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Part I

Introduction
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Causality: ubiquitous in the sciences

Genetics:
how to infer gene regulatory networks from micro-array data?
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Causality: ubiquitous in the sciences

Neuroscience:
how to infer functional connectivity networks from fMRI data?
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Causality: ubiquitous in the sciences

Social sciences:
does playing violent computer games cause aggressive behavior?
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Causality: ubiquitous in the sciences

Economy:
does austerity reduce national debt?
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Probabilistic Inference

Modeling: modeling the joint distribution of a set of random
variables

p(X ,Y ,Z , . . . ) = f (X ,Y ,Z , . . . ;θ)

Reasoning: using the rules of probability theory to express different
marginal and conditional distributions in terms of each other

Bayes’ rule: p(X |Y ) =
p(Y |X )p(X )

p(Y )

Learning: find the best model(s) to describe the data

ML estimation: arg max
θ

N∏
i=1

f (xi , yi , zi , . . . ;θ)

Prediction: given a model and an observation of some random
variables, what are the values of other random variables?

p(Y |X = x) =?
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Causal Inference

Causal Modeling: modeling the joint distribution of a set of random
variables and how this changes under interventions

p(X ,Y ,Z , . . . ) = . . . ,
p(Y ,Z . . . | do(X = x)) = . . . ,
p(X ,Z , . . . | do(Y = y)) = . . . ,
p(Z , . . . | do(X = x ,Y = y)) = . . .

Causal Reasoning: using rules for expressing different marginal,
conditional and interventional distributions in terms of each other

Pearl’s “do-calculus”, SGS’s “manipulation theorem”

Causal Discovery: find the best causal model(s) to describe the
observational data and interventional data

PC, FCI algorithms (use only observational data)

Causal Prediction: given a causal model and given an intervention,
what are the values of other random variables?

“Covariate adjustment”: p(Y | do(X )) =
∑

W p(Y |X ,W)p(W)
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Probabilistic inference vs. causal inference

Traditional statistics, machine learning

Models the distribution of the data

Focuses on predicting results of observations

Useful e.g. in medical diagnosis: given the symptoms, what is the
most likely disease?

Causal Inference

Models the mechanism that generates the data

Also allows to predict results of interventions

Useful e.g. in medical treatment: if we treat the patient with a drug,
will it cure the disease?
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Outline

Introduction to Causal Inference:
1 Introduction

2 Causal Modeling

Some recent developments:
3 Causal Modeling in case of feedback1

4 Causal Discovery in case of feedback2

5 Outlook

1Joint work with Dominik Janzing and Bernhard Schölkopf
2Joint work with Tom Heskes
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Part II

Causal Modeling
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Structural Causal Models: Definition

Definition [Pearl, 2000; Wright, 1921]

A Structural Causal Model (SCM), also known as Structural Equation
Models (SEM), M is defined by:

1 N observed random variables X1, . . . ,XN and N latent random
variables E1, . . . ,EN

2 N structural equations:

Xi = fi (Xpa(i),Ei ), i = 1, . . . ,N;

effect

causal mechanism

observed direct causes
noise

where the subsets pa(i) ⊆ {1, . . . ,N} \ {i} define the observed direct
causes of Xi ,

3 a joint probability distribution p(E1, . . . ,EN) on latent variables.
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Structural Causal Models: Example

Example

Causal graph GM:

X1X2

X3 X4

X5

Structural causal model M:

X1 = f1(E1) p(E1) = . . .
X2 = f2(E2) p(E2) = . . .
X3 = f3(X1,X2,E3) p(E3) = . . .
X4 = f4(X1,E4) p(E4) = . . .
X5 = f5(X3,X4,E5) p(E5) = . . .

p(E) =
∏

i p(Ei )

Definition

Given a SCM M, the causal graph GM is the directed graph with vertices
{X1, . . . ,XN} and edges Xj → Xi iff fi depends on Xj (i.e., if j ∈ pa(i)).
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Structural Causal Models: Interventions

For a causal model, we also need to model interventions.

Interventions in SCMs

An intervention do(Xi = ξi ) on a variable Xi , forcing it to attain the value
ξi , changes the structural equation for Xi as follows:

Original SCM M: Intervened SCM Mξi
:

Xi = fi (Xpa(i),Ei ) Xi = ξi

Xj = fj (Xpa(j),Ej ) ∀j 6= i Xj = fj (Xpa(j),Ej ) ∀j 6= i
p(E) = . . . p(E) = . . .

Interpretation: overriding default causal mechanisms that normally would
determine the values of the intervened variables.
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Structural Causal Models: Interventions

Example

Observational (no intervention):

Causal graph GM :

X1X2

X3 X4

X5

Structural causal model M :

X1 = f1(E1) p(E1) = . . .
X2 = f2(E2) p(E2) = . . .
X3 = f3(X1,X2,E3) p(E3) = . . .
X4 = f4(X1,E4) p(E4) = . . .
X5 = f5(X3,X4,E5) p(E5) = . . .

p(E) =
∏

i p(Ei )
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Structural Causal Models: Interventions

Example

Intervention do(X1 = ξ1):

Causal graph GMξ1
:

X1X2

X3 X4

X5

Structural causal model Mξ1 :

X1 = ξ1 p(E1) = . . .
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Structural Causal Models: Interventions

Example

Intervention do(X3 = ξ3):

Causal graph GMξ3
:

X1X2

X3 X4

X5

Structural causal model Mξ3 :

X1 = f1(E1) p(E1) = . . .
X2 = f2(E2) p(E2) = . . .
X3 = ξ3 p(E3) = . . .
X4 = f4(X1,E4) p(E4) = . . .
X5 = f5(X3,X4,E5) p(E5) = . . .

p(E) =
∏

i p(Ei )
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Confounders and causal sufficiency

Definition: Confounder

A confounder is a latent common cause of two or more observed variables.
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Confounders and causal sufficiency

Definition: Confounder

A confounder is a latent common cause of two or more observed variables.

Example

Significant correlation (p = 0.008) between human birth rate and
number of stork populations in European countries [Matthews, 2000]

Most people nowadays do not believe that storks deliver babies (nor
that babies deliver storks)

There must be some confounder explaining the correlation

S B S B

?

S B
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Confounders and causal sufficiency

Definition: Confounder

A confounder is a latent common cause of two or more observed variables.

Absence of confounders implies causal sufficiency.

Definition: Causal Sufficiency

If all latent variables E1, . . . ,EN in an SCM are jointly independent, i.e., if

p(E) =
N∏

i=1

p(Ei )

then we say that the observed variables X are causally sufficient.
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Causal feedback and (A)cyclicity

Definition: causal feedback

A SCM incorporates causal feedback if its graph contains a directed cycle

Xi0 → Xi1 → · · · → Xin , Xi0 = Xin

If it does not contain such a directed cycle, the model is called acyclic. If
it is also causally sufficient, its graph is a Directed Acyclic Graph (DAG).
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Causal feedback and (A)cyclicity

Definition: causal feedback

A SCM incorporates causal feedback if its graph contains a directed cycle

Xi0 → Xi1 → · · · → Xin , Xi0 = Xin

If it does not contain such a directed cycle, the model is called acyclic. If
it is also causally sufficient, its graph is a Directed Acyclic Graph (DAG).

Example

In economy, causal feedback is of-
ten present:

R: risks taken by bank;
B: imminent bankruptcy;
S : saved by the government.

S

R

B
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Factorization: Bayesian Networks

Theorem

Any probability distribution induced by an acyclic, causally sufficient SCM
M can be factorized as:

pM(X1, . . . ,XN) =
N∏

i=1

pM(Xi |Xpa(i))

Example

Causal graph GM:

X1X2

X3 X4

X5

Structural causal model M:

X1 = f1(E1) p(E1) = . . .
X2 = f2(E2) p(E2) = . . .
X3 = f3(X1,X2,E3) p(E3) = . . .
X4 = f4(X1,E4) p(E4) = . . .
X5 = f5(X3,X4,E5) p(E5) = . . .

p(X1, . . . ,X5) = p(X1) p(X2) p(X3 |X1,X2) p(X4 |X1) p(X5 |X3,X4)

Joris Mooij (IAS, ISLA, IvI, UvA) Van Dantzig Seminar Talk 2013-12-12 18 / 59



Causal Reasoning: Truncated factorization

The following theorem expresses the joint distribution of a Bayesian
network after an intervention. It is an example of causal reasoning.

Theorem: Truncated factorization

Any probability distribution induced by an acyclic, causally sufficient SCM
M can be factorized as:

pM(X1, . . . ,XN) =
N∏

i=1

pM(Xi |Xpa(i))

After an intervention do(XI = ξI ), the probability distribution becomes:

pMξI

(
X1, . . . ,XN | do(XI = ξI )

)
=

N∏
i=1
i /∈I

pM(Xi |Xpa(i))
∏
i∈I

1[Xi =ξi ]
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Part III

Causal Modeling in case of feedback
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Feedback

Cyclic causal dependencies are also called feedback loops. Examples:

Holding a microphone too close to a loudspeaker.

Predator-prey relationships in biology.

Computer programs running on a single core are acyclic;
parallel programs running on multiple cores can be cyclic.

Example

Two masses, connected by a spring, suspended
from the ceiling by another spring.

Vertical equilibrium positions Q1 and Q2.

Q1 causes Q2.

Q2 causes Q1.

Example of a two-cycle: cannot be modeled
with (causal) Bayesian network.

Q1

Q2
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Causal modeling of feedback systems

Question: What are good mathematical representations of cyclic causal
models?

No consensus in the field. . .

(Causal) Bayesian networks are acyclic by definition, and extending
the definition to cyclic graphs [Schmidt & Murphy, 2009; Itani et al.,
2010] seems problematic.

Extending the global Markov condition to cyclic models for linear
models works [Spirtes, 1993], but nonlinear and discrete models yield
problems [Spirtes, 1995; Pearl & Dechter, 1996; Neal 2000].

Structural Causal Models have a “natural” extension to the cyclic
case. But how to interpret these models in terms of a data generating
process? Is this “the right” mathematical framework?

How do scientists usually model systems with feedback?
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Two different worlds?

Ordinary Differential Equations Structural Causal Models?
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From dynamical systems to causal models (in a nutshell)

1 Ordinary Differential Equations

{
Ẋ = −0.5X + Y , X (0) = 1

Ẏ = −X + 0.2Y , Y (0) = 2

2 Labeled Equilibrium Equations

{
X : 0 = −0.5X + Y

Y : 0 = −X + 0.2Y

3 Structural Causal Model

{
X = 2Y

Y = 5X

4 Dealing with Uncertainty


X = 2Y + EX

Y = 5X + EY

p(EX ,EY ) = . . .
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ODEs: Definition

Definition (ODE)

An Ordinary Differential Equation model (ODE) is a dynamical
system D described by D coupled first-order ordinary differential
equations and initial condition X0:{

Ẋi (t) := dXi
dt (t) = fi (XpaD(i))

Xi (0) = (X0)i

∀i = 1, . . . ,D

paD(i) ⊆ {1, . . . ,D} is the set of parents of variable Xi .

Each fi : RpaD(i) → Ri is a (sufficiently smooth) function.

The structure can be represented as a directed graph GD, with nodes
{Xi}i∈I and a directed edge Xi → Xj iff Ẋj depends on Xi .
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ODEs: Example

Example (Lotka-Volterra model)

Lotka-Volterra model: well-known model from population biology

Abundance of prey X1 ∈ [0,∞) (e.g., rabbits)

Abundance of predators X2 ∈ [0,∞) (e.g., wolves)

ODE D: {
Ẋ1 = X1(θ11 − θ12X2)

Ẋ2 = −X2(θ22 − θ21X1)

{
X1(0) = a

X2(0) = b

Graph GD:

X1 X2
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Perfect Interventions

The dynamical system D is assumed to describe the “natural” or
observational state of the system.

Causal models aim to predict also the effects of interventions in which
the system is actively perturbed from its natural state.

Interventions can be modeled in different ways. Here we look at
perfect interventions.

Definition (Perfect Interventions)

The perfect intervention do(XI = ξI ) means that XI is enforced to
attain the value ξI for all times t ∈ [0,∞).

This changes the ODE D into the intervened system Ddo(XI =ξI ):

Ẋi (t) =

{
0 i ∈ I

fi (XpaD(i)) i ∈ I \ I ,
Xi (0) =

{
ξi i ∈ I

(X0)i i ∈ I \ I
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Perfect Interventions in ODEs: Example

Example (Lotka-Volterra model)

D:

{
Ẋ1 = X1(θ11 − θ12X2)

Ẋ2 = −X2(θ22 − θ21X1)

{
X1(0) = a

X2(0) = b

Perfect intervention do(X2 = ξ2): Monitor the abundance of wolves
and make sure that the number equals the target value ξ2 at all time.

Ddo(X2=ξ2):

{
Ẋ1 = X1(θ11 − θ12X2)

Ẋ2 = − X2(θ22 − θ21X1) 0

{
X1(0) = a

X2(0) = b ξ2

GDdo(X2=ξ2)
: X1 X2
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ODEs: Stability

When studying the system in the limit t →∞, an important concept is
stability:

Definition (Stability)

The ODE D is called stable if there exists a unique equilibrium state
X∗ ∈ RI such that for any initial state X0 ∈ RI , the system converges to
this equilibrium state as t →∞:

∃!X∗∈RI ∀X0∈RI : lim
t→∞

X(t) = X∗.

Example (Counter-example: Lotka-Volterra model)

The Lotka-Volterra model is not stable (it keeps oscillating).
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Stability: Example

Example (Damped coupled harmonic oscillators)

m1 m2 m3 m4

k0 k1 k2 k3 k4

Q = 0 Q = L

Equations of motion (with Q0 := 0,QD+1 := L):

Ṗi = ki (Qi+1 − Qi − li )− ki−1(Qi − Qi−1 − li−1)− bi

mi
Pi

Q̇i = Pi/mi

Because of the friction, this system is stable (oscillations die out):
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Equilibrium of Observational system

Given an ODE D:{
Ẋi (t) = fi (XpaD(i))

Xi (0) = (X0)i

∀i ∈ I

At equilibrium, the rate of change of any variable is zero.

This yields the following equilibrium equations:

0 = fi (XpaD(i)) ∀i ∈ I

This is a set of D coupled equations with unknowns X1, . . . ,XD .

The stability assumption implies that there exists a unique solution
X∗ of the equilibrium equations.
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Labeling Equilibrium Equations

Note that the dynamical system contains “labels” for the equations:
in case of an intervention on Xi , simply change the dynamical
equation for Ẋi .

This information is lost when considering the equilibrium equations.

In order to model perfect interventions, we introduce labels for the
equilibrium equations.

Definition

Given an ODE D: {
Ẋi (t) = fi (XpaD(i))

Xi (0) = (X0)i

∀i ∈ I

its system ED of Labeled Equilibrium Equations (LEE) is given by:

i : 0 = fi (XpaD(i)) ∀i ∈ I
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Induced LEE: Example

Example (Damped coupled harmonic oscillators)

m1 m2 m3 m4

k0 k1 k2 k3 k4

Q = 0 Q = L

Equations of motion:

Ṗi = ki (Qi+1 − Qi − li )− ki−1(Qi − Qi−1 − li−1)− bi

mi
Pi

Q̇i = Pi/mi

The induced Labeled Equilibrium Equations are given by:

Ei :

{
0 = ki (Qi+1 − Qi − li )− ki−1(Qi − Qi−1 − li−1)− bi

mi
Pi

0 = Pi
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Equilibrium of Intervened systems

D:{
Ẋi (t) = fi (XpaD(i)),
Xi (0) = (X0)i

i ∈ I

Ddo(XI =ξI ):{
Ẋi (t) = 0,
Xi (0) = ξi

i ∈ I{
Ẋi (t) = fi (XpaD(i)),
Xi (0) = (X0)i

i ∈ I \ I

ED:

0 = fi (XpaD(i)) i ∈ I

EDdo(XI =ξI )
:

Xi = ξi i ∈ I

0 = fi (XpaD(i)) i ∈ I \ I

intervention

equilibration
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From LEE to SCM

Definition

Given a system of Labeled Equilibrium Equations (LEE) E :

i : 0 = fi (XpaE(i)) ∀i ∈ I

the induced SCM is obtained by solving each equation Ei for Xi in terms of
the other variables:

Xi = gi (XpaE(i)\{i}) ∀i ∈ I

Note: This definition only makes sense if each labeled equilibrium equation
Ei has a unique solution for Xi .
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Induced SCM: Example

Example (Damped coupled harmonic oscillators)

ODE D:

Ṗi = ki (Qi+1 − Qi − li )− ki−1(Qi − Qi−1 − li−1)− bi

mi
Pi

Q̇i = Pi/mi

Induced LEE ED:

Ei :

{
0 = ki (Qi+1 − Qi − li )− ki−1(Qi − Qi−1 − li−1)− bi

mi
Pi

0 = Pi

Induced SCM MED :

Qi =
ki (Qi+1 − li ) + ki−1(Qi−1 + li−1)

ki + ki+1
, Pi = 0.

Graph of induced SCM GMED
:

Q1 Q2 Q3 Q4
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From ODEs to SCMs

Theorem (Mooij, Janzing, Schölkopf, UAI 2013)

Under certain stability conditions on the ODE D and the intervened ODE
Ddo(XI =ξI ):

1 The following diagram commutes:

ODE
D

LEE
ED

SCM
MED

intervened ODE
Ddo(XI =ξI )

intervened LEE
EDdo(XI =ξI )

intervened SCM
MEDdo(XI =ξI )

2 If the intervened ODE Ddo(XI =ξI ) is stable, the induced intervened
SCM MEDdo(XI =ξI )

has a unique solution that coincides with the stable

equilibrium of the intervened ODE Ddo(XI =ξI ).

(Similar result was derived by [Dash, 2003] for the acyclic case.)
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Conclusion: There is a bridge between the two worlds!

Ordinary Differential Equations Structural Causal Models→
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Discussion

We have shown one particular way in which structural causal models
can be “derived”.

This shows that cyclic SCMs (and cyclic LEEs) are a very natural way
to model causal systems with feedback.

This work dealt with the deterministic case. Uncertainty can arise in
several ways:

1 uncertainty about (constant) parameters of the differential equations;
2 uncertainty about the initial condition (in the case of constants of

motion);
3 latent variables (in the case of confounding).

Dealing with uncertainty is work in progress (similar ideas, but more
involved).
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Part IV

Causal Discovery in case of feedback
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Case study: Reconstructing a signalling network

Protein Abundance Data:
[Sachs et al., 2005]

1
2

3
4

5
6

7
8

Raf Mek PLCg PIP2 PIP3 Erk Akt PKA PKC p38 JNK

Condition Reagent Intervention
1 - observational
2 Akt-inhibitor inhibits AKT activity
3 G0076 inhibits PKC activity
4 Psitectorigenin inhibits PIP2 abundance
5 U0126 inhibits MEK activity
6 LY294002 inhibits PIP2/PIP3 activity
7 PMA activates PKC activity
8 β2CAMP activates PKA activity

Causal Mechanism:
(“Signalling network”)

Raf

Mek

Erk

Plcg

PIP2

PKC

PIP3

Akt

PKA

P38Jnk

(depicted here: “consensus” network)
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Motivation

Good test case for causal discovery methods, because:

High-quality data:

Single-cell measurements
Many data points (about 104)
Small measurement noise

Much knowledge about “ground truth”

Possibly important applications in cancer medicine

Good results obtained by [Sachs et al., 2005] assuming acyclicity and
causal sufficiency using Bayesian network learning with discretized data.
But. . .

Data shows evidence of feedback loops (cycles).

No suitable cyclic causal discovery methods available (but:
[Itani et al., 2010, Schmidt and Murphy, 2009] for discretized data).
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The importance of modeling feedback

Feedback plays an important role in many biological systems.

Ignoring feedback may lead to unwanted surprises, e.g.,
[Hall-Jackson et al., 1999]:

“Here, we describe a compound (ZM 336372) that is a potent inhibitor
of the protein kinase c-Raf in vitro. Paradoxically, however, incubation
of mammalian cells with this compound induces an enormous activation
of c-Raf and the B-Raf isoform (measured in the absence of the drug),
suggesting that a feedback control loop exists by which Raf isoforms
suppress their own activation. This unexpected finding may explain why
ZM 336372 does not reverse the phenotype of Ras-transformed cell
lines, and suggests that inhibition of the kinase activity of Raf might
not be a good approach for the development of an anti-cancer drug.”
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The data (scatter plots)
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condition 1 (observational), condition 5 (MEK inhibitor)

Note:

Noise can be very small (so observation noise is small)

Strong correlation between Raf and Mek (consensus: Raf → Mek)

Evidence for feedback (intervening on Mek changes Raf)

No dependence between Mek and Erk (consensus: Mek → Erk)
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Challenge: faithfulness violations

Expected correlations

R
a
f

Raf

M
e
k

Mek

P
L
C

g

PLCg

P
IP

2

PIP2

P
IP

3

PIP3

E
rk

Erk

A
k
t

Akt

P
K

A

PKA

P
K

C

PKC

p
3
8

p38

J
N

K

JNK

Measured correlations

R
a
f

Raf

M
e
k

Mek

P
L
C

g

PLCg

P
IP

2

PIP2

P
IP

3

PIP3

E
rk

Erk

A
k
t

Akt

P
K

A

PKA

P
K

C

PKC

p
3
8

p38

J
N

K

JNK

Faithfulness violations

R
a
f

Raf

M
e
k

Mek

P
L
C

g

PLCg

P
IP

2

PIP2

P
IP

3

PIP3

E
rk

Erk

A
k
t

Akt

P
K

A

PKA

P
K

C

PKC

p
3
8

p38

J
N

K

JNK

Raf

Mek

Erk

Plcg

PIP2

PKC

PIP3

Akt

PKA

P38Jnk

Consensus causal graph

This means that we need to combine observational and interventional data.
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Goal

The goal of this work:

Perform more sophisticated causal analysis of the data by. . .

Modeling feedback loops;

Modeling the interventions in a realistic way;

Using continuous data instead of a coarsely discretized version,
allowing for nonlinear causal mechanisms;

. . . and by doing so, arrive at a more realistic reconstruction of the
signalling network than [Sachs et al., 2005] originally obtained by using
(acyclic) discrete-valued Bayesian networks.
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Basic Modeling Assumptions

We make the following assumptions for modeling the data:

Causal modeling assumptions

No time-series data: the cells have reached equilibrium when the
measurements are performed;

The equilibrium abundances X are governed by a (possibly cyclic)
Structural Causal Model

Xi = fi (Xpa(i),Ei ), i = 1, . . . ,D;

E is constant in time but varies over cells;

The reagents may change the structural equations locally;

Causal sufficiency (all Ei are jointly independent).
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Induced distributions of cyclic SCMs

Lemma (Induced distribution of cyclic SCMs)

If for each value of the noise E, there exists a unique solution X(E) of
the structural equations {Xi = fi (Xpa(i),Ei )}, a SCM induces a
unique observational distribution p(X).

In the acyclic case, that assumption is automatically satisfied.

If the mapping E 7→ X(E) is invertable, the induced density satisfies:

p(X) = pE

(
E(X)

) ∣∣∣∣det
∂E

∂X

∣∣∣∣ .
This means that under these assumptions, we can write down the
likelihood of the data as a function of the model parameters.
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Modeling Interventions with a SCM

Following [Sachs et al., 2005], we distinguish two types of interventions:

abundance interventions that alter the abundance of some compound;

activity interventions that alter the activity of some compound.

Here, we propose to model these interventions as follows:

An abundance intervention on Xi replaces the structural equation for
Xi with Xi = ξi (standard “perfect” interventions);

An activity intervention on Xi replaces the causal mechanisms for its
children Xj , i ∈ pa(j) by other causal mechanisms Xj = f̃j (Xpa(j),Ej ).

Example:

X1 X2

X3 X4

X5 X6

X1 = f1(X5,E1)

X2 = f2(E2)

X4 = f4(X2,E4)
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activity interventions that alter the activity of some compound.

Here, we propose to model these interventions as follows:

An abundance intervention on Xi replaces the structural equation for
Xi with Xi = ξi (standard “perfect” interventions);

An activity intervention on Xi replaces the causal mechanisms for its
children Xj , i ∈ pa(j) by other causal mechanisms Xj = f̃j (Xpa(j),Ej ).

Example: No intervention

X1 X2

X3 X4

X5 X6

X1 = f1(X5,E1)

X2 = f2(E2)

X3 = f3(X1,X2,E3)

X4 = f4(X2,E4)

X5 = f5(X3,E5)

X6 = f6(X3,X4,E6)
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Modeling Interventions with a SCM

Following [Sachs et al., 2005], we distinguish two types of interventions:

abundance interventions that alter the abundance of some compound;

activity interventions that alter the activity of some compound.

Here, we propose to model these interventions as follows:
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Xi with Xi = ξi (standard “perfect” interventions);

An activity intervention on Xi replaces the causal mechanisms for its
children Xj , i ∈ pa(j) by other causal mechanisms Xj = f̃j (Xpa(j),Ej ).

Example: Abundance intervention on X3

X1 X2

X3 X4

X5 X6
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X4 = f4(X2,E4)
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Modeling Interventions with a SCM

Following [Sachs et al., 2005], we distinguish two types of interventions:

abundance interventions that alter the abundance of some compound;

activity interventions that alter the activity of some compound.

Here, we propose to model these interventions as follows:

An abundance intervention on Xi replaces the structural equation for
Xi with Xi = ξi (standard “perfect” interventions);

An activity intervention on Xi replaces the causal mechanisms for its
children Xj , i ∈ pa(j) by other causal mechanisms Xj = f̃j (Xpa(j),Ej ).

Example: Activity intervention on X3

X1 X2

X3 X4

X5 X6

X1 = f1(X5,E1)

X2 = f2(E2)

X3 = f3(X1,X2,E3)

X4 = f4(X2,E4)

X5 = f5(X3,E5) f̃5(X3,E5)

X6 = f6(X3,X4,E6) f̃6(X3,X4,E6)
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Algorithm: Score-based approach

Use approximate Bayesian model selection in a multi-task learning
setting to estimate the posterior probability of a putative causal graph
G, given the data (and prior assumptions).

Given a hypothetical causal graph G, numerically optimize the
posterior with respect to the parameters.

Employ Laplace approximation to approximate the evidence (marginal
likelihood) for that causal graph G.

Number of possible causal graphs G for 11 variables:

31603459396418917607425 (acyclic)
1298074214633706907132624082305024 (cyclic).

Use local search to explore posterior distribution over causal graphs.

Stability selection [Meinshausen et al., 2010] to identify stable causal
relations.
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Comparison with ground truth (max. 17 edges, acyclic)

For comparison with the consensus model and the reconstructed model by
Sachs et al., we constrain the number of edges:
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PKA

PKC
p38

JNK

Consensus Sachs et al. This work

Black: expected, Blue: novel findings, Red dashed: missing.

Our acyclic, strongly regularised, result deviates more from the
“consensus” network. Actually seems to be good news!
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Comparison with ground truth (max. 17 edges, acyclic)
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Results (max. 17 edges, acyclic)

Acyclic, strongly regularized results for different priors:
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Black: expected, Blue: novel findings, Red dashed: missing.

Note: no strong dependence on prior.
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Results (max. 17 edges, cyclic)

Cyclic, strongly regularized results for different priors:
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Black: expected, Blue: novel findings, Red dashed: missing.

Good news: Our method reveals some likely feedback cycles.
Bad news: stronger dependence on prior (more data needed?).
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Discussion

Performing a proper causal analysis of this data is a challenging task:

time-series data are absent, so need to assume homeostatis;

confounders could be present;

feedback loops are expected to be present;

most interventions change the activity instead of the abundance;

assumptions about the specificity of interventions may be unrealistic;

faithfulness violations are present.

Main contributions:

More principled approach to learn structure of (a)cyclic causal models
from combination of observational and interventional equilibrium data.

Natural way to model activity interventions.
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Conclusions and future work

Conclusions:

Results support the hypothesis that the underlying system contains
feedback loops.

The proposed method identifies a few likely feedback loops, but more
data is probably necessary.

Future work:

Analysis of causal predictive performance: do our models give more
accurate predictions, also for (new) interventions?

Experimental evaluation of predictions.
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Part V

Causal Inference: Outlook
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Three interesting and important future directions

1 The field has focussed mainly on acyclic causal systems. Feedback
occurs in many different systems in biology, economy, and other
fields. A lot of interesting work remains to be done for the cyclic case.

2 The Causal Discovery literature has focussed mainly on the special
case of purely observational data. In practice, interventional data is
often available as well, and this data typically conveys important
information about the underlying causal structure. Designing good
methods and algorithms that can use this data may have a big impact
in many empirical sciences.

3 Related to AI: Can we build “intelligent” systems that are able to
learn a causal model of the world? An important ingredient (in
addition to being able to learn from given data) is active learning, or
experimental design.
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Three interesting and important future directions

1 The field has focussed mainly on acyclic causal systems. Feedback
occurs in many different systems in biology, economy, and other
fields. A lot of interesting work remains to be done for the cyclic case.

2 The Causal Discovery literature has focussed mainly on the special
case of purely observational data. In practice, interventional data is
often available as well, and this data typically conveys important
information about the underlying causal structure. Designing good
methods and algorithms that can use this data may have a big impact
in many empirical sciences.

3 Related to AI: Can we build “intelligent” systems that are able to
learn a causal model of the world? An important ingredient (in
addition to being able to learn from given data) is active learning, or
experimental design.

Thanks for your attention!
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