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Introduction

Sampling distribution over high-dimensional state-space has recently
attracted a lot of research efforts in computational statistics and
machine learning community...

Applications (non-exhaustive)

1 Bayesian inference for high-dimensional models
2 Aggregation of estimators and predictors
3 Bayesian non parametrics (function space)
4 Bayesian linear inverse problems (function space)
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Introduction

”Classical” MCMC algorithms do not scale to high-dimension.

However, the possibility of sampling high-dimensional distribution
has been demonstrated in several fields (in particular, molecular
dynamics) with specially tailored algorithms

Our objective: Propose (or rather analyse) sampling algorithm that
can be used for some challenging high-dimensional problems with a
Machine Learning flavour.

Challenges are numerous in this area...
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Illustration

Likelihood: Binary regression set-up in which the binary observations
(responses) (Y1, . . . , Yn) are conditionally independent Bernoulli
random variables with success probability F (βββTXi), where

1 Xi is a d dimensional vector of known covariates,
2 βββ is a d dimensional vector of unknown regression coefficient
3 F is a distribution function.

Two important special cases:

1 probit regression: F is the standard normal distribution function,
2 logistic regression: F is the standard logistic distribution function:

F (t) = et/(1 + et)
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Bayesian inference for binary regression?

The posterior density distribution of βββ is given, up to a
proportionality constant by π(βββ|(Y,X)) ∝ exp(−U(βββ)) with

U(βββ) = −
p∑
i=1

{Yi logF (βββTXi)+(1−Yi) log(1−F (βββTXi))}+g(βββ) ,

where g is the log density of the posterior distribution.

Two important cases:

Gaussian prior g(βββ) = (1/2)βββTΣβββ: ridge penalty.
Laplace prior g(βββ) = λ

∑d
i=1 |βββi|: LASSO penalty.
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New challenges

Beware ! the number of predictor variables d is large (104 and up).

- text categorization,

- genomics and proteomics (gene expression analysis),

- other data mining tasks (recommendations, longitudinal clinical
trials, ..).
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State of the art

The most popular algorithms for Bayesian inference in binary regression
models are based on data augmentation

Instead on sampling π(βββ|(X,Y )) sample π(βββ,W |(X,Y )) probability
measure on Rd1 × Rd2 and take the marginal w.r.t. βββ.

Typical application of the Gibbs sampler: sample in turn
π(βββ|(X,Y,W )) and π(W |(X,Y,βββ)).

The choice of the DA should make these two steps reasonably easy...

- probit link: Albert and Chib (1993).
- logistic link: Polya-Gamma sampler, Polsson and Scott (2012)... !
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State of the art: shortcomings

The Albert and Chib DA probit DA algorithm and the Polya-Gamma
sampler have been shown to be uniformly geometrically ergodic,
BUT

- The geometric rate of convergence is exponentially small with the
dimension

- Do not allow to construct honest confidence intervals, credible
regions

The algorithms are very demanding in terms of computational
ressources...

- applicable only when is d small 10 to moderate 100 but certainly not
when d is large (104 or more).

- convergence time prohibitive as soon as d ≥ 102.
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A daunting problem ?

In the case of the ridge regression, the potential U is smooth
strongly convex.

In the case of the lasso regression, the potential U is non-smooth
but still convex...

A wealth of reasonably fast optimisation algorithms are available to
solve this problem in high-dimension...
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Framework

Denote by π a target density w.r.t. the Lebesgue measure on Rd,
known up to a normalisation factor

x 7→ e−U(x)/

∫
Rd

e−U(y)dy ,

Implicitly, d� 1.

Assumption: U is L-smooth : twice continuously differentiable and
there exists a constant L such that for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L‖x− y‖ .
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Langevin diffusion

(overdamped) Langevin SDE:

dYt = −∇U(Yt)dt+
√

2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian Motion.

Notation: (Pt)t≥0 the Markov semigroup associated to the Langevin
diffusion:

π ∝ e−U is reversible ; the unique invariant probability measure..

Key property: For all x ∈ Rd,

lim
t→+∞

‖δxPt − π‖TV = 0 .
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Discretized Langevin diffusion

Idea: Sample the diffusion paths, using the Euler-Maruyama (EM)
scheme:

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1

where

- (Zk)k≥1 is i.i.d. N (0, Id)
- (γk)k≥1 is a sequence of stepsizes, which can either be held constant

or be chosen to decrease to 0 at a certain rate.

Closely related to the gradient descent algorithm.
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Discretized Langevin diffusion: constant stepsize

When γk = γ, then (Xk)k≥1 is an homogeneous Markov chain with
Markov kernel Rγ

Under some appropriate conditions, this Markov chain is irreducible,
positive recurrent ; unique invariant distribution πγ .

Problem: the limiting distribution of the discretization πγ does not
coincide with the target distribution π.

Questions:

Can we quantify the distance between πγ and π, e.g. a bound for
‖πγ − π‖TV with explicit dependence in the dimension ?
Given a computational budget, is there an optimal trade-off between
the ”mixing” rate (‖δxRγ − πγ‖TV) and the bias (‖πγ − π‖TV) ?
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Discretized Langevin diffusion: decreasing stepsize

When (γk)k≥1 is nonincreasing and non constant, (Xk)k≥1 is an
inhomogeneous Markov chain associated with the sequence of
Markov kernel (Rγk)k≥1.

Notation: Qpγ is the composition of Markov kernels

Qpγ = Rγ1Rγ2 . . . Rγp

With this notation, the law of Xp started at X0 = x is equal to
δxQ

p
γ .

Questions:

- Control ‖δxQpγ − π‖TV with explicit dependence in the dimension d.
- Should we use fixed or decreasing step sizes ?
- Previous works: Lamberton, Pages, 2002, Lemaire, Menozzi, 2010,

Dalalyan,2014.
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Metropolis-Adjusted Langevin Algorithm

To correct the target distribution, a Metropolis-Hastings step can be
included ; Metropolis Adjusted Langevin Agorithm (MALA).

- Key references Roberts and Tweedie, 1996

Algorithm:

1 Propose Yk+1 ∼ Xk − γ∇U(Xk) +
√

2γZk+1, Zk+1 ∼ N (0, Id)
2 Compute the acceptance ratio αγ(Xk, Yk+1)

αγ(x, y) = 1 ∧ π(y)rγ(y, x)

π(x)rγ(x, y)
, rγ(x, y) ∝ e−‖y−x−γ∇U(x)‖2/(4γ)

3 Accept / Reject the proposal.
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MALA: pros and cons

Require to compute one gradient at each iteration and to evaluate
one time the objective function

Geometric convergence is established under the condition that in the
tail the acceptance region is inwards in q,

lim
‖x‖→∞

∫
Aγ(x)∆I(x)

rγ(x, y)dy = 0 .

where I(x) = {y, ‖y‖ ≤ ‖x‖} and Aγ(x) is the acceptance region

Aγ(x) = {y, π(x)rγ(x, y) ≤ π(y)rγ(y, x)}
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Strongly convex potential

Assumption: U is strongly convex: there exists m > 0, such that for
all x, y ∈ Rd,

〈∇U(x)−∇U(y), x− y〉 ≥ m ‖x− y‖2 .

Outline of the results:

- Convergence in Wasserstein distance of the semigroup of the
diffusion (Pt)t≥0 (with explicit dependence on the constants m and
L and no dependence in the dimension)

- Convergence in Wasserstein distance of the law of the discretized
Langevin distribution

Key technique: coupling.

Von Dantzig Seminar, Amsterdam



Motivation
Framework

Strongly log-concave distribution
Convex and Super-exponential densities

Non-smooth potentials
The Unadjusted Langevin Algorithm within Gibbs (ULAwG)

Wasserstein distance

Definition

Let µ, ν be two probability measures on Rd

W2 (µ, ν) = inf
(X,Y )∈Π(µ,ν)

E1/2
[
‖X − Y ‖2

]
,

where (X,Y ) ∈ Π(µ, ν) if X ∼ µ and Y ∼ ν.

Note by the Cauchy-Schwarz inequality, for all f : Rd → R,
‖f‖Lip ≤ 1, (X,Y ) ∈ Π(µ, ν),

|µ(f)− ν(f)| ≤
{
E
[
‖X − Y ‖2

]}1/2

≤W2 (µ, ν) .
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Wasserstein distance convergence

There are many details to fill... This theorem just gives a feeling why
Wasserstein distance is well adapted to this particular setting:

Theorem

Assume that U is L-smooth and m-strongly convex. Then, for all
x, y ∈ Rd and t ≥ 0,

W2 (δxPt, δyPt) ≤ e−mt ‖x− y‖

The mixing rate depends only on the strong convexity constant.
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Elements of proof

{
dYt = −∇U(Yt)dt+

√
2dBt ,

dỸt = −∇U(Ỹt)dt+
√

2dBt ,
where (Y0, Ỹ0) = (x, y).

This SDE has a unique strong solution (Yt, Ỹt)t≥0. Since

d{Yt − Ỹt} = −
{
∇U(Yt)−∇U(Ỹt)

}
dt

we get a very simple SDE for

(∥∥∥Yt − Ỹt∥∥∥2
)
t≥0

d
∥∥∥Yt − Ỹt∥∥∥2

= −
〈
∇U(Yt)−∇U(Ỹt), Yt − Ỹt

〉
dt .
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Elements of proof

Integrating this SDE we get∥∥∥Yt − Ỹt∥∥∥2 =
∥∥∥Y0 − Ỹ0

∥∥∥2 − 2

∫ t

0

〈
(∇U(Ys)−∇U(Ỹs)), Ys − Ỹs

〉
ds ,

Since U is strongly convex〈
∇U(y)−∇U(y′), y − y′

〉
≥ m

∥∥y − y′∥∥2
which implies∥∥∥Yt − Ỹt∥∥∥2 ≤ ∥∥∥Y0 − Ỹ0

∥∥∥2 − 2m

∫ t

0

∥∥∥Ys − Ỹs∥∥∥2 ds .
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Elements of proof

∥∥∥Yt − Ỹt∥∥∥2 ≤ ∥∥∥Y0 − Ỹ0

∥∥∥2 − 2m

∫ t

0

∥∥∥Ys − Ỹs∥∥∥2 ds .

By Grömwall inequality, we obtain∥∥∥Yt − Ỹt∥∥∥2 ≤ ∥∥∥Y0 − Ỹ0

∥∥∥2 e−2mt

The proof follows since for all t ≥ 0, the law of (Yt, Ỹt) is a coupling between
δxPt and δyPt.
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Theorem

Assume that U is L-smooth and m-strongly convex. Then, for any
x ∈ Rd and t ≥ 0

Ex
[
‖Yt − x?‖

2
]
≤ ‖x− x?‖2 e−2mt +

d

m
(1− e−2mt) .

where
x? = arg min

x∈Rd
U(x) .

The stationary distribution π satisfies∫
Rd
‖x− x?‖2 π(dx) ≤ d/m.

The constant depends only linearly in the dimension d.
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Elements of proof

The generator A associated with (Pt)t≥0 is given, for all
f ∈ C2(Rd) and x ∈ Rd by:

A f(x) = −〈∇U(x),∇f(x)〉+ ∆f(x) .

Denote for all x ∈ Rd by V?(x) = ‖x− x?‖2. The process(
V?(Yt)− V?(x)−

∫ t

0

A V?(Ys)ds

)
t≥0

is a (Ft)t≥0-martingale under Px.

Since ∇U(x?) = 0 and using the strong convexity, we have

A V?(x) = 2 (−〈∇U(x)−∇U(x?), x− x?〉+ d) ≤ 2 (−mV?(x) + d) .
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Elements of proof

Key relation
A V?(x) ≤ 2 (−mV?(x) + d) .

Denote for all t ≥ 0 and x ∈ Rd by

v(t, x) = PtV?(x) = Ex
[
‖Yt − x?‖

2
]

We have

∂v(t, x)

∂t
= PtA V?(x) ≤ −2mPtV?(x) + 2d = −2mv(t, x) + 2d ,

Grönwall inequality

v(t, x) = Ex
[
‖Yt − x?‖

2
]
≤ ‖x− x?‖2 e−2mt +

d

m
(1− e−2mt) .
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Elements of proof

Set V?(x) = ‖x− x?‖2. By Jensen’s inequality and for all c > 0 and
t > 0, we get

π(V? ∧ c) = πPt(V? ∧ c) ≤ π(PtV? ∧ c)

=

∫
π(dx) c ∧

{
‖x− x∗‖2e−2mt +

d

m
(1− e−2mt)

}
≤ π(V? ∧ c)e−2mt + (1− e−2mt)d/m .

Taking the limit as t→ +∞, we get π(V? ∧ c) ≤ d/m.
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A coupling proof (I)

Objective compute bound for W2(δxQ
n
γ , π)

Since πPt = π for all t ≥ 0, it suffices to get some bounds on
W2

(
δxQ

n
γ , πPΓn

)
, where

Γn =

n∑
k=1

γk .

Idea ! Construct a coupling between the diffusion and the linear
interpolation of the Euler discretization.
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A coupling proof (II)

Idea: use synchronous coupling between the diffusion and a continuously
interpolated version of the Euler discretization: (Yt, Y t)t≥0 for all n ≥ 0
and t ∈ [Γn,Γn+1) by{

Yt = YΓn −
∫ t

Γn
∇U(Ys)ds+

√
2(Bt −BΓn)

Ȳt = ȲΓn −∇U(ȲΓn)(t− Γn) +
√

2(Bt −BΓn) ,

with Y0 ∼ π and Ȳ0 = x
For all n ≥ 0, we get

W 2
2

(
δxPΓn , πQ

n
γ

)
≤ E[‖YΓn − ȲΓn‖2] ,
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Explicit bound in Wasserstein distance for the Euler
discretisation

Theorem

Assume U is L-smooth and strongly convex. Let (γk)k≥1 be a
nonincreasing sequence with γ1 ≤ 1/(m+ L).

(Optional assumption) U ∈ C3(Rd) and there exists L̃ such that for
all x, y ∈ Rd:

∥∥∇2U(x)−∇2U(y)
∥∥ ≤ L̃ ‖x− y‖.

Then there exist sequences {u(1)
n (γ), n ∈ N} and {u(1)

n (γ), n ∈ N}
(explicit expressions are available) such that for all x ∈ Rd and n ≥ 1,

W2

(
δxQ

n
γ , π

)
≤ u(1)

n (γ)

∫
Rd
‖y − x‖2 π(dy) + u(2)

n (γ) ,
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Decreasing step sizes

If limk→+∞ γk = 0 and limk→+∞ Γk = +∞, then

lim
n→+∞

W2

(
δxQ

n
γ , π

)
= 0 ,

with explicit control.

Order of convergence: if γk = γ1k
−α then W2

(
δxQ

n
γ , π

)
= O(n−α)
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Constant step sizes

For any ε > 0, the minimal number of iterations to achieve
W2

(
δxQ

p
γ , π
)
≤ ε is

p = O(
√
dε−1) .

For a given stepsize γ, letting p→ +∞, we get:

W2 (πγ , π) ≤ Cγ .
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From the Wasserstein distance to the TV

Theorem

If U is strongly convex, then for all x, y ∈ Rd,

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ 1− 2Φ

{
− ‖x− y‖√

(4/m)(e2mt − 1)

}

Proof Use reflection coupling defined as the unique solution (Xt, X̃t)t≥0

of the SDE:{
dXt = −∇U(Xt)dt+

√
2dBdt

dX̃t = −∇U(X̃t)dt+
√

2(Id−2ete
T
t )dBdt ,

where et = e(Xt−X̃t)

with X0 = x, X̃0 = y, e(z) = z/ ‖z‖ for z 6= 0 and e(0) = 0 otherwise.
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From the Wasserstein distance to the TV (II)

‖Pt(x, ·)− Pt(y, ·)‖TV ≤
‖x− y‖√

(2π/m)(e2mt − 1)

Consequences:

1 (Pt)t≥0 converges exponentially fast to π in total variation at a rate
e−mt.

2 For all f : Rd → R, measurable and sup |f | ≤ 1, then

x 7→ Ptf(x) ,

is Lipschitz with Lipschitz constant smaller than

1/
√

(2π/m)(e2mt − 1) .

Von Dantzig Seminar, Amsterdam



Motivation
Framework

Strongly log-concave distribution
Convex and Super-exponential densities

Non-smooth potentials
The Unadjusted Langevin Algorithm within Gibbs (ULAwG)

Explicit bound in total variation

Theorem

Assume U is L-smooth and strongly convex. Let (γk)k≥1 be a
nonincreasing sequence with γ1 ≤ 1/(m+ L).

(Optional assumption) U ∈ C3(Rd) and there exists L̃ such that for
all x, y ∈ Rd:

∥∥∇2U(x)−∇2U(y)
∥∥ ≤ L̃ ‖x− y‖.

Then there exist sequences {ũ(1)
n (γ), n ∈ N} and {ũ(1)

n (γ), n ∈ N} such
that for all x ∈ Rd and n ≥ 1,

‖δxQnγ − π‖TV ≤ ũ(1)
n (γ)

∫
Rd
‖y − x‖2 π(dy) + ũ(2)

n (γ) .
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Constant step sizes

For any ε > 0, the minimal number of iterations to achieve
‖δxQpγ − π‖TV ≤ ε is

p = O(
√
d log(d)ε−1 |log(ε)|) .

For a given stepsize γ, letting p→ +∞, we get:

‖πγ − π‖TV ≤ Cγ |log(γ)| .
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Convex potential, decreasing stepsizes

Assumption

U is convex (but not strongly convex).

Results: decreasing step sizes

If limγk→+∞ γk = 0, and
∑
k γk = +∞ then

lim
p→+∞

‖δxQpγ − π‖TV = 0 .

Computable bounds for the convergence1.

1Durmus, Moulines, Annals of Applied Probability, 2016
Von Dantzig Seminar, Amsterdam
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Convex potential, constant stepsize

Assumption

U is convex (but not strongly convex).

Results

For constant stepsize, under one of assumptions above:

‖πγ − π‖TV ≤ C
√
γ ,

with computable bound C.
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Target precision ε: the convex case

Setting U is convex. Constant stepsize

Optimal stepsize γ and number of iterations p to achieve ε-accuracy
in TV:

‖δxQpγ − π‖TV ≤ ε .

d ε L
γ O(d−3) O(ε2/ log(ε−1)) O(L−2)

p O(d5) O(ε−2 log2(ε−1)) O(L2)

In the strongly convex case, the convergence of the semigroup of the
diffusion to π depends only on the strong convexity constant m. In
the convex case, this depends on the dimension !.
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Strongly convex outside a ball potential

U is convex everywhere and strongly convex outside a ball, i.e. there
exist R ≥ 0 and m > 0, such that for all x, y ∈ Rd, ‖x− y‖ ≥ R,

〈∇U(x)−∇U(y), x− y〉 ≥ m ‖x− y‖2 .

Eberle, 2015 established that the convergence in the Wasserstein
distance does not depends on the dimension.

Durmus, M. 2016 established that the convergence of the
semi-group in TV to π does not depends on the dimension but just
on R ; new bounds which scale nicely in the dimension.
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Dependence on the dimension

Setting U is convex and strongly convex outside a ball. Constant
stepsize

Optimal stepsize γ and number of iterations p to achieve ε-accuracy
in TV:

‖δxQpγ − π‖TV ≤ ε .

d ε L m R
γ O(d−1) O(ε2/ log(ε−1)) O(L−2) O(m) O(R−4)

p O(d log(d)) O(ε−2 log2(ε−1)) O(L2) O(m−2) O(R8)
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Figure: Empirical distribution comparison between the Polya-Gamma Gibbs
Sampler and ULA. Left panel: constant step size γk = γ1 for all k ≥ 1; right
panel: decreasing step size γk = γ1k

−1/2 for all k ≥ 1
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Data set Observations p Covariates d
German credit 1000 25
Heart disease 270 14

Australian credit 690 35
Musk 476 167

Table: Dimension of the data sets
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Figure: Marginal accuracy across all the dimensions. Upper left: German credit
data set. Upper right: Australian credit data set. Lower left: Heart disease
data set. Lower right: Musk data set
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Non-smooth potentials

The target distribution has a density π with respect to the Lebesgue
measure on Rd of the form x 7→ e−U(x)/

∫
Rd e−U(y)dy where U = f + g,

with f : Rd → R and g : Rd → (−∞,+∞] are two lower bounded,
convex functions satisfying:

1 f is continuously differentiable and gradient Lipschitz with Lipschitz
constant Lf , i.e. for all x, y ∈ Rd

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ .

2 g is lower semi-continuous and
∫
Rd e−g(y)dy ∈ (0,+∞).
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Moreau-Yosida regularization

Let h : Rd → (−∞,+∞] be a l.s.c convex function and λ > 0. The
λ-Moreau-Yosida envelope hλ : Rd → R and the proximal operator
proxλh : Rd → Rd associated with h are defined for all x ∈ Rd by

hλ(x) = inf
y∈Rd

{
h(y) + (2λ)−1 ‖x− y‖2

}
≤ h(x) .

For every x ∈ Rd, the minimum is achieved at a unique point,
proxλh(x), which is characterized by the inclusion

x− proxλh(x) ∈ γ∂h(proxλh(x)) .

The Moreau-Yosida envelope is a regularized version of g, which
approximates g from below.
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Properties of proximal operators

As λ ↓ 0, converges hλ converges pointwise h, i.e. for all x ∈ Rd,

hλ(x) ↑ h(x) , as λ ↓ 0 .

The function hλ is convex and continuously differentiable

∇hλ(x) = λ−1(x− proxλh(x)) .

The proximal operator is a monotone operator, for all x, y ∈ Rd,〈
proxλh(x)− proxλh(y), x− y

〉
≥ 0 ,

which implies that the Moreau-Yosida envelope is L-smooth:∥∥∇hλ(x)−∇hλ(y)
∥∥ ≤ λ−1 ‖x− y‖, for all x, y ∈ Rd.
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MY regularized potential

If g is not differentiable, but the proximal operator associated with g
is available, its λ-Moreau Yosida envelope gλ can be considered.

This leads to the approximation of the potential Uλ : Rd → R
defined for all x ∈ Rd by

Uλ(x) = f(x) + gλ(x) .

Theorem (Durmus, M., Pereira, 2016, SIAM J. Imaging Sciences)

Under (H), for all λ > 0, 0 <
∫
Rd e−U

λ(y)dy < +∞.
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Some approximation results

Theorem

Assume (H).

1 Then, limλ→0 ‖πλ − π‖TV = 0.

2 Assume in addition that g is Lipschitz. Then for all λ > 0,

‖πλ − π‖TV ≤ λ ‖g‖2Lip .
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The MYULA algorithm-I

Given a regularization parameter λ > 0 and a sequence of stepsizes
{γk, k ∈ N∗}, the algorithm produces the Markov chain {XM

k , k ∈ N}:
for all k ≥ 0,

XM
k+1 = XM

k −γk+1

{
∇f(XM

k ) + λ−1(XM
k − proxλg (XM

k ))
}

+
√

2γk+1Zk+1 ,

where {Zk, k ∈ N∗} is a sequence of i.i.d. d-dimensional standard
Gaussian random variables.
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The MYULA algorithm-II

The ULA target the smoothed distribution πλ.

To compute the expectation of a function h : Rd → R under π from
{XM

k ; 0 ≤ k ≤ n}, an importance sampling step is used to correct
the regularization.

This step amounts to approximate
∫
Rd h(x)π(x)dx by the weighted

sum

Shn =

n∑
k=0

ωk,nh(Xk) , with ωk,n =

{
n∑
k=0

γkeḡ
λ(XM

k )

}−1

γkeḡ
λ(XM

k ) ,

where for all x ∈ Rd

ḡλ(x) = gλ(x)−g(x) = g(proxλg (x))−g(x)+(2λ)−1
∥∥x− proxλg (x)

∥∥2
.
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Image deconvolution

Objective recover an original image x ∈ Rn from a blurred and noisy
observed image y ∈ Rn related to x by the linear observation model
y = Hx + w, where H is a linear operator representing the blur
point spread function and w is a Gaussian vector with zero-mean
and covariance matrix σ2In.

This inverse problem is usually ill-posed or ill-conditioned: exploits
prior knowledge about x.

One of the most widely used image prior for deconvolution problems
is the improper total-variation norm prior, π(x) ∝ exp (−α‖∇dx‖1),
where ∇d denotes the discrete gradient operator that computes the
vertical and horizontal differences between neighbour pixels.

π(x|y) ∝ exp
[
−‖y −Hx‖2/2σ2 − α‖∇dx‖1

]
.
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(a) (b) (c)

Figure: (a) Original Boat image (256× 256 pixels), (b) Blurred image, (c)
MAP estimate.
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Credibility intervals

(a) (b) (c)

Figure: (a) Pixel-wise 90% credibility intervals computed with proximal MALA
(computing time 35 hours), (b) Approximate intervals estimated with MYULA
using λ = 0.01 (computing time 3.5 hours), (c) Approximate intervals
estimated with MYULA using λ = 0.1 (computing time 20 minutes).
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Dependency on the Lipschitz constant

In all the bounds we have derived, the dependency on the Lipschitz
constant L is of order L2.

In practice, L can be very large !

In optimization, it can be efficient to use blocking strategies to
minimize U using coordinate descent type algorithms.

Stochastic counterparts are Gibbs samplers !
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Gibbs sampler (I)

Goal: simulate a density π on Rd1 × · · · × Rdn for n ≥ 1 of the
form: (x1, · · · , xn) ∈ Rd1 × · · · × Rdn

π(x1, · · · , xn) ∝ exp (−U(x1, · · · , xn)) .

Sampling from the full joint density is in general difficult...

Assume that the full conditional densities are known: for all
i ∈ {1, · · · , n}, (x1, · · · , xn) ∈ Rd1 × · · · × Rdn ,

π (xi|x−i) =
π(x1, · · · , xn)∫

Rdi π(x1, · · · , xn)dxi
,

Then: a Gibbs sampler is probably an sensible way to go !

Typical example: hierarchical models.
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Gibbs sampler (II)

Each conditional densities π (xi|x−i) is associated with a transition
kernel Ki.

The deterministic scan Gibbs sampler consists in sampling a Markov
chain with transition kernel KDS = K1 · · ·Kn, i.e. for i = 1, · · · , n,
draw

Xk+1,i ∼ π (·|Xk+1,1, · · · , Xk+1,i−1, Xk,i+1, · · · , Xk,n) .

The target density π is invariant for the Markov kernel KDS !
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Gibbs sampler (III)

Let (a1, · · · , an) ∈ (0, 1)
n,
∑n
i=1 ai = 1, called the selection

probability

The random scan Gibbs sampler consists in sampling a Markov chain
with transition kernel KRS =

∑n
i=1 aiKi, i.e. pick

I ∼ Mult(a1, · · · , an) and draw

Xk+1,I ∼ π (·|Xk,−I) .

and set for j ∈ {1, · · · , n}, j 6= I, Xk+1,j = Xk,j .

The target density π is reversible for the Markov kernel KRS !
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Block Gibbs sampler (I)

Goal: simulate a density π on Rd1 × · · · × Rdn for n ≥ 1 of the
form: (x1, · · · , xn) ∈ Rd1 × · · · × Rdn with

π(x1, · · · , xn) ∝ exp (−U(x1, · · · , xn)) .

Let N ∈ {1, · · · , n} and

Pn,N = {I ⊂ {1, · · · , n} , Card(I) = N} .

For all I ∈ Pn,N ,

π (xI |x−I) =
π(x1, · · · , xn)∫
π(x1, · · · , xn)dxI

,

Here again, using a block Gibbs sampling is appropriate.
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Block Gibbs sampler (II)

For all I ∈ Pn,N , π (xI |x−I) is associated with a Markov kernel KI .

The random scan block Gibbs sampler consists in sampling

KRBS =
(
n
N

)−1∑
I∈Pn,N KI .

1 Given Xk = (Xk,1, · · · , Xk,n) ∈ Rd1 × Rdn ,
2 Pick uniformly I ∈ Pn,N and draw Xk+1,I ∼ KI(Xk,I , ·) .
3 Set for j 6∈ I, Xk+1,j = Xk,j .

The target density π is reversible for the Markov kernel KRBS !
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Block Gibbs sampler (III)

Each KI can be replaced by a Markov kernel K̃I reversible w.r.t.
π (·|xk,−I).

An alternative consists in sampling a Markov chain with transition

kernel K̃RBS =
(
n
N

)−1∑
I∈Pn,N K̃I .

1 Given Xk = (Xk,1, · · · , Xk,n) ∈ Rd1 × Rdn ,
2 Pick uniformly I ∈ Pn,N and draw Xk+1,I ∼ K̃I(Xk, ·) .
3 Set for j 6∈ I, Xk+1,j = Xk,j .

The target density π is reversible for the Markov kernel K̃RBS !

Example: Metropolis within Gibbs algorithm.
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The ideal Langevin within Gibbs samplers

Idea: take for K̃I the Langevin semigroup taken at time tI ≥ 0, P ItI
associated with the distribution π (·|xk,−I).

An ideal algorithm Sample the Markov kernel

K̃RBS =
(
n
N

)−1∑
I∈Pn,N P

I
tI .

1 Given Xk = (Xk,1, · · · , Xk,n) ∈ Rd1 × Rdn ,
2 Pick uniformly I ∈ Pn,N and draw Xk+1,I ∼ P ItI (Xk, ·)
3 Set for j 6∈ I, Xk+1,j = Xk,j .

Problem: Cannot simulate from P ItI !

Solution Take the kernel of the Euler discretisation instead.
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The Unadjusted Langevin Algorithm within Gibbs samplers

Idea: Replace P ItI by its Euler discretization after p steps (RIγI )p.

The discretization parameter γI might depend on the block.

The ULAwG consists in sampling a Markov kernel

K̃RBS =
(
n
N

)−1∑
I∈Pn,N (RIγI )p.

1 Given Xk = (Xk,1, · · · , Xk,n) ∈ Rd1 × Rdn ,
2 Pick uniformly I ∈ Pn,N and set Y0 = Xk,I .
3 for i = 1, · · · , p, compute

Yi = Yi−1 − γI∇U(Yi−1|Xk,−I) +
√

2γIZi .

4 Set Xk+1,I = Yp.
5 Set for j 6∈ I, Xk+1,j = Xk,j .
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A toy example : the Gaussian linear model

Y = Aβββ + Z .

A is a known design matrix and Z ∼ N (0, σ2
2 Id)

Prior distribution for βββ ∼ N (0,Σβ)
The posterior distribution is Gaussian with mean and covariance given by

Σ =
(

Σ−1
β + σ−2

z ATA
)−1

µ = σ−2
z ΣATY .

Compare the efficiency of ULA and ULAwG to estimate Σ1,1.
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A toy example : the Gaussian linear model (III)
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ULAwG

Synthetic data and for d = 10, σ2
z = 1, σβββ = 100 and N = 2.
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Large-Scale Matrix Factorization

We applied ULAwG on a large-scale matrix factorization problem for
a link prediction application.

Consider X a matrix with (many) missing entries of size I × J . The
model is for observed indexes i, j

Xi,j =

K∑
k=1

Wi,kHk,j + Zi,j ,

where K ≥ 0 is the rank, and (Zi,j) ∼i.i.d. N (0, σ2
z).
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Large-Scale Matrix Factorization (II)

The aim is then to infer the two matrices W and H of dimensions
I ×K and K × J respectively to predict the missing values of X.

We take as prior distributions:

Wj,k ∼ N (0, σ2
w) and Hk,j ∼ N (0, σ2

h) .

Comparison of ULA and ULAwG on the MovieLens 1 Million dataset
(1,000,209 notes pour 3,900 films notés par 6,040 utilisateurs de
MovieLens, notes 0-5) 2.

2A. Durmus, U. Simsekli, M., NIPS2016
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Large-Scale Matrix Factorization (III)
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Paramètres:
σ2
z = 1,
σ2
w = σ2

h = 100

N = I × J/100.
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Large-Scale Matrix Factorization (IV)
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Paramètres:
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z = 1,
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w = σ2

h = 100

N = dI × J/25e
and batch size
dNobs/25e.
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