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Estimating parameters of a discretely observed diffusion
process

Diffusion process X
dX; = bg(t,Xt) dt—|—0’9(t,Xt) dWy, Xo = u,

with transition densities p(s, z;t, )
Discrete observations

Xti:xi, O=tg <ty <<ty

» Bayesian estimate for parameter 6 with prior 7 (6).

> Likelihood is intractable (product of transition densities)

» Continuous time likelihood known in closed form (Girsanov's
theorem)



Computational approach

Data Augmentation (DA): Sample from the joint posterior of missing
data and parameter.

1. Sample diffusion bridges conditional on {X;, = z;} and 0 (this gives
“complete”, latent data);

2. Sample from 6 conditional on the complete data.

Can use an accept/reject or Metropolis-Hastings step.
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Computational approach

Data Augmentation (DA): Sample from the joint posterior of missing
data and parameter.

1. Sample diffusion bridges conditional on {X;, = z;} and 0 (this gives
“complete”, latent data);
2. Sample from 6 conditional on the complete data.

Can use an accept/reject or Metropolis-Hastings step.

Rough outline:
» Simulation of diffusion bridges

» If unknown parameters are in the diffusion coefficient, DA does not
work

» Example

» When and how to discretize



Examples: Butane dihedral angle, Pokerx (2007)

Butane data: Posterior Drift Functions

a(x) (radians/ps)

2 3 4 5 B 7
Dihedral angle (radians)

J
AXe =) 0:i(Xy) dt + dW,

i=1



Chemical reaction network,

(2010)

DNA + PQ <:>

io&, o1
0.9
DNA + RNA

DNA-P,

GOLIGHTLY AND WILKINSON

variable

ho(Xy)) dW;



Intuition: Diffusion bridge

Two processes with equivalent distributions P and W
» Diffusion process X with ¢ = 1 starting in u

» Brownian motion W starting in u

Brownian motion W conditional on W = v: Brownian bridge.
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Intuition: Diffusion bridge

Two processes with equivalent distributions P and W
» Diffusion process X with ¢ = 1 starting in u

» Brownian motion W starting in u

Brownian motion W conditional on W = v: Brownian bridge.

The two conditional distributions P* and W* given X1 = v
resp. W = v are equivalent

AP p(0,w; T v) dP*

dW — ¢(0,u; T,v) dW*

with p and ¢ denoting the transition densities.

6

25



Intuition: Diffusion bridge

Two processes with equivalent distributions P and W
» Diffusion process X with ¢ = 1 starting in u
» Brownian motion W starting in u

Brownian motion W conditional on W = v: Brownian bridge.
The two conditional distributions P* and W* given X1 = v
resp. W = v are equivalent

dP p(0,u; T,v) dP*
AW~ (0, u; T, v) AW~

with p and ¢ denoting the transition densities.

Works only if o is constant. More general bridge proposals X° are

needed,
dPpP*

dPe

(X°) = CU(X®)

6
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Diffusion bridges
Bridge from (0,u) to (T, v)
dX; =b0"(t, X)) dt+o(t, X[)dW,, X5 =wu
with drift (a = o0”)

b*(t,z) = b(t,x) + a(t,x)Vy log p(t, x; T, v).

r(t,z;T,v)
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» DELYON & Hu, DURHAM & GALLANT: Proposals X° of the form

o

- X
X7 = (M0, X7) + 2 ) e ol XD AW X =

A e{0,1}.



Diffusion bridges
Bridge from (0,u) to (T, v)
dX; =b0"(t, X)) dt+o(t, X[)dW,, X5 =wu
with drift (a = o0”)

b*(t, ) = b(t, x) + a(t, x) Vg log p(t, z; T v).

r(t,x; T, v)

» DELYON & Hu, DURHAM & GALLANT: Proposals X° of the form

o

-X
dXto - (Ab(taXto) + 2 : ) dt + U(t’XtC)) th7 X(c)) = U

Tt

A e{0,1}.
» BESKOS & ROBERTS: rejection sampling algorithm for obtaining
bridges without discretisation error.



Diffusion bridge proposals
Bridge from (0,u) to (T, v)

AX; = b (t, XF) dt + o(t, X7)dW,, X =u

with drift
b*(t,z) = b(t,x) + a(t,x) Vs log p(t, 2; T, v).

r(t,z;T,v)



Diffusion bridge proposals
Bridge from (0,u) to (T, v)
AX? = b°(t, X2)dt + o(t, XO)dW,, XS =u

with drift
b (t,z) = b(t,z) + a(t, )V log p(t, z; T, v).

7(t,x; T, v)



Diffusion bridge proposals
Bridge from (0,u) to (T, v)
AX? = b°(t, X2)dt + o(t, XO)dW,, XS =u

with drift
b (t,z) = b(t,z) + a(t, )V log p(t, z; T, v).

7(t,x; T, v)
Take p the transition density of

ax, = (B(t) + B(t)f(t> dt + &(t) AW,



Diffusion bridge proposals
Bridge from (0,u) to (T, v)
AX? = b°(t, X2)dt + o(t, XO)dW,, XS =u

with drift
b (t,z) = b(t,z) + a(t, )V log p(t, z; T, v).

7(t,x; T, v)
Take p the transition density of
ax, = (B(t) + B(t)f(t> dt + &(t) AW,

If a(T) = a(T,v) (and a few more conditions), then

dP* (XO) _ ﬁ(O,U;T, ’U)

=—1 1 ZP(X°
dpe p(0,u; T, v) (X*)

where W is tractable.



An example
Example: Simulate X given that Xy, =0 and X; = 7/2.

dX; = (2 - 2sin(8X,)) dt + 3 dW,

Guided proposal from
- 1

yielding

w/2 — X}

dXy = (2 — 2sin(8X;) + 1%

1
- 1.34) dt + 5 AW, X§=0.

9/25



Finding good proposals

» Cross entropy method (previous example)
> Local linearizations (chemical reaction network example)

» Substituting space dependence for time dependence (next slide)



Substituting space dependence for time dependence

dXt = — Sin(Xt) dt, XO = 7'('/2
dX, = —sech(t)dt, X,=1m/2

11/25



Substituting space dependence for time dependence

dXt = —sin(Xt) dt + th, Xo = 7T/2

dX; = —sech(t)dt + dW;, X, =m/2

° 1

Sample of X and X (black, red) X° X~
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Updating bridges

» Use a Metropolis-Hastings step with independent proposals from X°.

» Assume one bridge with X§ = u, X7 = v.



Updating bridges

» Use a Metropolis-Hastings step with independent proposals from X°.

» Assume one bridge with X§ = u, X7 = v.
» Sample proposal process X°. Accept proposal X° with probability
min(1, A)

A:

else retain current process X*.



Parameters in the diffusion coefficient: DA does not work

Toy example from ROBERTS AND STRAMER (2001).

Consider the diffusion generated by the SDE
dtheth, X():O

X7 is observed. 6 unknown.
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> Initialize 8 by 8y and simulate a bridge X™* in continuous time.
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Parameters in the diffusion coefficient: DA does not work

Toy example from ROBERTS AND STRAMER (2001).

Consider the diffusion generated by the SDE
dXtZGth, X0:0
X7 is observed. 6 unknown.

Intuitive argument why DA fails:
> Initialize 8 by 8y and simulate a bridge X™* in continuous time.

» X* has quadratic variation 6y, so any new iterate for # must be 6.

13/25



Reparametrisation

> Let Z° be a Wiener process. We have

dX7 = (bo + agfp)(t, X7) dt + o9 (t, X7) dZy.

We write
X°=y94(9,2°).

14 /25



Reparametrisation

> Let Z° be a Wiener process. We have

We write
X°=y94(9,2°).

» Similarly
X*=g(0,7%)

by taking

t
Zf =W, —I—/ op(s, X)) (re(t, X}) — To(s, X7)) ds
0

14 /25



Reparametrisation

Key idea: Sample from 6 conditional on (X¢ = u, X7 = v, Z*) instead of
6 conditional on (X = u, X1 = v, X™*).
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Law Q3 Py \ Q° P
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Reparametrisation

Key idea: Sample from 6 conditional on (X¢ = u, X7 = v, Z*) instead of
6 conditional on (X = u, X1 = v, X™*).
Process H z* g&) X* ‘ Z° g&) X°

Notation:
Law Q3 P ‘ Q° P

Metropolis-Hastings step: Propose a value #° from some proposal
distribution ¢(- | §) and accept the proposal with probability min(1, A),

where
A _ ’/TO(GO) Doe (O,U;T, 'U) d@go (Z*) q(0 ‘ go)
m0(0)  pe(0,u; T,v) dQjp q(0°10)
—— ———

prior ratio likelihood ratio proposal ratio
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Reparametrisation

Metropolis-Hastings step: Propose a value 6° from some proposal
distribution ¢(- | 8) and accept the proposal with probability min(1, A),

where
A _ 71—0(90) Poe (O,U;T, 1)) d@go (Z*) q(9 ‘ 90)
m0(0)  pe(0,u; T,v) dQj q(0°10)
—— ———

prior ratio likelihood ratio proposal ratio

16

25



Reparametrisation

Metropolis-Hastings step: Propose a value 6° from some proposal
distribution ¢(- | 8) and accept the proposal with probability min(1, A),

where

71—0(90) Poe (07 Uu; T? 1)) d@go (Z*) q(9 ‘ 90)

A= —_
mo(0)  po(0,u;T,v) dQj q(6° [ 0)
—— ———

prior ratio likelihood ratio proposal ratio

Using absolute continuity results of P* wrt P°, we get

d@go ( *) _ p9(07 u; T7 ’U) ﬁeo (Oa Uu; Tv ’U) \1190 (9(907 Z*))
dQy oo (0,u; T, v) po(0,u; T,v) Wo(g(0,2%))
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Algorithm
1. Update Z* | (0, X;, = ®i,1<i<n ). Independently, for 1 <i <n do
1.1 Sample a Wiener process Z;.
1.2 Sample U ~ U(0,1). Compute
A _ \110(9(97210))
1= *
Wo(g(0, Z;))

Set
o {Z; if U< A

Zr if U>A;

17 /25



Algorithm
1. Update Z* | (0, X;, = ®i,1<i<n ). Independently, for 1 <i <n do
1.1 Sample a Wiener process Z;.
1.2 Sample U ~ U(0,1). Compute
A _ \110(9(97210))
1= *
Wo(g(0, Z;))

Set

2

g [z U<
ZF if U>A
2. Update ¢ | (Z*vXt,; = 1‘1',19'91)-
2.1 Sample 6° ~ q(- | 6).
2.2 Sample U ~ U(0,1). Compute

Ay = ﬁ Poo (ti—1, wi—v; i, wi) Voo (9(0°, Z7)) q(0 ] 6°) mo(6°)
o1 Pe(tion,wiosts i) Wo(g(0,27)) q(6° | 0) mo(0)

Set

. {00 i U< A
Tle i U> Ay
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Algorithm
1. Update Z* | (0, X;, = ®i,1<i<n ). Independently, for 1 <i <n do
1.1 Sample a Wiener process Z;.
1.2 Sample U ~ U(0,1). Compute
Wo(g(0,Z7))

A= 00,20

Set

2

gz i Usal
ZF if U>A
2. Update ¢ | (Z*vXt,; = zi;lgign)-
2.1 Sample 6° ~ q(- | 6).
2.2 Sample U ~ U(0,1). Compute

Ay = ﬁ Poo (ti—1, wi—v; i, wi) Voo (9(0°, Z7)) q(0 ] 6°) mo(6°)
o1 Pe(tion,wiosts i) Wo(g(0,27)) q(6° | 0) mo(0)

Set

. {00 i U< A
Tle i U> Ay

Repeat steps (1) and (2).

17 /25



Numerical example: Data
Prokaryotic auto-regulation example, GOLIGHTLY AND WILKINSON (2010)

Markov chain modelling quantities of (RNA, P, Py, DNA) at integer

times
Observed counts
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Numerical example: SDE

Chemical Langevin equation. Diffusion approximation of the Markov
chain

driven by a R8-valued Brownian motion, where

0010 0 0 -1 0
g_ |0 001 2 2 0 -1
“|-11 00 1 -1 0 0

1100 0 0 0 0

hg(x) = diag(0) - [v3x4, K — x4, x4, 21, %ZEQ((L'Q — 1), 23,71, 72

19/25



Numerical example: Proposals

Linearization of drift
50(96) = diag(0) - [c1 + Mix3 + 124, K — 24, 4, 21, Co + oo, T3, 21, T2)'
Choose By and Bg such that

Boz + B9 = She(x)

20/25



Numerical example: Results

Iterates of the MCMC chain for m = 20, 50 interpolated points



Numerical example: Results
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Summary

Data augmentation for discretely observed diffusion processes
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Summary

Data augmentation for discretely observed diffusion processes

Non-constant and unknown o: two challenges

» Finding good proposals for the conditional process

» Overcoming dependence between missing data and parameter
Both can be addressed using guided proposals

> Proposal bridges which take drift into account
> Guided proposals provide a natural reparametrization to decouple
parameter and latent path



Remarks

Overcoming singularities in the drift

Scaling and time change
Us =20~ X1 o)

If the target is a Brownian motion, the proposal process U discretized on
an equidistant grid and simulated using vanilla Euler scheme coincides
with the scaled and time changed Brownian bridge (up to a small error)

25



Remarks

Determining Band
» Sometimes there a natural linearizations of the drift

» Adaptive proposals minimizing cross-entropy.



	Diffusion bridges

