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Summary

“Our purpose in this paper is to overview various
ways of measuring the computational complexity of
importance sampling, to link them to one another
through transparent mathematical reasoning, and to
create cohesion in the vast published literature on
this subject. In addressing these issues we will study
importance sampling in a general abstract setting,
and then in the particular cases of Bayesian
inversion and filtering."
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Quality of IS and metrics

Distance between random measures!

d(1.v) = sup [E(u(e) — (9))7]

|p|<1

Interested in d(u™, 1)

1Rebeschini, P. and van Handel, R. (2013). Can local particle filters beat the curse of dimensionality?

arXiv preprint arXiv:1301.6585



Divergence metrics between target and proposal:
2
+ Datulm) = ([ -1]°) =1
p=(g%)/m(g)?
* Dalplim) = 7 (508 -5
and is known? that

0 Z eDKL(H||7T)

2'I'h. 4.19 of Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities.
Oxford University Press, Oxford



Theorem

Let

Then,

d(p", 1) ;== sup E {(MN(C)) - M(Q’))ﬂ

lp| <1
! 4
< NPT N(l + Dya(p]|7))

Slutsky's lemmas yield for ¢ := ¢ — (o)

VN ("(6) ~ p(@) = N (07 Ao )>

m(g)?



ESS

ESS(N) := (Z(W")2> = /\/”N(g)2

n=1

If 7(g?) < oo, for large N

4
~ . N 2 <



Non-square integrable weights

Otherwise, extreme value theory® suggests that if
density of weights has tails v 27, for 1 < a < 2,

N ~ —a+2
£ [ESS(N)] ~ CNEE

In any case, whenever 7(g) < oo, w™) - 0 as
N — oo,

3e.g. McLeish, D. L. and O'Brien, G. L. (1982). The expected ratio of the sum of squares to the square of
the sum.
Ann. Probab., 10(4):1019-1028

4e.g. Downey, P. J. and Wright, P. E. (2007). The ratio of the extreme to the sum in a random sequence.
Extremes, 10(4):249-266



Weight collapse: “unbounded
degrees of freedom”

d d
mq(du) = [ [ mi(du(i)), tmg(du) = [ [ pa(du(i)).
i=1 i=1
where (1o and 7. Then
Pd ~ ecd

and a non-trivial calculation® shows unless N grows
eXpQDﬁDILa“MIIh_d,_IALN — 1
BkIPLB Bengtsson, T., et al. (2008). Sharp failure rates for the bootstrap particle filter in high

In Pushii gth limits of contemporary statistics: Contributions in honor of Jayanta K. Ghosh, pages 318-329.
Institute of Mathematical Statistics



Weight collapse: singular limits

Suppose

g(u) = exp(—¢Lh(u))
where h unique minimun at u*. Laplace
approximation yields

h//(U*)
pe = V. 47me




Literature pointers

® The metric is introduced in [Del Moral, 2004]; neat
formulation of [Rebeschini and van Handel, 2013].
Concurrent work for L error in
[Chatterjee and Diaconis, 2015]. Other concentration
inequalities available, e.g. Th 7.4.3 of [Del Moral, 2004]
but based on covering numbers. We provide an
alternative concentration with more assumptions on g
and less on ¢ following [Doukhan and Lang, 2009]

e More satisfactory are results on concentrations for
interacting particle systems, but those typically assume
very strong assumptions on both weights and transition
dynamics, see e.g. [Del Moral and Miclo, 2000]

e For algebraic deterioration if importance sampling in
Bayesian learning problems see [Chopin, 2004]
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Bayesian linear inverse problem
in Hilbert spaces

y = Ku+mn, on € 7—[< >HH

n~ N(O7r) un~ N(O,Z)

N~x-H—->H neYOoDH,ueXDOH K: X =)

E.g. linear regression, signal deconvolution.



Bayesian inversion/learning

Typically, K bounded linear operator with
ill-conditioned generalised inverse

uly ~ Py, = N(m, C)

Cl=y'14+KTK,
Cim=KT1y.

(or Schur’'s complement to get different inversions)



Connection to importance
sampling

This learning problem is entirely tractable and
amenable to simulation/approximation. However,
we take it as a tractable test case to understand
importance sampling:

m(du) = N(0,X) p(du) = N(m, C)

Absolute continuity not obvious!



The key operator & an
assumption

S:=TKXz, A:=5*S
Assume that the spectrum of A consists of a
countable number of eigenvalues:

M>X > > N> >0

7= Tr(A) °

6finiteness of which used as necessary sufficient condition for no collapse by Bickel, P., Li, B., Bengtsson, T.,

et al. (2008). Sharp failure rates for the bootstrap particle filter in high dimensions.
In Pushing the limits of contemporary statistics: Contributions in honor of Jayanta K. Ghosh, pages 318-329.
Institute of Mathematical Statistics



dof & effective number of
parameters

efd := Tr((I + A)"'A)

has been used within the Statistics/Machine Learning
community’ to quantify the effective number of parameters
within Bayesian or penalized likelihood frameworks

Here we have obtained an equivalent expression to the one
usually encountered in the literature; it is also valid in the

7Spiegelhalter, D. J., Best, N. G., Carlin, B. P, and van der Linde, A. (2002). Bayesian measures of model

complexity and fit.
J. R. Stat. Soc. Ser. B Stat. Methodol., 64(4):583-639,

Section 3.5.3 of Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer New York



Relating measures of intrinsic
dimension

Lemma

Hence,
T <00 <— efd <



Theorem

Let p=P,, and T = P,. The following are
equivalent:
i) efd < oo;
i) 7 < o0;
i) TY2Ku € H, m-almost surely;
iv) for v,-almost all y, the posterior ji is well
defined as a measure in X and is absolutely
continuous with respect to the prior with

d 1 2 1
d—i(u) X exp (—5 Hr_l/zKuH + §<I__1/2y, F_l/QKu>>

=:g(u;y),

where 0 < m(g(+;y)) < oo.



Remark

Notice that polynomial moments of g are equivalent
to re-scaling ' hence (among other moments)

oo YY)
m(g(:1y))

Remark

r=Tr((CT=NE) =Tr((E- C)CH),
efd=Tr((L— O)L ) =Tr((CT—X1C).



Spectral jump

Suppose that A has eigenvalues {\;}%; with
ANi=L>1forl <<k, and

hence p grows exponentially with number of
relevant eigenvalues, but algebraically with their size



Spectral cascade

Assumption

[ =~/ and that A has eigenvalues {J;} with v > 0, and
j=1
B > 0. We consider a truncated sequence of problems with

o d
A(B, 7, d), with eigenvalues {%’} ,d e NU{oo}. Finally,
Jj=1

we assume that the data is generated from a fixed underlying
infinite dimensional truth u',

y=Ku' +n, Ku' €H,

and for the truncated problems the data is given by projecting
y onto the first d eigenfunctions of A.



e p grows algebraically in the small noise limit
(v — 0) if the nominal dimension d is finite.

e p grows exponentially in 7 or efd as the
nominal dimension grows (d — o0), or as the
prior becomes rougher (5 \ 1).

e p grows factorially in the small noise limit
(v — 0) if d = oo, and in the joint limit
v=d “ d— oo. The exponent in the rates
relates naturally to efd.



Literature pointers

e Bayesian conjugate inference with linear models and
Shur dates back to [Lindley and Smith, 1972], with
infinite dimensional extension in [Mandelbaum, 1984]
and with precisions in [Agapiou et al., 2013]

e Bayesian formulations of inverse problems is now
standard and has been popularised by [Stuart, 2010] (see
however [Papaspiliopoulos et al., 2012] for early
foundations in the context of SDEs)



e Absolute continuity between Gaussian measures in
infinite-dimensional Hilbert spaces is not at all
guaranteed; see the notion of Cameron-Martin space and
the so-called Feldman-Hajek theorem
[Da Prato and Zabczyk, 1992]. It is common in the
literature to assume conditions under which prior and
posterior are equivalent, hence there exists a likelihood.
Our theorem shows that they are equivalent to assuming
finite intrinsic dimension!
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® Dynamic linear inverse problems: sequential IS



Setting (first step towards data
assimilation)
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Behaviour of filtering model determined by inverse
problem

ylzKu+777 UN]P)Ua 77NN(07|_)7

with
e K=(0, H), I = R for standard proposal

e K=(HM, 0), T = R+ HQH* for locally
optimal proposal



Theorem

Tst = Top

For example, if H=Q =R =M =/ but
Tr(P) < oo, then 7,, < 00 and 74 = oo
e Inverse problems perspective: prior is
regularising but if propagated not so, hence a
bad inverse problem
e State-space model perspective: very
informative data! Predictive distribution is
singular with respect to filter



Literature pointers

e One-step filtering is only analysed for simplicity. It is
however a necessary step for PF. This is done in various
recent works, e.g. [Bengtsson et al., 2008].

[Chorin and Morzfeld, 2013] consider filters initialised at
stationary covariances; they also define a notion of
intrinsic dimension of a data assimilation problem as the
Frobenius norm of this covariance, which is at odds with
both 7 and efd, and does not seem to be appropriate for
characterising stability of PFs

e Optimal proposal is only locally optimal in multi-step
problems, although it has some interesting
characterisations, see
[Chopin and Papaspiliopoulos, 2016].
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Outlook

Degrees of freedom have been defined for non-linear Bayesian
hierarchical model - see DIC of [Spiegelhalter et al., 2002]. It
is thus natural to try and extend this work for nonlinear inverse
problems, and this might be a real advantage of efd vs 7

The formulation of MCMC algorithms on Hilbert spaces
provided a whole new set of tools for designing and analysing
theoretically algorithms, see e.g. the recent

[Cotter et al., 2013]. We see this work as the importance
sampling analogue. The conversion of some of the
understanding to new algorithms is a priority

Very similar ideas are being developed for deterministic and
quasi Monte Carlo integration, see e.g. [Kuo and Sloan, 2005]
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