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Estimating parameters of a discretely observed diffusion
process

Diffusion process X

dXt = bθ(t,Xt) dt+ σθ(t,Xt) dWt, X0 = u,

with transition densities p(s, x; t, y)
Discrete observations

Xti = xi, 0 = t0 < t1 < · · · < tn.

I Bayesian estimate for parameter θ with prior π0(θ).

I Likelihood is intractable (product of transition densities)

I Continuous time likelihood known in closed form (Girsanov’s
theorem)
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Computational approach

Data Augmentation (DA): Sample from the joint posterior of missing
data and parameter.

1. Sample diffusion bridges conditional on {Xti = xi} and θ (this gives
“complete”, latent data);

2. Sample from θ conditional on the complete data.

Can use an accept/reject or Metropolis-Hastings step.

Rough outline:

I Simulation of diffusion bridges

I If unknown parameters are in the diffusion coefficient, DA does not
work

I Example

I When and how to discretize
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Examples: Butane dihedral angle, Pokern (2007)
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Chemical reaction network, Golightly and Wilkinson

(2010)
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Intuition: Diffusion bridge

Two processes with equivalent distributions P and W
I Diffusion process X with σ ≡ 1 starting in u

I Brownian motion W starting in u

Brownian motion W conditional on WT = v: Brownian bridge.

The two conditional distributions P? and W? given XT = v
resp. WT = v are equivalent

dP
dW

=
p(0, u;T, v)
φ(0, u;T, v)

dP?

dW?

with p and φ denoting the transition densities.

Works only if σ is constant. More general bridge proposals X◦ are
needed,

dP?

dP◦
(X◦) = CΨ(X◦)
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Diffusion bridges

Bridge from (0, u) to (T, v)

dX?
t = b?(t,X?

t ) dt+ σ(t,X?
t ) dWt, X?

0 = u

with drift (a = σσ′)

b?(t, x) = b(t, x) + a(t, x)∇x log p(t, x;T, v)︸ ︷︷ ︸
r(t, x;T, v)

.

I Delyon & Hu, Durham & Gallant: Proposals X◦ of the form

dX◦t =
(
λb(t,X◦t ) +

v −X◦t
T − t

)
dt+ σ(t,X◦t ) dWt, X◦0 = u.

λ ∈ {0, 1}.
I Beskos & Roberts: rejection sampling algorithm for obtaining

bridges without discretisation error.
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Diffusion bridge proposals
Bridge from (0, u) to (T, v)

dX?
t = b?(t,X?

t ) dt+ σ(t,X?
t ) dWt, X?

0 = u

with drift
b?(t, x) = b(t, x) + a(t, x)∇x log p(t, x;T, v)︸ ︷︷ ︸

r(t, x;T, v)

.

Bridge from (0, u) to (T, v)

dX◦t = b◦(t,X◦t ) dt+ σ(t,X◦t ) dWt, X◦0 = u

with drift
b◦(t, x) = b(t, x) + a(t, x)∇x log p̃(t, x;T, v)︸ ︷︷ ︸

r̃(t, x;T, v)

.

Take p̃ the transition density of

dX̃t =
(
β̃(t) + B̃(t)X̃t

)
dt+ σ̃(t) dWt.

If ã(T ) = a(T, v) (and a few more conditions), then

dP?

dP◦
(X◦) =

p̃(0, u;T, v)
p(0, u;T, v)

Ψ(X◦)

where Ψ is tractable.
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An example
Example: Simulate X given that X0 = 0 and X1 = π/2.

dXt = (2− 2 sin(8Xt)) dt+ 1
2 dWt

True MBB Delyon−Hu Guided

Guided proposal from

dX̃t = 1.34 dt+
1
2

dWt.

yielding

dX◦t =
(

2− 2 sin(8X◦t ) +
π/2−X◦t

1− t
− 1.34

)
dt+

1
2

dWt, X◦0 = 0.
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Finding good proposals

I Cross entropy method (previous example)

I Local linearizations (chemical reaction network example)

I Substituting space dependence for time dependence (next slide)
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Substituting space dependence for time dependence

dXt = − sin(Xt) dt, X0 = π/2

dX̃t = − sech(t) dt, X̃0 = π/2
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Substituting space dependence for time dependence

dXt = − sin(Xt) dt+ dWt, X0 = π/2

dX̃t = − sech(t) dt+ dWt, X̃0 = π/2

Sample of X and X̃ (black, red) X◦ X? .
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Updating bridges

I Use a Metropolis-Hastings step with independent proposals from X◦.

I Assume one bridge with X◦0 = u, X◦T = v.

I Sample proposal process X◦. Accept proposal X◦ with probability
min(1, A)

A =
Ψ(X◦)
Ψ(X?)

else retain current process X?.
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Parameters in the diffusion coefficient: DA does not work

Toy example from Roberts and Stramer (2001).

Consider the diffusion generated by the SDE

dXt = θ dWt, X0 = 0

X1 is observed. θ unknown.

Intuitive argument why DA fails:

I Initialize θ by θ0 and simulate a bridge X? in continuous time.

I X? has quadratic variation θ0, so any new iterate for θ must be θ0.
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Reparametrisation

I Let Z◦ be a Wiener process. We have

dX◦t = (bθ + aθ r̃θ)(t,X◦t ) dt+ σθ(t,X◦t ) dZ◦t .

We write
X◦ = g(θ, Z◦).

I Similarly
X? = g(θ, Z?)

by taking

Z?t = Wt +
∫ t

0

σ′θ(s,X
?
s ) (rθ(t,X?

t )− r̃θ(s,X?
s )) ds
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Reparametrisation

Key idea: Sample from θ conditional on (X0 = u,XT = v, Z?) instead of
θ conditional on (X0 = u,XT = v,X?).

Notation: Process Z?
g(θ,·)−→ X? Z◦

g(θ,·)−→ X◦

Law Q?
θ P?θ Q◦ P◦θ

Metropolis-Hastings step: Propose a value θ◦ from some proposal
distribution q(· | θ) and accept the proposal with probability min(1, A),
where

A =
π0(θ◦)
π0(θ)︸ ︷︷ ︸

prior ratio

pθ◦(0, u;T, v)
pθ(0, u;T, v)

dQ?
θ◦

dQ?
θ

(Z?)︸ ︷︷ ︸
likelihood ratio

q(θ | θ◦)
q(θ◦ | θ)︸ ︷︷ ︸

proposal ratio

.
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Reparametrisation

Metropolis-Hastings step: Propose a value θ◦ from some proposal
distribution q(· | θ) and accept the proposal with probability min(1, A),
where

A =
π0(θ◦)
π0(θ)︸ ︷︷ ︸

prior ratio

pθ◦(0, u;T, v)
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θ

(Z?)︸ ︷︷ ︸
likelihood ratio

q(θ | θ◦)
q(θ◦ | θ)︸ ︷︷ ︸

proposal ratio

.

Using absolute continuity results of P? wrt P◦, we get

dQ?
θ◦

dQ?
θ

(Z?) =
pθ(0, u;T, v)
pθ◦(0, u;T, v)

p̃θ◦(0, u;T, v)
p̃θ(0, u;T, v)

Ψθ◦(g(θ◦, Z?))
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Algorithm
1. Update Z? | (θ,Xti = xi,1≤i≤n ). Independently, for 1 ≤ i ≤ n do

1.1 Sample a Wiener process Z◦i .
1.2 Sample U ∼ U(0, 1). Compute

A1 =
Ψθ(g(θ, Z◦i ))

Ψθ(g(θ, Z?i ))
.

Set

Z?i :=

(
Z◦i if U ≤ A1

Z?i if U > A1

.

2. Update θ | (Z?, Xti = xi,1≤i≤n ).
2.1 Sample θ◦ ∼ q(· | θ).
2.2 Sample U ∼ U(0, 1). Compute

A2 =

nY
i=1

p̃θ◦(ti−1, xi−1; ti, xi)

p̃θ(ti−1, xi−1; ti, xi)

Ψθ◦(g(θ◦, Z?i ))

Ψθ(g(θ, Z?i ))

q(θ | θ◦)
q(θ◦ | θ)

π0(θ◦)

π0(θ)

Set

θ :=

(
θ◦ if U ≤ A2

θ if U > A2

.

Repeat steps (1) and (2).
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Numerical example: Data
Prokaryotic auto-regulation example, Golightly and Wilkinson (2010)

Markov chain modelling quantities of (RNA,P,P2,DNA) at integer
times
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Numerical example: SDE

Chemical Langevin equation. Diffusion approximation of the Markov
chain

dXt = Shθ(Xt) dt+ S diag(
√
hθ(Xt)) dWt

driven by a R8-valued Brownian motion, where

S =


0 0 1 0 0 0 −1 0
0 0 0 1 −2 2 0 −1
−1 1 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0


hθ(x) = diag(θ) · [x3x4,K − x4, x4, x1,

1
2x2(x2 − 1), x3, x1, x2]′
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Numerical example: Proposals

Linearization of drift

h̄θ(x) = diag(θ) · [c1 +λ1x3 + γ1x4,K −x4, x4, x1, c2 +λ2x2, x3, x1, x2]′

Choose B̃θ and β̃θ such that

B̃θx+ β̃θ = Sh̄θ(x)
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Numerical example: Results
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Iterates of the MCMC chain for m = 20, 50 interpolated points
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Numerical example: Results
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ACF plots of the thinned samples of θ1, θ3, θ7 (taking every 50th iterate
after burn in).
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Summary

Data augmentation for discretely observed diffusion processes

Non-constant and unknown σ: two challenges
I Finding good proposals for the conditional process
I Overcoming dependence between missing data and parameter

Both can be addressed using guided proposals
I Proposal bridges which take drift into account
I Guided proposals provide a natural reparametrization to decouple

parameter and latent path
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Remarks

Overcoming singularities in the drift

Scaling and time change

Us = es/2(v −X◦T (1−e−s))

If the target is a Brownian motion, the proposal process U discretized on
an equidistant grid and simulated using vanilla Euler scheme coincides
with the scaled and time changed Brownian bridge (up to a small error)
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Remarks

Determining B̃ and β̃

I Sometimes there a natural linearizations of the drift

I Adaptive proposals minimizing cross-entropy.
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