and n = 115.

Figure 4: Left: the cluster dendrogram for hierarchical clustering of the 2000 variables with the

vitamin expression data (sample size n = 115). One can test all clusters in a top-down manner.

Once a cluster cannot be rejected, all child nodes cannot be rejected as well and the procedure does

not need to proceed along the subtree of a non-rejected cluster. Middle: the height of each cluster

G is shown proportional to the number of its members. The area of the red circles at each cluster

node are proportional to the lower bound on the `1-norm k�⇤
Gk1 and the area of a cluster node is

proportional to the number of variables it contains. Twenty-four clusters have a non-zero bound and

three of them are non-overlapping (blue arrows). Right: a close-up of the shaded area in the middle

panel, showing that two non-overlapping clusters have been selected in this part of the dendrogram.

3.4 GHz CPU. The projection into a s = 5-dimensional space is thus about ten times faster to

compute than the original estimator without any projection. The speed savings can be even larger

for datasets with thousands or more observations.

It is evident that the procedure provides error control (as already proven above) and has a

decent chance to detect significant groups of variables, even if the variables within a group are

highly correlated. In fact, the variables could be perfectly correlated in each block (⇢ = 1) and the

results would be almost identical as in setting (i). This setting of perfect colinearity violates all

typical design assumption necessary to get confidence intervals, yet we still have a non-negligible

power to detect the e↵ect of the group as a whole with the proposed procedure.

3.2 Vitamin expression data

Next, we take a gene expression dataset, which was kindly provided by DSM Nutritional Products.

As described in Meinshausen and Bühlmann [2010], we have for n = 115 samples a continuous

response variable measuring the logarithm of the vitamin B12 production rate of Bacillus Subtilis.

Along with this information, the expression levels of p = 4088 genes have been measured, covering

essentially the whole genome of Bacillus Subtilis. The results in Meinshausen and Bühlmann [2010]

indicate that Lasso-selection of individual genes is very unstable. We do not touch upon the fact

14

Most methods implemented in R-package hdi on R-forge (hopefully soon
CRAN).
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