# Bayesian inference for discretely observed diffusion processes 

Moritz Schauer with Frank van der Meulen and Harry van Zanten<br>Delft University of Technology, University of Amsterdam<br>Van Dantzig Seminar

## Estimating parameters of a discretely observed diffusion process

Diffusion process $X$

$$
\mathrm{d} X_{t}=b_{\theta}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{\theta}\left(t, X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=u,
$$

with transition densities $p(s, x ; t, y)$
Discrete observations

$$
X_{t_{i}}=x_{i}, \quad 0=t_{0}<t_{1}<\cdots<t_{n} .
$$

- Bayesian estimate for parameter $\theta$ with prior $\pi_{0}(\theta)$.
- Likelihood is intractable (product of transition densities)
- Continuous time likelihood known in closed form (Girsanov's theorem)


## Computational approach

Data Augmentation (DA): Sample from the joint posterior of missing data and parameter.

1. Sample diffusion bridges conditional on $\left\{X_{t_{i}}=x_{i}\right\}$ and $\theta$ (this gives "complete", latent data);
2. Sample from $\theta$ conditional on the complete data.

Can use an accept/reject or Metropolis-Hastings step.
Rough outline:

- Simulation of diffusion bridges
- If unknown parameters are in the diffusion coefficient, DA does not


## Computational approach

Data Augmentation (DA): Sample from the joint posterior of missing data and parameter.

1. Sample diffusion bridges conditional on $\left\{X_{t_{i}}=x_{i}\right\}$ and $\theta$ (this gives "complete", latent data);
2. Sample from $\theta$ conditional on the complete data.

Can use an accept/reject or Metropolis-Hastings step.

## Rough outline:

- Simulation of diffusion bridges
- Example
- When and how to discretize


## Computational approach

Data Augmentation (DA): Sample from the joint posterior of missing data and parameter.

1. Sample diffusion bridges conditional on $\left\{X_{t_{i}}=x_{i}\right\}$ and $\theta$ (this gives "complete", latent data);
2. Sample from $\theta$ conditional on the complete data.

Can use an accept/reject or Metropolis-Hastings step.

## Rough outline:

- Simulation of diffusion bridges
- If unknown parameters are in the diffusion coefficient, DA does not work
- Example
- When and how to discretize


## Computational approach

Data Augmentation (DA): Sample from the joint posterior of missing data and parameter.

1. Sample diffusion bridges conditional on $\left\{X_{t_{i}}=x_{i}\right\}$ and $\theta$ (this gives "complete", latent data);
2. Sample from $\theta$ conditional on the complete data.

Can use an accept/reject or Metropolis-Hastings step.

## Rough outline:

- Simulation of diffusion bridges
- If unknown parameters are in the diffusion coefficient, DA does not work
- Example
- When and how to discretize


## Examples: Butane dihedral angle, Pokern (2007)



Butane data: Posterior Drift Functions



$$
\mathrm{d} X_{t}=\sum_{i=1}^{J} \theta_{i} \psi_{i}\left(X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

## Chemical reaction network, Golightly and Wilkinson (2010)



## Intuition: Diffusion bridge

Two processes with equivalent distributions $\mathbb{P}$ and $\mathbb{W}$

- Diffusion process $X$ with $\sigma \equiv 1$ starting in $u$
- Brownian motion $W$ starting in $u$

Brownian motion $W$ conditional on $W_{T}=v$ : Brownian bridge.

The two conditional distributions $\mathbb{P}^{\star}$ and $\mathbb{W}^{\star}$ given $X_{T}=v$ resp. $W_{T}=v$ are equivalent

with $p$ and $\phi$ denoting the transition densities.

Works only if $\sigma$ is constant. More general bridge proposals $X^{\circ}$ are needed,

## Intuition: Diffusion bridge

Two processes with equivalent distributions $\mathbb{P}$ and $\mathbb{W}$

- Diffusion process $X$ with $\sigma \equiv 1$ starting in $u$
- Brownian motion $W$ starting in $u$

Brownian motion $W$ conditional on $W_{T}=v$ : Brownian bridge.
The two conditional distributions $\mathbb{P}^{\star}$ and $\mathbb{W}^{\star}$ given $X_{T}=v$ resp. $W_{T}=v$ are equivalent

$$
\frac{\mathrm{d} \mathbb{P}}{\mathrm{~d} \mathbb{W}}=\frac{p(0, u ; T, v)}{\phi(0, u ; T, v)} \frac{\mathrm{d} \mathbb{P}^{\star}}{\mathrm{d} \mathbb{W} \star}
$$

with $p$ and $\phi$ denoting the transition densities.
Works only if $\sigma$ is constant. More general bridge proposals $X^{\circ}$ are

## Intuition: Diffusion bridge

Two processes with equivalent distributions $\mathbb{P}$ and $\mathbb{W}$

- Diffusion process $X$ with $\sigma \equiv 1$ starting in $u$
- Brownian motion $W$ starting in $u$

Brownian motion $W$ conditional on $W_{T}=v$ : Brownian bridge.
The two conditional distributions $\mathbb{P}^{\star}$ and $\mathbb{W}^{\star}$ given $X_{T}=v$ resp. $W_{T}=v$ are equivalent

$$
\frac{\mathrm{d} \mathbb{P}}{\mathrm{~d} \mathbb{W}}=\frac{p(0, u ; T, v)}{\phi(0, u ; T, v)} \frac{\mathrm{d} \mathbb{P}^{\star}}{\mathrm{d} \mathbb{W} \star}
$$

with $p$ and $\phi$ denoting the transition densities.

Works only if $\sigma$ is constant. More general bridge proposals $X^{\circ}$ are needed,

$$
\frac{\mathrm{d} \mathbb{P}^{\star}}{\mathrm{d} \mathbb{P}^{\circ}}\left(X^{\circ}\right)=C \Psi\left(X^{\circ}\right)
$$

## Diffusion bridges

Bridge from $(0, u)$ to $(T, v)$

$$
\mathrm{d} X_{t}^{\star}=b^{\star}\left(t, X_{t}^{\star}\right) \mathrm{d} t+\sigma\left(t, X_{t}^{\star}\right) \mathrm{d} W_{t}, \quad X_{0}^{\star}=u
$$

with $\operatorname{drift}\left(a=\sigma \sigma^{\prime}\right)$

$$
b^{\star}(t, x)=b(t, x)+a(t, x) \underbrace{\nabla_{x} \log p(t, x ; T, v)}_{r(t, x ; T, v)} .
$$

- Beskos \& Roberts: rejection sampling algorithm for obtaining bridges without discretisation error.


## Diffusion bridges

Bridge from $(0, u)$ to $(T, v)$

$$
\mathrm{d} X_{t}^{\star}=b^{\star}\left(t, X_{t}^{\star}\right) \mathrm{d} t+\sigma\left(t, X_{t}^{\star}\right) \mathrm{d} W_{t}, \quad X_{0}^{\star}=u
$$

with $\operatorname{drift}\left(a=\sigma \sigma^{\prime}\right)$

$$
b^{\star}(t, x)=b(t, x)+a(t, x) \underbrace{\nabla_{x} \log p(t, x ; T, v)}_{r(t, x ; T, v)} .
$$

- Delyon \& Hu, Durham \& Gallant: Proposals $X^{\circ}$ of the form

$$
d X_{t}^{\circ}=\left(\lambda b\left(t, X_{t}^{\circ}\right)+\frac{v-X_{t}^{\circ}}{T-t}\right) \mathrm{d} t+\sigma\left(t, X_{t}^{\circ}\right) \mathrm{d} W_{t}, \quad X_{0}^{\circ}=u
$$

$\lambda \in\{0,1\}$.
bridges without discretisation error.

## Diffusion bridges

Bridge from $(0, u)$ to $(T, v)$

$$
\mathrm{d} X_{t}^{\star}=b^{\star}\left(t, X_{t}^{\star}\right) \mathrm{d} t+\sigma\left(t, X_{t}^{\star}\right) \mathrm{d} W_{t}, \quad X_{0}^{\star}=u
$$

with drift ( $a=\sigma \sigma^{\prime}$ )

$$
b^{\star}(t, x)=b(t, x)+a(t, x) \underbrace{\nabla_{x} \log p(t, x ; T, v)}_{r(t, x ; T, v)} .
$$

- Delyon \& Hu, Durham \& Gallant: Proposals $X^{\circ}$ of the form

$$
d X_{t}^{\circ}=\left(\lambda b\left(t, X_{t}^{\circ}\right)+\frac{v-X_{t}^{\circ}}{T-t}\right) \mathrm{d} t+\sigma\left(t, X_{t}^{\circ}\right) \mathrm{d} W_{t}, \quad X_{0}^{\circ}=u
$$

$\lambda \in\{0,1\}$.

- Beskos \& Roberts: rejection sampling algorithm for obtaining bridges without discretisation error.


## Diffusion bridge proposals

Bridge from $(0, u)$ to $(T, v)$

$$
\mathrm{d} X_{t}^{\star}=b^{\star}\left(t, X_{t}^{\star}\right) \mathrm{d} t+\sigma\left(t, X_{t}^{\star}\right) \mathrm{d} W_{t}, \quad X_{0}^{\star}=u
$$

with drift

$$
b^{\star}(t, x)=b(t, x)+a(t, x) \underbrace{\nabla_{x} \log p(t, x ; T, v)}_{r(t, x ; T, v)} .
$$

Take $\tilde{p}$ the transition density of

## Diffusion bridge proposals

Bridge from $(0, u)$ to $(T, v)$

$$
\mathrm{d} X_{t}^{\circ}=b^{\circ}\left(t, X_{t}^{\circ}\right) \mathrm{d} t+\sigma\left(t, X_{t}^{\circ}\right) \mathrm{d} W_{t}, \quad X_{0}^{\circ}=u
$$

with drift

$$
b^{\circ}(t, x)=b(t, x)+a(t, x) \underbrace{\nabla_{x} \log \tilde{p}(t, x ; T, v)}_{\tilde{r}(t, x ; T, v)} .
$$

Take $\tilde{p}$ the transition density of

If $\tilde{a}(T)=a(T, v)$ (and a few more conditions), then

## Diffusion bridge proposals

Bridge from $(0, u)$ to $(T, v)$

$$
\mathrm{d} X_{t}^{\circ}=b^{\circ}\left(t, X_{t}^{\circ}\right) \mathrm{d} t+\sigma\left(t, X_{t}^{\circ}\right) \mathrm{d} W_{t}, \quad X_{0}^{\circ}=u
$$

with drift

$$
b^{\circ}(t, x)=b(t, x)+a(t, x) \underbrace{\nabla_{x} \log \tilde{p}(t, x ; T, v)}_{\tilde{r}(t, x ; T, v)} .
$$

Take $\tilde{p}$ the transition density of

$$
\mathrm{d} \tilde{X}_{t}=\left(\tilde{\beta}(t)+\tilde{B}(t) \tilde{X}_{t}\right) \mathrm{d} t+\tilde{\sigma}(t) \mathrm{d} W_{t} .
$$

where $\Psi$ is tractable.

## Diffusion bridge proposals

Bridge from $(0, u)$ to $(T, v)$

$$
\mathrm{d} X_{t}^{\circ}=b^{\circ}\left(t, X_{t}^{\circ}\right) \mathrm{d} t+\sigma\left(t, X_{t}^{\circ}\right) \mathrm{d} W_{t}, \quad X_{0}^{\circ}=u
$$

with drift

$$
b^{\circ}(t, x)=b(t, x)+a(t, x) \underbrace{\nabla_{x} \log \tilde{p}(t, x ; T, v)}_{\tilde{r}(t, x ; T, v)} .
$$

Take $\tilde{p}$ the transition density of

$$
\mathrm{d} \tilde{X}_{t}=\left(\tilde{\beta}(t)+\tilde{B}(t) \tilde{X}_{t}\right) \mathrm{d} t+\tilde{\sigma}(t) \mathrm{d} W_{t} .
$$

If $\tilde{a}(T)=a(T, v)$ (and a few more conditions), then

$$
\frac{\mathrm{d} \mathbb{P}^{\star}}{\mathrm{dP}^{\circ}}\left(X^{\circ}\right)=\frac{\tilde{p}(0, u ; T, v)}{p(0, u ; T, v)} \Psi\left(X^{\circ}\right)
$$

where $\Psi$ is tractable.

## An example

Example: Simulate $X$ given that $X_{0}=0$ and $X_{1}=\pi / 2$.

$$
\mathrm{d} X_{t}=\left(2-2 \sin \left(8 X_{t}\right)\right) \mathrm{d} t+\frac{1}{2} \mathrm{~d} W_{t}
$$



Guided proposal from

$$
\mathrm{d} \tilde{X}_{t}=1.34 \mathrm{~d} t+\frac{1}{2} \mathrm{~d} W_{t} .
$$

yielding

$$
\mathrm{d} X_{t}^{\circ}=\left(2-2 \sin \left(8 X_{t}^{\circ}\right)+\frac{\pi / 2-X_{t}^{\circ}}{1-t}-1.34\right) \mathrm{d} t+\frac{1}{2} \mathrm{~d} W_{t}, \quad X_{0}^{\circ}=0 .
$$

## Finding good proposals

- Cross entropy method (previous example)
- Local linearizations (chemical reaction network example)
- Substituting space dependence for time dependence (next slide)

Substituting space dependence for time dependence

$$
\begin{array}{cl}
\mathrm{d} X_{t}=-\sin \left(X_{t}\right) \mathrm{d} t, & X_{0}=\pi / 2 \\
\mathrm{~d} \tilde{X}_{t}=-\operatorname{sech}(t) \mathrm{d} t, & \tilde{X}_{0}=\pi / 2
\end{array}
$$

## Substituting space dependence for time dependence

$$
\begin{array}{cl}
\mathrm{d} X_{t}=-\sin \left(X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, & X_{0}=\pi / 2 \\
\mathrm{~d} \tilde{X}_{t}=-\operatorname{sech}(t) \mathrm{d} t+\mathrm{d} W_{t}, & \tilde{X}_{0}=\pi / 2
\end{array}
$$





Sample of $X$ and $\tilde{X}$ (black, red)
$X^{\circ}$
$X^{\star}$

## Updating bridges

- Use a Metropolis-Hastings step with independent proposals from $X^{\circ}$.
- Assume one bridge with $X_{0}^{\circ}=u, X_{T}^{\circ}=v$.
else retain current process $X^{*}$


## Updating bridges

- Use a Metropolis-Hastings step with independent proposals from $X^{\circ}$.
- Assume one bridge with $X_{0}^{\circ}=u, X_{T}^{\circ}=v$.
- Sample proposal process $X^{\circ}$. Accept proposal $X^{\circ}$ with probability $\min (1, A)$

$$
A=\frac{\Psi\left(X^{\circ}\right)}{\Psi\left(X^{\star}\right)}
$$

else retain current process $X^{\star}$.

## Parameters in the diffusion coefficient: DA does not work

Toy example from Roberts and Stramer (2001).
Consider the diffusion generated by the SDE

$$
\mathrm{d} X_{t}=\theta \mathrm{d} W_{t}, \quad X_{0}=0
$$

$X_{1}$ is observed. $\theta$ unknown.
Intuitive argument why DA fails:

- Initialize $\theta$ by $\theta_{0}$ and simulate a bridge $X^{\star}$ in continuous time.


## Parameters in the diffusion coefficient: DA does not work

Toy example from Roberts and Stramer (2001).
Consider the diffusion generated by the SDE

$$
\mathrm{d} X_{t}=\theta \mathrm{d} W_{t}, \quad X_{0}=0
$$

$X_{1}$ is observed. $\theta$ unknown.
Intuitive argument why DA fails:

- Initialize $\theta$ by $\theta_{0}$ and simulate a bridge $X^{\star}$ in continuous time.


## Parameters in the diffusion coefficient: DA does not work

Toy example from Roberts and Stramer (2001).
Consider the diffusion generated by the SDE

$$
\mathrm{d} X_{t}=\theta \mathrm{d} W_{t}, \quad X_{0}=0
$$

$X_{1}$ is observed. $\theta$ unknown.
Intuitive argument why DA fails:

- Initialize $\theta$ by $\theta_{0}$ and simulate a bridge $X^{\star}$ in continuous time.
- $X^{\star}$ has quadratic variation $\theta_{0}$, so any new iterate for $\theta$ must be $\theta_{0}$.


## Reparametrisation

- Let $Z^{\circ}$ be a Wiener process. We have

$$
\mathrm{d} X_{t}^{\circ}=\left(b_{\theta}+a_{\theta} \tilde{r}_{\theta}\right)\left(t, X_{t}^{\circ}\right) \mathrm{d} t+\sigma_{\theta}\left(t, X_{t}^{\circ}\right) \mathrm{d} Z_{t}^{\circ} .
$$

We write

$$
X^{\circ}=g\left(\theta, Z^{\circ}\right)
$$

by taking

## Reparametrisation

- Let $Z^{\circ}$ be a Wiener process. We have

$$
\mathrm{d} X_{t}^{\circ}=\left(b_{\theta}+a_{\theta} \tilde{r}_{\theta}\right)\left(t, X_{t}^{\circ}\right) \mathrm{d} t+\sigma_{\theta}\left(t, X_{t}^{\circ}\right) \mathrm{d} Z_{t}^{\circ} .
$$

We write

$$
X^{\circ}=g\left(\theta, Z^{\circ}\right)
$$

- Similarly

$$
X^{\star}=g\left(\theta, Z^{\star}\right)
$$

by taking

$$
Z_{t}^{\star}=W_{t}+\int_{0}^{t} \sigma_{\theta}^{\prime}\left(s, X_{s}^{\star}\right)\left(r_{\theta}\left(t, X_{t}^{\star}\right)-\tilde{r}_{\theta}\left(s, X_{s}^{\star}\right)\right) \mathrm{d} s
$$

## Reparametrisation

Key idea: Sample from $\theta$ conditional on ( $X_{0}=u, X_{T}=v, Z^{\star}$ ) instead of $\theta$ conditional on ( $X_{0}=u, X_{T}=v, X^{\star}$ ).


## Reparametrisation

Key idea: Sample from $\theta$ conditional on ( $X_{0}=u, X_{T}=v, Z^{\star}$ ) instead of $\theta$ conditional on ( $\left.X_{0}=u, X_{T}=v, X^{\star}\right)$.

Notation: | Process | $Z^{\star} \xrightarrow{g(\theta, \cdot)} X^{\star}$ | $Z^{\circ} \xrightarrow{g(\theta, \cdot)} X^{\circ}$ |
| :--- | :---: | :---: |
| Law | $\mathbb{Q}_{\theta}^{\star}$ | $\mathbb{P}_{\theta}^{\star}$ | $\mathbb{Q}^{\circ} \mathbb{P}_{\theta}^{\circ}$

 distribution $q(\cdot \mid \theta)$ and accept the proposal with pro where

## Reparametrisation

Key idea: Sample from $\theta$ conditional on ( $X_{0}=u, X_{T}=v, Z^{\star}$ ) instead of $\theta$ conditional on ( $\left.X_{0}=u, X_{T}=v, X^{\star}\right)$.

Notation: | Process | $Z^{\star} \xrightarrow{g(\theta, \cdot)} X^{\star}$ | $Z^{\circ} \xrightarrow{\text { g(曷. })} X^{\circ}$ |
| :--- | :---: | :---: |
| Law | $\mathbb{Q}_{\theta}^{\star}$ | $\mathbb{P}_{\theta}^{\star}$ | $\mathbb{Q}^{\circ} \mathbb{P}_{\theta}^{\circ}$

Metropolis-Hastings step: Propose a value $\theta^{\circ}$ from some proposal distribution $q(\cdot \mid \theta)$ and accept the proposal with probability $\min (1, A)$, where

$$
A=\underbrace{\frac{\pi_{0}\left(\theta^{\circ}\right)}{\pi_{0}(\theta)}}_{\text {prior ratio }} \underbrace{\frac{p_{\theta^{\circ}}(0, u ; T, v)}{p_{\theta}(0, u ; T, v)} \frac{\mathrm{d} \mathbb{Q}_{\theta^{\circ}}^{\star}}{\mathrm{d} \mathbb{Q}_{\theta}^{\star}}\left(Z^{\star}\right)}_{\text {likelihood ratio }} \underbrace{\frac{q\left(\theta \mid \theta^{\circ}\right)}{q\left(\theta^{\circ} \mid \theta\right)}}_{\text {proposal ratio }} .
$$

## Reparametrisation

Metropolis-Hastings step: Propose a value $\theta^{\circ}$ from some proposal distribution $q(\cdot \mid \theta)$ and accept the proposal with probability $\min (1, A)$, where

## Reparametrisation

Metropolis-Hastings step: Propose a value $\theta^{\circ}$ from some proposal distribution $q(\cdot \mid \theta)$ and accept the proposal with probability $\min (1, A)$, where

Using absolute continuity results of $\mathbb{P}^{\star}$ wrt $\mathbb{P}^{\circ}$, we get

$$
\frac{\mathrm{d} \mathbb{Q}_{\theta^{\circ}}^{\star}}{\mathrm{d} \mathbb{Q}_{\theta}^{\star}}\left(Z^{\star}\right)=\frac{p_{\theta}(0, u ; T, v)}{p_{\theta^{\circ}}(0, u ; T, v)} \frac{\tilde{p}_{\theta^{\circ}}(0, u ; T, v)}{\tilde{p}_{\theta}(0, u ; T, v)} \frac{\Psi_{\theta^{\circ}}\left(g\left(\theta^{\circ}, Z^{\star}\right)\right)}{\Psi_{\theta}\left(g\left(\theta, Z^{\star}\right)\right)}
$$

## Algorithm

1. Update $Z^{\star} \mid\left(\theta, X_{t_{i}}=x_{i}, 1 \leq i \leq n\right)$. Independently, for $1 \leq i \leq n$ do
1.1 Sample a Wiener process $Z_{i}^{\circ}$.
1.2 Sample $U \sim \mathcal{U}(0,1)$. Compute

$$
A_{1}=\frac{\Psi_{\theta}\left(g\left(\theta, Z_{i}^{\circ}\right)\right)}{\Psi_{\theta}\left(g\left(\theta, Z_{i}^{\star}\right)\right)}
$$

Set

$$
Z_{i}^{\star}:=\left\{\begin{array}{lll}
Z_{i}^{\circ} & \text { if } & U \leq A_{1} \\
Z_{i}^{\star} & \text { if } & U>A_{1}
\end{array}\right.
$$

Repeat steps (1) and (2).

## Algorithm

1. Update $Z^{\star} \mid\left(\theta, X_{t_{i}}=x_{i}, 1 \leq i \leq n\right)$. Independently, for $1 \leq i \leq n$ do
1.1 Sample a Wiener process $Z_{i}^{\circ}$.
1.2 Sample $U \sim \mathcal{U}(0,1)$. Compute

$$
A_{1}=\frac{\Psi_{\theta}\left(g\left(\theta, Z_{i}^{\circ}\right)\right)}{\Psi_{\theta}\left(g\left(\theta, Z_{i}^{\star}\right)\right)}
$$

Set

$$
Z_{i}^{\star}:=\left\{\begin{array}{lll}
Z_{i}^{\circ} & \text { if } & U \leq A_{1} \\
Z_{i}^{\star} & \text { if } & U>A_{1}
\end{array}\right.
$$

2. Update $\theta \mid\left(Z^{\star}, X_{t_{i}}=x_{i}, 1 \leq i \leq n\right)$.
2.1 Sample $\theta^{\circ} \sim q(\cdot \mid \theta)$.
2.2 Sample $U \sim \mathcal{U}(0,1)$. Compute

$$
A_{2}=\prod_{i=1}^{n} \frac{\tilde{p}_{\theta^{\circ}}\left(t_{i-1}, x_{i-1} ; t_{i}, x_{i}\right)}{\tilde{p}_{\theta}\left(t_{i-1}, x_{i-1} ; t_{i}, x_{i}\right)} \frac{\Psi_{\theta^{\circ}}\left(g\left(\theta^{\circ}, Z_{i}^{\star}\right)\right)}{\Psi_{\theta}\left(g\left(\theta, Z_{i}^{\star}\right)\right)} \frac{q\left(\theta \mid \theta^{\circ}\right)}{q\left(\theta^{\circ} \mid \theta\right)} \frac{\pi_{0}\left(\theta^{\circ}\right)}{\pi_{0}(\theta)}
$$

Set

$$
\theta:= \begin{cases}\theta^{\circ} & \text { if } U \leq A_{2} \\ \theta & \text { if } U>A_{2}\end{cases}
$$

## Algorithm

1. Update $Z^{\star} \mid\left(\theta, X_{t_{i}}=x_{i}, 1 \leq i \leq n\right)$. Independently, for $1 \leq i \leq n$ do
1.1 Sample a Wiener process $Z_{i}^{\circ}$.
1.2 Sample $U \sim \mathcal{U}(0,1)$. Compute

$$
A_{1}=\frac{\Psi_{\theta}\left(g\left(\theta, Z_{i}^{\circ}\right)\right)}{\Psi_{\theta}\left(g\left(\theta, Z_{i}^{\star}\right)\right)}
$$

Set

$$
Z_{i}^{\star}:=\left\{\begin{array}{lll}
Z_{i}^{\circ} & \text { if } & U \leq A_{1} \\
Z_{i}^{\star} & \text { if } & U>A_{1}
\end{array}\right.
$$

2. Update $\theta \mid\left(Z^{\star}, X_{t_{i}}=x_{i}, 1 \leq i \leq n\right)$.
2.1 Sample $\theta^{\circ} \sim q(\cdot \mid \theta)$.
2.2 Sample $U \sim \mathcal{U}(0,1)$. Compute

$$
A_{2}=\prod_{i=1}^{n} \frac{\tilde{p}_{\theta^{\circ}}\left(t_{i-1}, x_{i-1} ; t_{i}, x_{i}\right)}{\tilde{p}_{\theta}\left(t_{i-1}, x_{i-1} ; t_{i}, x_{i}\right)} \frac{\Psi_{\theta^{\circ}}\left(g\left(\theta^{\circ}, Z_{i}^{\star}\right)\right)}{\Psi_{\theta}\left(g\left(\theta, Z_{i}^{\star}\right)\right)} \frac{q\left(\theta \mid \theta^{\circ}\right)}{q\left(\theta^{\circ} \mid \theta\right)} \frac{\pi_{0}\left(\theta^{\circ}\right)}{\pi_{0}(\theta)}
$$

Set

$$
\theta:= \begin{cases}\theta^{\circ} & \text { if } \quad U \leq A_{2} \\ \theta & \text { if } U>A_{2}\end{cases}
$$

Repeat steps (1) and (2).

## Numerical example: Data

Prokaryotic auto-regulation example, Golightly and Wilkinson (2010) Markov chain modelling quantities of (RNA, $\left.\mathrm{P}, \mathrm{P}_{2}, \mathrm{DNA}\right)$ at integer times


## Numerical example: SDE

Chemical Langevin equation. Diffusion approximation of the Markov chain

$$
\mathrm{d} X_{t}=S h_{\theta}\left(X_{t}\right) \mathrm{d} t+S \operatorname{diag}\left(\sqrt{h_{\theta}\left(X_{t}\right)}\right) \mathrm{d} W_{t}
$$

driven by a $\mathbb{R}^{8}$-valued Brownian motion, where

$$
\begin{gathered}
S=\left[\begin{array}{cccccccc}
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & -2 & 2 & 0 & -1 \\
-1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
h_{\theta}(x)=\operatorname{diag}(\theta) \cdot\left[x_{3} x_{4}, K-x_{4}, x_{4}, x_{1}, \frac{1}{2} x_{2}\left(x_{2}-1\right), x_{3}, x_{1}, x_{2}\right]^{\prime}
\end{gathered}
$$

## Numerical example: Proposals

Linearization of drift
$\bar{h}_{\theta}(x)=\operatorname{diag}(\theta) \cdot\left[c_{1}+\lambda_{1} x_{3}+\gamma_{1} x_{4}, K-x_{4}, x_{4}, x_{1}, c_{2}+\lambda_{2} x_{2}, x_{3}, x_{1}, x_{2}\right]^{\prime}$
Choose $\tilde{B}_{\theta}$ and $\tilde{\beta}_{\theta}$ such that

$$
\tilde{B}_{\theta} x+\tilde{\beta}_{\theta}=S \bar{h}_{\theta}(x)
$$

## Numerical example: Results



Iterates of the MCMC chain for $m=20,50$ interpolated points

## Numerical example: Results



ACF plots of the thinned samples of $\theta_{1}, \theta_{3}, \theta_{7}$ (taking every 50th iterate after burn in).

## Summary

Data augmentation for discretely observed diffusion processes Non-constant and unknown $\sigma$ : two challenges - Finding good proposals for the conditional process Both can be addressed using guided proposals

## Summary

Data augmentation for discretely observed diffusion processes Non-constant and unknown $\sigma$ : two challenges


## Summary

Data augmentation for discretely observed diffusion processes
Non-constant and unknown $\sigma$ : two challenges

- Finding good proposals for the conditional process

Both can be addressed using guided proposals

## Summary

Data augmentation for discretely observed diffusion processes Non-constant and unknown $\sigma$ : two challenges

- Finding good proposals for the conditional process
- Overcoming dependence between missing data and parameter

Both can be addressed using guided proposals

## Summary

Data augmentation for discretely observed diffusion processes Non-constant and unknown $\sigma$ : two challenges

- Finding good proposals for the conditional process
- Overcoming dependence between missing data and parameter

Both can be addressed using guided proposals
 mesmect mon text pat

## Summary

Data augmentation for discretely observed diffusion processes
Non-constant and unknown $\sigma$ : two challenges

- Finding good proposals for the conditional process
- Overcoming dependence between missing data and parameter

Both can be addressed using guided proposals

- Proposal bridges which take drift into account
parameter and latent path


## Summary

Data augmentation for discretely observed diffusion processes
Non-constant and unknown $\sigma$ : two challenges

- Finding good proposals for the conditional process
- Overcoming dependence between missing data and parameter

Both can be addressed using guided proposals

- Proposal bridges which take drift into account
- Guided proposals provide a natural reparametrization to decouple parameter and latent path


## Remarks

Overcoming singularities in the drift
Scaling and time change

$$
U_{s}=\mathrm{e}^{s / 2}\left(v-X_{T\left(1-\mathrm{e}^{-s}\right)}^{\circ}\right)
$$

If the target is a Brownian motion, the proposal process $U$ discretized on an equidistant grid and simulated using vanilla Euler scheme coincides with the scaled and time changed Brownian bridge (up to a small error)

## Remarks

Determining $\tilde{B}$ and $\tilde{\beta}$

- Sometimes there a natural linearizations of the drift
- Adaptive proposals minimizing cross-entropy.

