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Estimation of integral curves

Given v : Rd → Rd and starting point x0

integral curve X : [0,T ]→ Rd is solution to

d

dt
X (t) = v(X (t)), X (0) = x0.

Estimation (Koltchinskii et al. 2007):

Model: Vi = v(Xi ) + εi , εi iid., Xi iid, uniform on G , indep. of εi

Applications in medical imaging (DTI); filament estimation; etc.

Consider V̂ (x) = 1
nhd

∑n
i=1 K

(
Xi−x

h

)
Vi and estimate X (t) via

d

dt
X̂ (t) = V̂ (X̂ (t)), X̂ (0) = x0.
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Estimation of integral curves

Koltchinskii et al. (2007) show that under appropriate assumptions

√
nhd−1

(
X̂ (t)− x(t)

)
→D G (t), 0 ≤ t ≤ T ,

where T > 0, {G (t), 0 ≤ t ≤ T} mean zero Gaussian process.

Heuristics underlying the derivation of the rate:

• Integral curve: X (t) = x0 +
∫ t
0 V (X (s)) ds;

• estimated integral curve: X̂ (t) = x0 +
∫ t
0 V̂ (X̂ (s)) ds;

 X̂ (t)−X (t) =
∫ t
0

[
V̂ (X̂ (s))− V (X (s))

]
ds

.
Rate of convergence of V̂ (X̂ (s))− V (X (s)) = OP((nhd)−1);

integration  gain of one power of h.
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Estimation of integral curves

Note also that

X̂ (t)− x(t) =

∫ t

0

[
V̂ (X̂ (s))− V (x(s))

]
ds

=

∫ t

0

(V̂ − V )(x(s)) ds +

∫ t

0

v ′(x(s))(X̂ (s)− x(s)) ds + rn

This indicates that process X̂ (t)− x(t) appropriately normalized is
closely related to a solution to stochastic differential equation.

Further work: Carmichael and Sakhanenko (2015, 2015), Qiao and
WP (2015)
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Integral curves driven by second eigenvector of Hessian

Qiao and WP (2015); dimension d = 2.

driving vector field: v(x) = second eigenvector of Hessian.

Motivation: Filament (ridge line) estimation.

More later.
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Estimation of level sets

Level sets of a function f : Rd → R are given by

Γf (λ) =
{

x ∈ Rd : f (x) ≥ λ
}

= f −1[λ,∞].

Note: regularity  boundaries of level sets f −1(λ) are integral curves!

direct estimates

excess mass approach: Hartigan (1987), Müller and Sawitzki

(1991), Nolan (1991), WP (1995)
minimum volume sets:

classical concept; shorth (Lientz, 1970, Andrews et al. 1972)
set estimation: Scott et al. (2006), Walther (1997), WP
(1997)
volume (length) of MV-sets: generalized quantiles (Grübel,
1988; Einmahl and Mason, 1992; WP 1997)

plug-in approach via kernel density estimation: Baillo et al. (2000),

Cuevas et al. (2001, 2006, 2007, 2009), Cadre (2006), Scott et al.

(2006), Mason and WP (2009), Rigollet and Vert (2009), Bouka et al.

(2015). . .
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Confidence regions for density level sets

X1, . . . ,Xn ∼ f . Fix λ > 0 and γ ∈ [0, 1].

Goal: Find region Ĉn with P(f −1(λ) ⊂ Ĉn)→ γ.

Two different approaches in literature, based on

vertical variation

horizontal variation

Both approaches are based on kernel density estimation:

Let f̂n(x) = 1
nhd

∑n
i=1 K

(
Xi−x

h

)
, and

Γbf (λ) =
{

x ∈ Rd : f̂n(x) ≥ λ
}
.

Nonparametric Inference for Geometric Objects



Overview Integral curves Level set estimation Inference for modes / modal clustering Filament

Confidence regions for density level sets

X1, . . . ,Xn ∼ f . Fix λ > 0 and γ ∈ [0, 1].
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Vertical variation

Construct confidence region of the form

Ĉn = Γbf (λ− βn) \ Γbf (λ+ βn) = f̂ −1
n

[
λ− βn, λ+ βn

]
.

Question: How to find an appropriate value of βn?

Idea: Use γ-quantile of distribution of supx∈f −1(λ) |f̂n(x)− f (x)|,

because

f −1(λ) ⊂ f̂ −1
n

[
λ− βn, λ+ βn

]

⇔
−βn ≤ f̂n(x)− λ ≤βn for all x ∈ f −1(λ)
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Vertical variation

One might consider two approximations of distribution of
supx∈f −1(λ) |f̂n(x)− f (x)|:

bootstrap

large sample

(cf. Qiao and WP, 2015).

Mammen and WP (2013) use related approach and construct
bootstrap approximation of supx∈f −1[λ−bn,λ+bn] |f̂n(x)− f (x)|, for
appropriately chosen sequence bn → 0.
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Horizontal variation

Chen et al. (2015a), Qiao and WP (2015)

Simple relation: At a given point x ∈ f −1(λ),

|f̂n(x)− f (x)|
d(x , f̂ −1

n (λ))
≈ ‖gradf (x)‖,

where d(x , f̂ −1
n (λ)) = inf

y∈bf −1
n (λ)

d(x , y). In other words,

|f̂n(x)− f (x)|
‖gradf (x)‖ ≈ d(x , f̂ −1

n (λ))

Uniform control of |
bfn(x)−f (x)|
‖gradf (x)‖  control of Hausdorff distance 

confidence regions by using quantiles of Hausdorff distance

dH(f −1(λ), f̂ −1
n (λ)) = max

[
sup

x∈f−1(λ)

d(x , f̂ −1
n (λ)), sup

x∈bf−1
n (λ)

d(x , f −1(λ))
]
.
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Inference for modes / modal clustering

- (local) level sets  modal regions

- geometric properties of level sets  number of modes

- geometric properties of level sets
 capture features of density  visualization (level set tree)

- excess mass approach, Hartigan’s dip  testing for modes

- integral curves driven by gradient fields  modal clustering

- existence of antimodes  testing for modes

Hartigan (1975, 1985, 1987, 2000); Müller and Sawitzki (1991);
WP (1995); Burman & WP (2009); Chacón (2013), Chen et al.
(2015b)
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Estimation and inference for persistent homology: TDA

Target: topological properties of supports and more general of level
sets (Bobrowski et al. 2015); measured by ranks of homology
groups

Estimate homologies of a filtration based on simplicial complexes
built on data (filtration based on level sets); Betti numbers (often:
β0 - number of connected components)

Distinguish between signal and noise by using persistency.

Bubenik and Kim (2006); Balakrishnan et al. (2011, 2013); Chazal
et al. (2014a,b), Fasy et al. (2013); Bauer et al. (2014),
Bobrowski et al. (2015), Boissonat et al. (2015), . . .
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Filament or ridge line estimation

• What is a filament?

Definition: A point is said to be a ridge point or a filament point if

λ2 < 0

H∇f = λ1∇f

where λ1 > λ2 are the two eigenvalues of the Hessian H(x).

A filament consists of filament points and is an integral curve of
the gradient.

Let V (x) denote second eigenvector of Hessian H.

On the filament, either ∇f = 0 or ∇f ‖ V⊥, i.e. 〈∇f , V 〉 = 0.
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From Chen et al. (2014).
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Geometric idea

〈∇f (x),V (x)〉
and

V (x)T∇2f (x)V (x) = λ2(x)‖V (x)‖2

are first and second order directional derivative of f (x) along
V (x). Thus filament points are local mode of f (x) along the
direction V (x).

Geometric idea: Consider vector field generated by the second
eigenvectors V (x) of the Hessian H of f .

• A ridge point corresponds to a local mode of f along the path of
the corresponding integral curve for the vector field generated by
V (x).

Nonparametric Inference for Geometric Objects



Overview Integral curves Level set estimation Inference for modes / modal clustering Filament

Application areas

seismology: analysis of fault lines

analysing road or river networks

cosmology: cosmic web

medical imaging: e.g. blood vessels network
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Related literature

Minimum spanning tree, Barrow et al. (1985)

Candy model, Stoica et al. (2005)

Principal curves ; Hastie and Stuetzle (1989), Kegl et al. (2000),
Sandilya and Kulkarni (2002), and Smola et al. (2001)

Local principal curve; Einbeck, Tutz and Evers (2005), Einbeck,
Evers, and Bailer-Jones (2007)

Skeleton; Novikov et al. (2006)

Nonparametric penalized maximum likelihood; Tibshirani (1992)

Beamlets; Donoho and Huo (2002), Arias-Castro et al. (2006)

feature detection in point clouds (Engineering/CS): e.g. Weber et
al. (2006), Daniels et al. (2007) . . .
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Related other concepts

Conceptually related to other statistical concepts:

mode hunting

integral curve estimation

tracking fault lines (Hall and Rau, 2000);

principal curves (Hastie and Stuetzle, 1989, Sandilya and
Kukarni, 2002);

beamlets, curvelets, ridgelets . . . (Candés 1999; Candés and
Donoho, 1999; Donoho and Huo, 2002).
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Statistical literature

Above literature: No statistical quantifications.

Statistical literature:

Cheng, Hall and Hartigan (2004);

Arias-Castro, Donoho, and Huo (2006);

Genovese et al. (2009, 2012, 2014);

Chen et al. (2013, 2014)

Qiao and WP (2015)
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Genovese et al. (2009): Path density

• Xx0(t) integral curve of gradient field; starting at x0

V(A) = {x0 : Xx0 ∩ A 6= ∅}

(purple area)

• Path measure π(A) =
∫
V(A)

g(x)dx

• Path density p:

p(x) = lim
r→0

π(B(x , r))

r
=

{
=∞ for x on filament

<∞ for x off filament

• Consider level set of estimated path density as ‘estimator’.
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Path density

Galaxy distribution in a slice

Data source: www.mpa-garching.mpg.de
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A different model

Filament: M = {f (x) : x ∈ [0, 1]} ⊂ Rd . Genovese et al. (2012a)
consider the model

Yi = f (Ui ) + ε

with

Ui drawn from a distribution on [0, 1]

εi independent such that support(Y ) =M⊕ σ
Minimax rates for estimating the filament f using Hausdorff
distance are derived in this model.

Genovese et al. (2012b) consider the medial axis of the level set to
estimate the filament.
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Medial axis

8 GENOVESE ET AL

●

●

Fig 3. The Medial Axis. Top left: a set S. Top right: a non-medial ball contained in S;
Bottom left: a medial ball that touches the boundary of S in 2 places. Bottom right: the
medial axis consists of the centers of the medial balls.

3. Some Backgound on Geometry.

3.1. Thickness and the Medial Axis. Let S ⊂ R2 be a compact set. A
ball B ⊂ S is called medial if

1. interior(B) ∩ ∂S = ∅ and
2. B ∩ ∂S contains at least 2 points.

The medial axis M ≡ M(S), shown in Figure 3, is the closure of the set

(10)
{
x ∈ S : B(x, r) is medial for some r > 0

}
.

See Dey (2006) and references therein for more information about the prop-
erties of the medial axis.

Now we relate the filament to the medial axis. For any three distinct points
x, y, z on Γf let r(x, y, z) be the radius of the circle passing through the three
points. Define the thickness of the curve Γf , (Gonzalez and Maddocks, 1999)
denoted ∆ ≡ ∆(f), by

(11) ∆ ≡ ∆(f) = min
x,y,z

r(x, y, z)

where the minimum is over all triples of distinct points on Γf . ∆ is also called
the minimum global radius of curvature, and the normal injectivity radius

From Genovese et al. 2012.
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Distribution theory for filament estimation

Qiao and WP (2015)

d = 2
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Ridge estimation via bump hunting

We now consider filament estimation based on iid observations
from a density f assuming the existence of a ridge line. Recall

Definition: A point is said to be a ridge point or a filament point if

λ2 < 0

H∇f = λ1∇f

where λ1 > λ2 are the two eigenvalues of the Hessian H(x).

V (x) denotes second eigenvector of Hessian H.

• On the filament, either ∇f = 0 or ∇f ‖ V⊥, i.e. 〈∇f , V 〉 = 0.

• Filament points are local mode of f (x) along the direction
V (x).
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Geometric idea

〈∇f (x),V (x)〉
and

V (x)T∇2f (x)V (x) = λ2(x)‖V (x)‖2

are first and second order directional derivative of f (x) along
V (x). Thus filament points are local mode of f (x) along the
direction V (x).

Geometric idea: Consider vector field generated by the second
eigenvectors V (x) of the Hessian H of f .

• A ridge point corresponds to a local mode of f along the path of
the corresponding integral curve for the vector field generated by
V (x).

Same idea is used in Chen et al. (2015c).
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Some notation

Hessian

H = H(x) =

(
f11(x) f12(x)
f12(x) f22(x)

)

Let

V =


 f11 − f22 + f12 −

√
(f22 − f11)2 + 4f 2

12

1
2

(
f22 − f11 + f12 − 4

√
(f22 − f11)2 + 4f 2

12

)

 .

then V (x) is eigenvectors for λ2(x).
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Some notation

Use kernel density estimator based on X1,X2, · · · ,Xn
iid∼f

f̂ (x) =
1

nh2

n∑

i=1

K (
x − Xi

h
).

The kernel estimator of Hessian is

Ĥ(x) =

(
f̂11(x) f̂12(x)

f̂12(x) f̂22(x)

)

=
1

nh4

n∑

i=1

(
K11( x−Xi

h ) K12( x−Xi
h )

K12( x−Xi
h ) K22( x−Xi

h )

)

with second eigenvalue λ̂2 corresponding second eigenvector V̂ (x).
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More notation

For each x0 ∈ G let

Xx0(t), t ∈ [0,T ] integral curve corresponding to vector field
V (x) starting at x0 ;

θx0 = arg maxt∈[0,T ] f (Xx0(t)), i.e. Xx0(θx0) lies on filament.

X̂x0(t), t ∈ [0,T ] integral curve corresponding to vector field

V̂ (x) starting at x0

θ̂x0 = arg maxt∈[0,T ] f (X̂x0(t)), i.e. X̂x0(θ̂x0) lies on filament.
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Mathematical problems

Integral curve estimation:

Find asymptotic distribution of (appropriately normalized)

• X̂x0(t)−Xx0(t).

Filament estimation:

Find asymptotic distribution of (appropriately normalized)

• X̂x0(θ̂x0)−Xx0(θx0).

• supx0∈G |X̂x0(θ̂x0)−Xx0(θx0)|, G ⊂ R2, compact.

 involves finding limit of the distribution of the supremum
over (increasing) manifolds of a sequence non-stationary Gaussian
process .
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Estimation of integral curves: Assumptions

Let L denote the ‘true’ filament lying in a set H ⊂ R2.

(A1) L is a compact smooth filament with bounded curvature.

(F1) f is four times continuously differentiable.

(F2) Eigenvalues of Hessian are different.

(F3) Norm of second eigenvectors ‖V (x)‖ of Hessian is bounded
away from zero.

(F4) For each x ∈ L, V (x) is not orthogonal to the normal
direction to the filament.

(F5) {x : λ2(x) = 0, 〈∇f (x),V (x)〉 = 0} = ∅
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Estimation of integral curves: Assumptions

(K1) The kernel K is a symmetric probability density function with
support {x : ‖x‖ < 1}. All of its first to fourth order partial
derivatives are bounded and

∫
R2 K (x)xxT dx = µ2(K )Id with

µ2(K ) <∞.

(K2) R(d2K ) <∞, where for any function g : R2 7→ R3,
R(g) ≡

∫
R2 g(x)g(x)T dx .

(K3)
∫

[K (3,0)(z)]2dz 6=
∫

[K (1,2)(z)]2dz .

(H1) As n→∞, hn ↓ 0, nh8
n/(log n)3 →∞, nh9

n → β, β ≥ 0.
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Estimation of integral curves

Theorem

Under above assumptions and for each T > 0, the sequence of
stochastic process

√
nh5(X̂x0(t)−Xx0(t)), 0 ≤ t ≤ T

converges weakly in C ([0,T ],R2) to a Gaussian process as n→∞.

The proof is an adaptation of Koltchinskii et al. (2007).

Theorem

Under above assumptions, for each T > 0 as n→∞,

sup
x0∈G,t∈[0,T ]

‖X̂x0(t)−Xx0(t)‖ = Op

(
log n√

nh5

)
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Some heuristics

• Estimating 1st derivatives: rate OP(1/
√

nhd+2) = OP(
√

1/nh4).

• Estimating 2nd derivatives: rate OP(1/
√

nhd+4) = OP(1/
√

nh6).

• Integral curves: Xx0(t) = x0 +
∫ t
0 V (Xx0(s)) ds;

one-dim. integral of function of second derivatives

 gain one power of h: OP(1/
√

nh5)

Omitting index x0:

• X̂ (θ̂)−X (θ) =
[
X̂ (θ̂)−X (θ̂)

]

︸ ︷︷ ︸
OP(1/

√
nh5)

+
[
X (θ̂)−X (θ)

]

︸ ︷︷ ︸
OP

(
V (X (θ))(bθ−θ))

.

• θ̂ − θ = OP(1
√
/nh6) if ∇f (X (θ)) 6= 0, and

θ̂ − θ = OP(1/
√

nh5) if ∇f (X (θ)) = 0
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Heuristic

A heuristic argument for why estimation of filaments is easier when
∇f (x) = 0 at the filament:

Recall: on filament H(x)∇f (x) = λ1(x)∇f (x).

Thus, when replacing H and f by their estimates, then, if
∇f (x) = 0, this equality holds approxaimately if we can estimate
first derivatives well. The estimation of second derivatives is not
too important. Thus the rates are driven by how well we can
estimate first derivates as opposed to second derivates, and the
former is easier (faster rates).
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Filament estimation: more assumptions

(F6) For any x0 ∈ H with x0 ≺ L, θx0 exists and
supx0∈H,x0≺L Tx0 <∞.

(F7) ∇〈∇f (x)V (x)〉 6= 0 for all x ∈ L

(F8) {x ∈ H : λ2(x) = 0,∇f (x)V (x) = 0} = ∅.
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Filament estimation: Pointwise convergence

Theorem

Assume that above assumptions hold, nh9 → β ≥ 0, hn → 0. Then
for any fixed starting point x0:

(a)
√

nh6 〈V (X (θ)), X̂ (θ̂)−X (θ) 〉 →D N(0, σ2
1)),

√
nh5 〈V (X (θ))⊥, X̂ (θ̂)−X (θ) 〉 →D N(0, σ2

2)).

(b) If ∇f (X (θ)) = 0, then√
nh5 〈V (X (θ)), X̂ (θ̂)−X (θ) 〉 →D N(µ1, σ

2
3)),

√
nh5 〈V (X (θ))⊥, X̂ (θ̂)−X (θ) 〉 →D N(µ2, σ

2
4)).
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Filament estimation: Pointwise convergence continued

Theorem

Assume that above assumptions hold, nh9 → β ≥ 0, h→ 0. Then
for any fixed starting point x0

√
nh6[X̂x0(θ̂x0)−Xx0(θx0)]→ Z (Xx0(θx0))V (Xx0(θx0)),

where Z (Xx0(θx0)) is a mean zero normal random variable.
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Filament estimation: Pointwise convergence continued

Theorem

Suppose that the assumptions of the above Theorem hold, and in
addition assume that ∇f (Xx0(θx0)) = 0. Then there exists
µ(x0) ∈ R2 and Σ(x0) ∈ R2×2 such that

√
nh5[X̂x0(θ̂x0)−Xx0(θx0)]→ N

(
µ(x0),Σ(x0)

)
.
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Uniform convergence

Theorem

Under the above assumptions there exists a constant c > 0 and a
function b(x), both depending on f and the kernel K , such that
for any fixed z, we have

lim
n→∞

P

(
sup
x0∈G

∥∥∥∥b(Xx0(θx0))
√

nh6
(
X̂x0(θ̂x0)−Xx0(θx0)

)∥∥∥∥ < Bh(z)

)

= exp{−2 exp{−z}},

where Bh(z) =
√

2 log h−1 + 1√
2 log h−1

[
z + c

]
and G is some

properly chosen region of starting points.

First use ideas similar to Bickel and Rosenblatt (1973). Main ingredient

to the proof is a generalization of a theorem by Mikhaleva and Piterbarg

(1996).
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Generalization of a theorem by Mikhaleva and Piterbarg

Definition (Local equi-Dt-stationarity)

Let Xh(t), t ∈ G ⊂ R2 be a class of process indexed by h ∈ H with
covariance function rh(t1, t2). The sequence Xh(t) is locally
equi-Dh

t -stationary, if for any ε > 0 there exists a positive δ(ε)
independent of h such that for any s ∈ G one can find a
non-degenerated matrix Dh

s such that

1− (1 + ε)||Dh
s (t1 − t2)||2 ≤ rh(t1, t2) ≤ 1− (1− ε)||Dh

s (t1 − t2)||2

provided ||t1 − s|| < δ(ε) and ||t2 − s|| < δ(ε) where || · || is
Frobenius norm.
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Generalization of a theorem by Mikhaleva and Piterbarg

Theorem

Let M1 ⊂ H be a smooth compact 1-dimensional manifold with
bounded curvature, {Xh(t), t ∈ R2, 0 < h ≤ 1} a class of centered,
locally Dh

t -stationary Gaussian fields. Under below assumptions,

there exists M > 0 such that with xh(z) = (2 log 1
h )

1
2 (1 + M+z

2 log 1
h

)

we have

lim
h→0

P{ sup
t∈Mh

|Xh(t)| ≤ xh(z)} = exp{−2 exp{−z}}

where Mh = M1
h .
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Generalization of a theorem by Mikhaleva and Piterbarg

Assumptions:
M1 ⊂ H smooth compact 1-dimensional manifold with bounded
curvature.

{Xh(t), t ∈ R2, 0 < h ≤ 1} a class of centered, locally
Dh

t -stationary Gaussian fields with

Dh
t positive definite and (t, h)→ Dh

t , continuous;

inf0<h≤1,hs∈H λ2({Dh
s }′Dh

s ) ≥ C ;

limh→0,ht=t∗ Dh
t = D0

t∗ uniformly in t∗ ∈ H;

t∗ → D0
t∗ , t∗ ∈ H is continuous.

With Q(δ) := sup
0<h≤1

{|rh(x + y , y)|, ‖x‖ > δ},

where rh(x , y) the covariance function of Xh(t), we have

0 ≤ Q(δ) < 1

∃ δ̃ > 0 : Q(δ) = 0 for all δ ≥ δ̃.
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Heuristics of the proof.

Nonparametric Inference for Geometric Objects



Overview Integral curves Level set estimation Inference for modes / modal clustering Filament

A more general result

Definition (Local equi-(α,Dt)-stationarity)

Let Xh(t), t ∈ G ⊂ Rd be a class of process indexed by h ∈ H with
covariance function rh(t1, t2). The sequence Xh(t) is locally
equi-(α,Dh

t )-stationary, if for any ε > 0 there exists a positive δ(ε)
independent of h such that for any s ∈ G one can find a
non-degenerated matrix Dh

s such that

1− (1 + ε)||Dh
s (t1 − t2)||α ≤ rh(t1, t2) ≤ 1− (1− ε)||Dh

s (t1 − t2)||α

provided ||t1 − s|| < δ(ε) and ||t2 − s|| < δ(ε) where || · || is
Frobenius norm.
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Generalization of a theorem by Mikhaleva and Piterbarg

Assumptions:
M1 ⊂ H smooth compact r -dimensional manifold with positive
condition number.

{Xh(t), t ∈ Rd , 0 < h ≤ 1} sequence of
centered, locally (α,Dh

t )-stationary Gaussian fields with

Dh
t positive definite and (t, h)→ Dh

t , continuous in
h ∈ (0, 1], t ∈ R2;

inf0<h≤1,hs∈H λ2({Dh
s }′Dh

s ) ≥ C ,

limh→0,ht=t∗ Dh
t = D0

t∗ uniformly in t∗ ∈ H;

t∗ → D0
t∗ , t∗ ∈ H is continuous.

With Q(δ) as above

Q(δ) < 1 for all δ > 0,

Q(δ)
∣∣(log δ)2r/α

∣∣ ≤ (log δ)−β for some β > 0.
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∣∣ ≤ (log δ)−β for some β > 0.
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Generalization of a theorem by Mikhaleva and Piterbarg

Theorem

There exists M > 0 such that with

xh(z) = (2r log 1
h )

1
2 (1 +

M+z+( r
α
− 1

2
) log log 1

h

2r log 1
h

)

we have

lim
h→0

P{ sup
t∈Mh

|Xh(t)| ≤ xh(z)} = exp{−2 exp{−z}}

where Mh = M1
h .
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