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Poisson DPP DPP with
stronger inhibition

I Determinantal point processes (DPP) are inhibitive/regular/repulsive point
processes.

I Introduced by O. Macchi in 1975 to model fermions in quantum mechanics.

I Several theoretical studies appeared in the 2000’s.

I Statistical models and inference have so far been largely unexplored.
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Poisson DPP DPP with
stronger inhibition

I Determinantal point processes (DPP) are inhibitive/regular/repulsive point
processes.

I Introduced by O. Macchi in 1975 to model fermions in quantum mechanics.

I Several theoretical studies appeared in the 2000’s.

I Statistical models and inference have so far been largely unexplored.
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Poisson DPP DPP with
stronger inhibition

I Determinantal point processes (DPP) are inhibitive/regular/repulsive point
processes.

I Introduced by O. Macchi in 1975 to model fermions in quantum mechanics.

I Several theoretical studies appeared in the 2000’s.

I Statistical models and inference have so far been largely unexplored.
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Poisson DPP DPP with
stronger inhibition

I Determinantal point processes (DPP) are inhibitive/regular/repulsive point
processes.

I Introduced by O. Macchi in 1975 to model fermions in quantum mechanics.

I Several theoretical studies appeared in the 2000’s.

I Statistical models and inference have so far been largely unexplored.
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Gibbs point processes — the usual class of point pro-
cesses used for modelling inhibition

Example: Strauss hard-core process

f ({x1, . . . , xn}) =
1

c(r ,R, β, γ)
βn

∏
i<j

γ
1{‖xi−xj‖≤R}1{‖xi−xj‖>r}, {x1, . . . , xn} ⊂ S,

where S ⊂ Rd is compact; n = 0,1, . . .; 0 ≤ r < R, β > 0, 0 ≤ γ ≤ 1 are
parameters; the density is w.r.t. the unit rate Poisson process.

I The normalizing constant c(r ,R, β, γ) is intractable.

I Interpretations? We don’t know the intensity or any other moment properties.

I We don’t know the distribution of the number of points.

I (Long) MCMC runs are needed...

I We have ignored edge effects: the restriction to B ⊂ S (B 6= S) is not a Strauss
hard-core process.

I On Rd a ‘local specification’ is needed and the issue of phase transition has to
be clarified.
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Notation

I X : spatial point process on Rd

I For any Borel set B ⊆ Rd , XB = X ∩ B.

I For any integer n > 0, denote ρ(n) the n’th order joint intensity of X :

E [#XB1 · · ·#XBn ] =

∫
B1

· · ·
∫

Bn

ρ(n)(x1, . . . , xn) dx1 · · · dxn

for disjoint Borel sets B1, . . . ,Bn ⊆ Rd .

I Intuitively,
ρ(n)(x1, . . . , xn)dx1 · · ·dxn

is the probability that for each i = 1, . . . , n,
X has a point in a region around xi of volume dxi .

I In particular ρ = ρ(1) is the intensity function.
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Definition of a DPP

Definition
Let C be a function Rd × Rd → C.
X is a determinantal point process with kernel C, denoted X ∼ DPP(C), if

ρ(n)(x1, . . . , xn) = det{C(xi , xj}i,j=1,...,n , n = 1,2, . . .

I The Poisson process with intensity ρ(x) is the special case where
C(x , x) = ρ(x) and C(x , y) = 0 if x 6= y .

I For existence, conditions on the kernel C are mandatory.
E.g. det{C(xi , xj}i,j=1,...,n ≥ 0.

For ease of exposition assume

(C1) C is a continuous (complex) covariance function.
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Basic properties (if X ∼ DPP(C) exists)

I The intensity of X is ρ(x) = C(x , x).

I Inhibition, since
ρ(n)(x1, . . . , xn) ≤ ρ(x1) · · · ρ(xn)

with equality iff X is a Poisson process with intensity function ρ.
I The pair correlation function is

g(x , y) :=
ρ(2)(x , y)

ρ(x)ρ(y)
= 1− C(x , y)C(y , x)

C(x , x)C(y , y)
= 1− |R(x , y)|2 ≤ 1

where R is the correlation function corresponding to C.
I Any smooth transformation or independent thinning of X is still a DPP with an

explicitly given kernel.
I The restriction to any Borel set B ⊂ Sd is a DPP with kernel CB(x , y) = C(x , y)

if x , y ∈ B and CB(x , y) = 0 else.
I Given a kernel C, there exists at most one DPP(C).
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Existence

By Mercer’s theorem, for any compact set S ⊂ Rd , C restricted to S × S, denoted
CS, has a spectral representation,

CS(x , y) =
∞∑

k=1

λS
k φ

S
k (x)φS

k (y), (x , y) ∈ S × S,

where λS
k ≥ 0 and {φS

k } is a set of orthonormal basis functions for L2(S), i.e.,∫
S
φS

k (x)φS
l (x) dx = 1{k=l}.

Theorem (Macchi, 1975)
Under (C1), existence of DPP(C) is equivalent to :

λS
k ≤ 1 for all compact S ⊂ Rd and all k.
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Density on a compact set S

Let X ∼ DPP(C) and S ⊂ Rd be any compact set.

Theorem (Macchi (1975))
If λS

k < 1 ∀k, then XS � Poisson(S,1), with density

f ({x1, . . . , xn}) = exp(|S| − D) det{C(xi , xj )}i,j=1,...,n ,

where D = −
∑∞

k=1 log(1− λS
k ) and C̃ : S × S → C is given by

C̃(x , y) =
∞∑

k=1

λ̃S
k φ

S
k (x)φS

k (y), λ̃S
k =

λS
k

1− λS
k
.

I Thus to calculate the density/likelihood we need the spectral representation.

I Conversely, existence of XS is ensured by that

λS
k =

λ̃S
k

1 + λ̃S
k

< 1.
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Simulation

Let X ∼ DPP(C). We want to simulate XS for S ⊂ Rd compact.

Theorem (Hough et al. (2006))
Let B1,B2, . . . be independent Bernoulli variables with means λS

1 , λ
S
1 , . . ., and

K (x , y) =
∞∑

k=1

Bkφ
S
k (x)φS

k (y), (x , y) ∈ S × S.

Then DPP(CS)
d
= DPP(K ).

The algorithm starts by producing n points:

n ∼
∞∑

k=1

Bk , E[n] =
∞∑

k=1

λS
k , Var[n] =

∞∑
k=1

λS
k (1− λS

k ).

NB: Since C is continuous, ∑
λS

k =

∫
S

C(x , x) dx <∞.
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Let B1,B2, . . . be independent Bernoulli variables with means λS

1 , λ
S
1 , . . ., and

K (x , y) =
∞∑

k=1

Bkφ
S
k (x)φS

k (y), (x , y) ∈ S × S.

Then DPP(CS)
d
= DPP(K ).

The algorithm starts by producing n points:

n ∼
∞∑

k=1

Bk , E[n] =
∞∑

k=1

λS
k , Var[n] =

∞∑
k=1

λS
k (1− λS

k ).

NB: Since C is continuous, ∑
λS

k =

∫
S

C(x , x) dx <∞.
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Simulation (cont’d)

Effectively we pick out n <∞ eigenfunctions with probability according to their
eigenvalues and simulate the DPP with finite rank kernel

K (x , y) =
∑

k : Bk =1

φS
k (x)φS

k (y) =
n∑

i=1

φS
ki

(x)φS
ki

(y), (x , y) ∈ S × S.

This is a projection kernel, and the corresponding DPP can be simulated: The
algorithm basically consists of taking a quite abstract procedure described by
Hough et al. (2006) and translating it into implementable linear algebra.

This leads to simulation of the first point, the second given the first point, the third
given the first and second points,...

At each step we have been using rejection sampling...
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Status

I A DPP on Rd is specified through a continuous (complex) covariance function
C : Rd × Rd → C.

I C determines the moment properties of the DPP.

I Given the spectral representation of C on a compact set S we

I have a simple existence condition,

I know the distribution of the number of points falling in S,

I can simulate the process on S,

I can calculate the density/likelihood.

Typically we don’t know the spectral representation!
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Stationary kernels

Consider a stationary kernel: C(x , y) = C0(x − y), x , y ∈ Rd .

Its Fourier transform (or spectral density) is:

ϕ(x) =

∫
C0(t)e−2πix·t dt , x ∈ Rd .

Theorem
Under (C1), if C0 ∈ L2(Rd ), then existence of DPP(C0) is equivalent to

ϕ ≤ 1.

→ This induces a restriction on the parameter space:

That is, there is a trade-off between strong inhibiton and large intensity.

In practice, this restriction implies that if the intensity is large the range (effective
support) of C0 must be small.



32

Jesper Møller

Definition, existence
and basic properties

13 Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

Stationary kernels

Consider a stationary kernel: C(x , y) = C0(x − y), x , y ∈ Rd .

Its Fourier transform (or spectral density) is:

ϕ(x) =

∫
C0(t)e−2πix·t dt , x ∈ Rd .

Theorem
Under (C1), if C0 ∈ L2(Rd ), then existence of DPP(C0) is equivalent to

ϕ ≤ 1.

→ This induces a restriction on the parameter space:

That is, there is a trade-off between strong inhibiton and large intensity.

In practice, this restriction implies that if the intensity is large the range (effective
support) of C0 must be small.



32

Jesper Møller

Definition, existence
and basic properties

13 Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

Stationary kernels

Consider a stationary kernel: C(x , y) = C0(x − y), x , y ∈ Rd .

Its Fourier transform (or spectral density) is:

ϕ(x) =

∫
C0(t)e−2πix·t dt , x ∈ Rd .

Theorem
Under (C1), if C0 ∈ L2(Rd ), then existence of DPP(C0) is equivalent to

ϕ ≤ 1.

→ This induces a restriction on the parameter space:

That is, there is a trade-off between strong inhibiton and large intensity.

In practice, this restriction implies that if the intensity is large the range (effective
support) of C0 must be small.



32

Jesper Møller

Definition, existence
and basic properties

13 Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

Stationary kernels

Consider a stationary kernel: C(x , y) = C0(x − y), x , y ∈ Rd .

Its Fourier transform (or spectral density) is:

ϕ(x) =

∫
C0(t)e−2πix·t dt , x ∈ Rd .

Theorem
Under (C1), if C0 ∈ L2(Rd ), then existence of DPP(C0) is equivalent to

ϕ ≤ 1.

→ This induces a restriction on the parameter space:

That is, there is a trade-off between strong inhibiton and large intensity.

In practice, this restriction implies that if the intensity is large the range (effective
support) of C0 must be small.



32

Jesper Møller

Definition, existence
and basic properties

14 Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

Approximation

WLOG consider S = [−1/2,1/2]d .

Approximate XS by X app ∼ DPPS(Capp) where

Capp(x , y) =
∑
k∈Zd

ϕ(k)e2πik·(x−y), x , y ∈ S.

If x − y ∈ S this is effectively the Fourier expansion

C(x , y) = C0(x − y) =
∑
k∈Zd

αke2πik·(x−y)

since for “most” interesting models

αk =

∫
S

C0(t)e−2πik·t dt ≈
∫
Rd

C0(t)e−2πik·t dt = ϕ(k).

So we claim that C0(t) ≈ 0 for t 6∈ S: in practice, for any reasonable expected
number of points, this is implied by the parameter restriction.
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Modelling based on spectral densities

Idea: instead of modelling C0, model λS
k and φS

k in

C0(y − x) =
∞∑

k=1

λS
k φ

S
k (x)φS

k (y).

Following the previous approximation on the unit square:
I Choose the Fourier basis: φS

k (x) = e−2πik·x .
I Choose λS

k = ϕ(k), where ϕ is a spectral density with ϕ ≤ 1.

I Then we have a well-defined DPP on S, which can easily be simulated and the
density/likelihood can be evaluated exactly (up to series truncation).

I To obtain a DPP on Rd start by modelling ϕ ≤ 1.

Main drawback:
I C0 (and thus the moment properties) is given as an infinite sum→ parameters

may be harder to understand/interpret.
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Intermezzo

This concludes the first part of the talk focusing on the probabilistic
background and approximations for simulation and density
expression.

Now we start doing statistics, so if you got lost or fell asleep you get a
fresh start!
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Examples of parametric models

We will focus on the following parametric models, where ρ > 0 is the intensity, α > 0
is a scale/range parameter, and ν > 0 is a shape parameter:

I Whittle-Matérn model, which includes the exponential model (ν = 1/2) and the
Gaussian model (ν =∞):

C0(x) = ρ
21−ν

Γ(ν)
‖x/α‖νKν(‖x/α‖), x ∈ Rd ,

The parameter restriction is ρ ≤ Γ(ν)
Γ(ν+d/2)(2

√
πα)d .

I Power exponential spectral model

ϕ(x) = ρ
Γ(d/2 + 1)αd

πd/2Γ(d/ν + 1)
exp(−‖αx‖ν), x ∈ Rd .

The parameter restriction is ρ ≤ πd/2Γ(d/ν+1)
Γ(d/2)αd .
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Parametric models in R (so far: contact Ege Rubak;
later on: spatstat)

The parametric families are specified in R via the determinantal family functions (of
class detfamily): detGauss, detMatern, detPowerExp. E.g:

I model <- detGauss(rho=100, alpha=0.05, d=2)
I model <- detMatern(rho=100, alpha=0.03, nu=0.5, d=2)
I model <- detPowerExp(rho=100, alpha=0.17, nu=2, d=2)

Extract the kernel, spectral density, pair correlation function, K -function:
I detkernel(model)
I detspecden(model)
I pcfmodel(model)
I Kmodel(model)
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Simulation in R

Simply use the generic function simulate (then R automatically calls the function
simulate.detmodel):

I model <- detGauss(rho=100, alpha=0.05, d=2)
X <- simulate(model)

I Change the window (default is the unit square):
W <- owin(poly=list(x=c(-1,0,1),y=c(0,1,0)))
X <- simulate(model, W=W)

I Several realizations:
X <- simulate(model, nsim=4)
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Simulation in R

Simply use the generic function simulate (then R automatically calls the function
simulate.detmodel):

I model <- detGauss(rho=100, alpha=0.05, d=2)
X <- simulate(model)

I Change the window (default is the unit square):
W <- owin(poly=list(x=c(-1,0,1),y=c(0,1,0)))
X <- simulate(model, W=W)

I Several realizations:
X <- simulate(model, nsim=4)
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Illustration of simulation algorithm

Step 1. The first point is sampled uniformly on S (stationary case).
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Illustration of simulation algorithm

Step 2. The next point is sampled w.r.t. the following density:
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Illustration of simulation algorithm

Final point is sampled w.r.t. the following density:
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Spanish towns dataset

Ripley (1988): Strauss hard-core model with 4 parameters:

r=hard-core, R=range of interaction, β=abundance, γ=interaction.
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Following Illian et al. (2008): r̂ = 0.83, R̂ = 3.5.
Approximate likelihood method (Huang and Ogata (1999)): β̂ = 0.12 and γ̂ = 0.76.
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Following Illian et al. (2008): r̂ = 0.83, R̂ = 3.5.
Approximate likelihood method (Huang and Ogata (1999)): β̂ = 0.12 and γ̂ = 0.76.
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Alternative DPP models

Gaussian, Whittle-Matérn, and power exponential spectral models fitted using the
function dppm:

I Default estimation method is “partial likelihood” where we use
ρ̂ = n/|W | = 0.043 and MLEs for the rest:
fit <- dppm(X, detGauss())

I Full likelihood:
fit <- dppm(X, detGauss(), method="likelihood")

Highest likelihood: fitted Whittle-Matérn model.
Simulation based likelihood-ratio test for the simpler Gaussian model vs the
Whittle-Matérn model: p = 3%.
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Gaussian, Whittle-Matérn, and power exponential spectral models fitted using the
function dppm:

I Default estimation method is “partial likelihood” where we use
ρ̂ = n/|W | = 0.043 and MLEs for the rest:
fit <- dppm(X, detGauss())

I Full likelihood:
fit <- dppm(X, detGauss(), method="likelihood")

Highest likelihood: fitted Whittle-Matérn model.

Simulation based likelihood-ratio test for the simpler Gaussian model vs the
Whittle-Matérn model: p = 3%.
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Alternative DPP models

Gaussian, Whittle-Matérn, and power exponential spectral models fitted using the
function dppm:

I Default estimation method is “partial likelihood” where we use
ρ̂ = n/|W | = 0.043 and MLEs for the rest:
fit <- dppm(X, detGauss())

I Full likelihood:
fit <- dppm(X, detGauss(), method="likelihood")

Highest likelihood: fitted Whittle-Matérn model.
Simulation based likelihood-ratio test for the simpler Gaussian model vs the
Whittle-Matérn model: p = 3%.



Clockwise from top left: Non-parametric estimate of L(r)− r , G(r), J(r), F (r), and
simulation based 2.5% and 97.5% pointwise quantiles (based on 400 realizations).
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Conclusion of data analysis

Whittle-Matérn model:
I has less parameters
I (arguably) provides a better fit
I has a canonical way of estimating parameters (likelihood)
I direct access to the moments (intensity, pair correlation function, ...)

For the Strauss hard-core model
I parameter estimation relies to a certain extend on “ad-hoc” methods
I the density and moments can only be obtained by MCMC simulation.
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Mucous membrane dataset

Consists of the most abundant type of cell in a bivariate point pattern analysed in
Møller and Waagepetersen (2004).
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We use this unmarked point pattern to illustrate how an inhomogenous DPP can
be fitted to a real dataset.
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Mucous membrane dataset

Consists of the most abundant type of cell in a bivariate point pattern analysed in
Møller and Waagepetersen (2004).
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We use this unmarked point pattern to illustrate how an inhomogenous DPP can
be fitted to a real dataset.
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Modelling inhomogeneity

Assume second-order intensity-reweighted stationarity (Baddeley, Møller &
Waagepetersen, 2000), i.e., the correlation function is translation invariant:

R(x , y) =
C(x , y)√

C(x , x)C(y , y)
=

C(x , y)√
ρ(x)ρ(y)

= R0(x − y).

I Fit a parametric model to ρ depending on relevant covariates (second
coordinate axis in our case).

I Use the fitted intensity to estimate the inhomogeneous g-function (or
K -function).

I Fit a parametric model for R0 via minimum contrast.
I The resulting DPP has kernel

Ĉ(x , y) =
√
ρ̂(x)R̂0(x − y)

√
ρ̂(y).
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Simulation of inhomogeneous model

NB: If a ‘dominating DPP’ with kernel Cdom(x , y) is thinned with retention probability
π(x), the resulting process is a new DPP with kernel

C(x , y) =
√
π(x)Cdom(x , y)

√
π(y).

Thus let ρ̂max = supx∈S{ρ̂(x)} and define a stationary DPP X dom with kernel

Cdom(x , y) = Cdom
0 (x − y) = ρ̂maxR̂0(x − y).

Then our fitted model is simulated by thinning X dom with retention probability
π(x) = ρ̂(x)/ρ̂max, since√

ρ̂(x)

ρ̂max
Cdom(x , y)

√
ρ̂(y)

ρ̂max
=

√
ρ̂(x)R̂0(x − y)

√
ρ̂(y) = Ĉ(x , y).
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DPPs on the sphere

I On the sphere the spherical harmonics constitute a set of basis functions
(given in terms of associated Legendre polynomials).

I Thus we only have to make a parametric model for the eigenvalues λk to have
a DPP on the sphere.

I There are covariance functions on the sphere with known eigenvalues. One is
the Inverse MultiQuadric covariance function.

I We have implemented it in R:
model <- detIMQ(rho=500,delta=0.998)

I Simlulations rely on the previously developed code (with some modifications):
X <- simulate(model)
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A simulated DPP consisting of 441 points on planet
Earth
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DPP vs Gibbs

DPP’s possess appealing properties:

I They provide flexible parametric models of repulsive point processes
(‘soft-core’ cases and some cases with more repulsion).

I Easily and very quickly simulated.

I Closed form expressions for all orders of moments.

I Closed form expression for the density of a DPP on any bounded set.

I Inference is feasible, including likelihood inference. Freely avaliable software!

⇒ Promising alternative to Gibbs point processes.



32

Jesper Møller

Definition, existence
and basic properties

Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

30 Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

DPP vs Gibbs

DPP’s possess appealing properties:

I They provide flexible parametric models of repulsive point processes
(‘soft-core’ cases and some cases with more repulsion).

I Easily and very quickly simulated.

I Closed form expressions for all orders of moments.

I Closed form expression for the density of a DPP on any bounded set.

I Inference is feasible, including likelihood inference. Freely avaliable software!

⇒ Promising alternative to Gibbs point processes.



32

Jesper Møller

Definition, existence
and basic properties

Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

30 Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

DPP vs Gibbs

DPP’s possess appealing properties:

I They provide flexible parametric models of repulsive point processes
(‘soft-core’ cases and some cases with more repulsion).

I Easily and very quickly simulated.

I Closed form expressions for all orders of moments.

I Closed form expression for the density of a DPP on any bounded set.

I Inference is feasible, including likelihood inference. Freely avaliable software!

⇒ Promising alternative to Gibbs point processes.



32

Jesper Møller

Definition, existence
and basic properties

Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

30 Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

DPP vs Gibbs

DPP’s possess appealing properties:

I They provide flexible parametric models of repulsive point processes
(‘soft-core’ cases and some cases with more repulsion).

I Easily and very quickly simulated.

I Closed form expressions for all orders of moments.

I Closed form expression for the density of a DPP on any bounded set.

I Inference is feasible, including likelihood inference. Freely avaliable software!

⇒ Promising alternative to Gibbs point processes.



32

Jesper Møller

Definition, existence
and basic properties

Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

30 Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

DPP vs Gibbs

DPP’s possess appealing properties:

I They provide flexible parametric models of repulsive point processes
(‘soft-core’ cases and some cases with more repulsion).

I Easily and very quickly simulated.

I Closed form expressions for all orders of moments.

I Closed form expression for the density of a DPP on any bounded set.

I Inference is feasible, including likelihood inference. Freely avaliable software!

⇒ Promising alternative to Gibbs point processes.



32

Jesper Møller

Definition, existence
and basic properties

Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

30 Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

DPP vs Gibbs

DPP’s possess appealing properties:

I They provide flexible parametric models of repulsive point processes
(‘soft-core’ cases and some cases with more repulsion).

I Easily and very quickly simulated.

I Closed form expressions for all orders of moments.

I Closed form expression for the density of a DPP on any bounded set.

I Inference is feasible, including likelihood inference. Freely avaliable software!

⇒ Promising alternative to Gibbs point processes.



32

Jesper Møller

Definition, existence
and basic properties

Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

30 Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

DPP vs Gibbs

DPP’s possess appealing properties:

I They provide flexible parametric models of repulsive point processes
(‘soft-core’ cases and some cases with more repulsion).

I Easily and very quickly simulated.

I Closed form expressions for all orders of moments.

I Closed form expression for the density of a DPP on any bounded set.

I Inference is feasible, including likelihood inference. Freely avaliable software!

⇒ Promising alternative to Gibbs point processes.



32

Jesper Møller

Definition, existence
and basic properties

Stationary DPPs and
approximations

Parametric models

Simulation

Stationary data
example

Non-stat. example

DPPs on the sphere
(on going research
project)

31 Concluding remarks

Dept. of Mathematical
Sciences

Aalborg University
Denmark

Future developments

I Implementing more models (circular, generalized Cauchy, generalized sinc,
Laguerre-Gauss, ...).

I Implementing different algorithms for approximating the likelihood (based on
FFT, convolution approximation etc).

I Developing C-code for simulation and inference.

I Developing and implementing more models on the sphere.

I Implementing summary statistics on the sphere.
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