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Introduction
Main results

Model and motivation
Flat Hölder smoothness

We consider the following non-linear inverse problem:

dYt = (h ◦ Kf )(t)dt +
1√
n
dWt , t ∈ [0, 1],

where

h is a known strictly monotone link function,

K is a known (possibly ill-posed) linear operator,

W is a standard Brownian motion.

Note that the non-linearity comes from h, which acts pointwise. If
h is the identity, we recover the classical linear inverse problem
with Gaussian noise.

We will look at several specific choices of h (and K ) motivated by
statistical applications.
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Asymptotic equivalence between two experiments roughly means
that there is a model transformation that does not lead to an
asymptotic loss of information about the parameter. It can be
useful to examine such models since they are often easier to
analyse.

Many non-Gaussian statistical inverse problems can be rewritten as

dYt = (h ◦ Kf )(t)dt +
1√
n
dWt , t ∈ [0, 1],

using the notion of asymptotic equivalence.

We study pointwise estimation in such models, which has been
studied by numerous authors. We are particularly interested in the
case where f takes small (or zero) function values.
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Let us first assume that K is the identity for simplicity. We
consider the following examples (under certain constraints):

Density estimation: we observe i.i.d. data X1, ...,Xn ∼ f .
Poisson intensity estimation: we observe a Poisson process on
[0, 1] with intensity function nf .

These can both be rewritten with h(x) = 2
√
x to give

dYt = 2
√

f (t)dt + n−1/2dWt .

Binary regression: we observe n independent Bernoulli random
variables with success probability P(Xi = 1) = f (i/n), where
f : [0, 1]→ [0, 1] is an unknown regression function.

This can be rewritten with h(x) = 2 arcsin
√
x to give

dYt = 2 arcsin
√
f (t)dt + n−1/2dWt .
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Spectral density estimation: we observe a random vector of
length n coming from a stationary Gaussian distribution with
spectral density f .
Gaussian variance estimation: We observe X1, ...,Xn

independent with Xi ∼ N(0, f (i/n)2), where f ≥ 0 is
unknown.

This can be rewritten with h(x) = 2−1/2 log x to give

dYt =
1√
2

log f (t)dt + n−1/2dWt .

The choice of h is linked to the variance stabilizing transformation
of the model.
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The linear operator K is typically an ill-posed operator (not
continuously invertible). Perhaps the two most common examples
for h(x) = 2

√
x are:

Density deconvolution: we observe data X1 + ε1, ...,Xn + εn,
where Xi ∼ f and εi ∼ g for g a known density.

Poisson intensity estimation: K is typically a convolution
operator modelling the blurring of images by a so-called point
spread function. The 2-dimensional version of this problem
has applications in photonic imaging.

In both cases we have Kf (t) = f ∗ g(t) for some known g , giving

dYt = 2
√

f ∗ g(t)dt + n−1/2dWt .
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We will discuss the case h(x) = 2
√
x (density esitmation, Poisson

intensity estimation). The other cases are similar.

What happens if we assign f classical Hölder smoothness Cβ?

If f ∈ Cβ then
√
f ∈ Cβ/2 for β ≤ 2.

Theorem (Bony et al. (2006))

There exists a function f ∈ C∞ such that
√
f 6∈ Cβ for any β > 1.

So we cannot exploit higher order Hölder regularity beyond β = 2.
The problem arises due to very small non-zero function values,
where the derivatives of

√
f can fluctuate greatly.
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We propose an alternative restricted space:

Hβ = {f ∈ Cβ : f ≥ 0, ‖f ‖Hβ := ‖f ‖Cβ + |f |Hβ <∞},

where ‖ · ‖Cβ is the usual Hölder norm and

|f |Hβ = max
1≤j<β

(
sup

x∈[0,1]

|f (j)(x)|β

|f (x)|β−j

)1/j

= max
1≤j<β

∥∥∥|f (j)|β/|f |β−j∥∥∥1/j
∞

is a seminorm (|f |Hβ = 0 for β ≤ 1).

The quantity |f |Hβ measures the flatness of a function near 0 in
the sense that if f (x) is small then the derivatives of f must also
be small in a neighbourhood of x . This can be thought of as a
shape constraint.
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Hβ contains

all Cβ functions uniformly bounded away from 0 (the typical
assumption for such problems),

functions that take small values in a ’controlled’ way, e.g.
(x − x0)βg(x) for g ≥ ε > 0 in C∞.

Theorem

If f ∈ Hβ then
√
f ∈ Hβ/2 for all β ≥ 0.

In fact, it turns out that Hβ = Cβ for 0 < β ≤ 2 (hence why
the relation holds for Cβ).
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We propose a two-stage procedure:

1 Let [h(Kf )]HT denote the hard wavelet thresholding estimator
of h(Kf ). Estimate Kf by the estimator

K̂f = h−1([h(Kf )]HT )

(recall that h is injective). Using this we have access to

K̂f (t) = Kf (t) + δ(t),

where δ(t) is the noise level (which is the minimax rate with
high probability).

2 Treat the above as a deterministic inverse problem with noise
level δ. Solve this for f using classical methods (e.g.
Tikhonov regularization, Bayesian methods, etc.)
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For the noise level δ (step 1), without loss of generality set K = id .
We consider a pointwise function-dependent rate for f ∈ Hβ:

rn,β
(
f (x)

)
=

(
log n

n

) β
β+1

∨
(
f (x)

log n

n

) β
2β+1

.

Theorem

The estimator f̂ = h−1([h(f )]HT ) satisfies

Pf

(
sup

x∈[0,1]

|f̂ (x)− f (x)|
rn,β(f (x))

≤ C

)
≥ 1− n−C

′
,

uniformly over ∪β,R{f : ‖f ‖Hβ ≤ R} (β, R in compact sets).

The estimator adapts to Hβ-smoothness and local function size
uniformly over x ∈ [0, 1].
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rn,β
(
f (x)

)
=

(
log n

n

) β
β+1

∨
(
f (x)

log n

n

) β
2β+1

The log n-factors are needed for adaptive estimation in
pointwise estimation (as usual).

For f (x) & (log n/n)
β

β+1 we recover the usual nonparametric
rate, albeit with pointwise dependence on the radius.

For f (x) . (log n/n)
β

β+1 , we have faster than n−1/2 rates for
β > 1, i.e. superefficiency.

For small function values: variance � bias.

Related to irregular models: similar to nonparametric
regression with one-sided errors, e.g. Jirak et al. (2014).

The smaller regime is caused by the non-linearity of
h(x) =

√
x near 0.
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The same rate has recently (and independently) been proved
directly in the case of density estimation by Patschkowski and
Rohde (2016) for 0 < β ≤ 2. They consider classical Hölder
smoothness Cβ, which is why they get stuck at β = 2.

Suppose we take f (x) = (x − 1/2)2. Then f ∈ C∞([0, 1]) ∩H2,
but f 6∈ Hβ for any β > 2. Intuitively, we see that

h(f (x)) =
√
f (x) = |x − 1/2|

is C 1, but no more regular. We recover rate based on this
smoothness, which corresponds to β/2 = 1, but not faster. This
corresponds to the correct flatness condition.

We have more precise examples of such lower bounds, but they are
not as intuitive.
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Derivation of upper bound relies on careful analysis of (local)
smoothness of h ◦ f . Use resulting wavelet bounds and usual
wavelet thresholding proof to obtain the result.

We have the corresponding lower bound (without log n factors):

Theorem

For any β > 0, R > 0, x0 ∈ [0, 1] and any sequence (f ∗n )n with
lim supn→∞ ‖f ∗n ‖Hβ < R,

lim inf
n→∞

inf
f̂n(x0)

sup
f :‖f ‖Hβ≤R
KL(f ,f ∗n )≤1

Pf

(
|f̂n(x0)− f (x0)|
rn,β(f (x0))

≥ C

)
> 0,

where the infimum is taken over all measurable estimators of f (x0).
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We have replaced the whole parameter space {f : ‖f ‖Hβ ≤ R}
with local parameter spaces

{f : ‖f ‖Hβ ≤ R, KL(f , f ∗n ) ≤ 1}

about every interior point f ∗n ∈ Hβ. This allows us to obtain local
(function-dependent) rates.

Global rate: somewhere on the parameter space, the estimation
rate can not be improved.

Local rate: the estimation rate can not be improved on a local
neighbourhood of any point in the parameter space.
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For example consider (f ∗n ) with f ∗n (x0)→ 0. The minimax lower

bound over an Hβ-ball is n−
β

2β+1 , while our upper bound gives

faster rates (e.g. n−
β

β+1 ). The matching lower bound works since
we restrict to the smaller spaces: the local parameter space
{f ∈ Hβ : KL(f , f ∗n ) ≤ 1} also contains only functions vanishing at
x0 for large n.

The lower bounds also give insight into the form of the rates. For
h(x) =

√
x , the Kullback-Leibler divergence equals

KL(f , g) =
n

2

∫
(
√
f −√g)2.

If functions are uniformly bounded away from 0 this behaves
like the L2 distance =⇒ classic nonparametric rate.

If functions are near 0, behaves likes L1 distance =⇒ rate for
irregular models.
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We have now access to K̂f which satisfies

K̂f (t) = Kf (t) + δ(t)

with high probability, where |δ(t)| = rn,β(Kf (t)). We solve this
deterministic inverse problem using classical methods (e.g.
Tikhonov regularization).

The rate depends on the noise level δ, which we need to know to
obtain rate-optimal procedures. However, we can use a plug-in
estimate to estimate the noise level.

Theorem

C−1rn,β(K̂f (t)) ≤ rn,β(Kf (t)) ≤ Crn,β(K̂f (t))

with high probability and uniformly over t ∈ [0, 1].
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Similar results hold in the other cases.

Binary regression:

dYt = 2 arcsin
√
f (t)dt + n−1/2dWt ,

rn,β(f (x)) =

(
log n

n

) β
β+1

∨
(
f (x)(1− f (x))

log n

n

) β
2β+1

.

Spectral density estimation:

dYt =
1√
2

log f (t)dt + n−1/2dWt ,

rn,β(f (x)) = f (x) ∧ (f (x)2/n)
β

2β+1

(the last rate up to some subpolynomial factors).
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