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Motivation

Uniform convergence of bounded functions

Strong implications

I Implies pointwise, continuous,
Lp-convergence . . .

I Well-developed weak convergence
theory

Great success story in

mathematical statistics

[Van der Vaart and Wellner (1996): Weak

convergence and empirical processes]

I Many applications through the
continuous mapping theorem and
the functional delta method

vs. Restricted applicability

I Continuous functions cannot
converge to jump functions
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I Questions: Weaker metric? Weak
convergence theory? Applications?
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Empirical processes via epi- and hypographs

The empirical copula process

Weak convergence with respect to the uniform metric

Non-smooth copulas: when weak convergence fails

The hypi-semimetric and weak convergence

Applications
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Copulas

I A d-variate copula C is a d-variate distribution function with uniform (0, 1)
margins.

I Sklar’s (1959) theorem: If F is a d-variate distribution function with margins
F1, . . . ,Fd , then there exists a copula C such that

F (x1, . . . , xd) = C
(
F1(x1), . . . ,Fd(xd)

)
I Moreover, if the margins are continuous, then C is unique and is given by the

distribution function of (F1(X1), . . . ,Fd(Xd)), with (X1, . . . ,Xd) ∼ F :

C(u1, . . . , ud) = P[F1(X1) ≤ u1, . . . ,Fd(Xd) ≤ ud ]

= P[X1 ≤ F−1 (u1), . . . ,Xd ≤ F−d (ud)]

= F
(
F−1 (u1), . . . ,F−d (ud)

)
with F−j (u) = inf{x : Fj(x) ≥ u} the generalized inverse (quantile function)

I Usage: Modelling dependence between components X1, . . . ,Xd , irrespective of their
marginal distributions

5/ 32



Copulas

I A d-variate copula C is a d-variate distribution function with uniform (0, 1)
margins.

I Sklar’s (1959) theorem: If F is a d-variate distribution function with margins
F1, . . . ,Fd , then there exists a copula C such that

F (x1, . . . , xd) = C
(
F1(x1), . . . ,Fd(xd)

)

I Moreover, if the margins are continuous, then C is unique and is given by the
distribution function of (F1(X1), . . . ,Fd(Xd)), with (X1, . . . ,Xd) ∼ F :

C(u1, . . . , ud) = P[F1(X1) ≤ u1, . . . ,Fd(Xd) ≤ ud ]

= P[X1 ≤ F−1 (u1), . . . ,Xd ≤ F−d (ud)]

= F
(
F−1 (u1), . . . ,F−d (ud)

)
with F−j (u) = inf{x : Fj(x) ≥ u} the generalized inverse (quantile function)

I Usage: Modelling dependence between components X1, . . . ,Xd , irrespective of their
marginal distributions

5/ 32



Copulas

I A d-variate copula C is a d-variate distribution function with uniform (0, 1)
margins.

I Sklar’s (1959) theorem: If F is a d-variate distribution function with margins
F1, . . . ,Fd , then there exists a copula C such that

F (x1, . . . , xd) = C
(
F1(x1), . . . ,Fd(xd)

)
I Moreover, if the margins are continuous, then C is unique and is given by the

distribution function of (F1(X1), . . . ,Fd(Xd)), with (X1, . . . ,Xd) ∼ F :

C(u1, . . . , ud) = P[F1(X1) ≤ u1, . . . ,Fd(Xd) ≤ ud ]

= P[X1 ≤ F−1 (u1), . . . ,Xd ≤ F−d (ud)]

= F
(
F−1 (u1), . . . ,F−d (ud)

)
with F−j (u) = inf{x : Fj(x) ≥ u} the generalized inverse (quantile function)

I Usage: Modelling dependence between components X1, . . . ,Xd , irrespective of their
marginal distributions

5/ 32



Copulas

I A d-variate copula C is a d-variate distribution function with uniform (0, 1)
margins.

I Sklar’s (1959) theorem: If F is a d-variate distribution function with margins
F1, . . . ,Fd , then there exists a copula C such that

F (x1, . . . , xd) = C
(
F1(x1), . . . ,Fd(xd)

)
I Moreover, if the margins are continuous, then C is unique and is given by the

distribution function of (F1(X1), . . . ,Fd(Xd)), with (X1, . . . ,Xd) ∼ F :

C(u1, . . . , ud) = P[F1(X1) ≤ u1, . . . ,Fd(Xd) ≤ ud ]

= P[X1 ≤ F−1 (u1), . . . ,Xd ≤ F−d (ud)]

= F
(
F−1 (u1), . . . ,F−d (ud)

)
with F−j (u) = inf{x : Fj(x) ≥ u} the generalized inverse (quantile function)

I Usage: Modelling dependence between components X1, . . . ,Xd , irrespective of their
marginal distributions

5/ 32



The empirical copula

I Situation: (Xi )i=1,...,n i.i.d. rvs, Xi ∼F = C(F1, . . . ,Fd), continuous marginals Fj .

[hence C(u) = F{F−1 (u1), . . . ,F−d (ud )} with the generalized inverse

F−j (u) = inf{x : Fj (x) ≥ u}]

I Goal: Estimate C nonparametrically.

I Simple plug-in estimation: empirical cdfs

Fn(x) :=
1

n

n∑
i=1

I(Xi1 ≤ x1, . . . ,Xid ≤ xd), Fnj(xj) :=
1

n

n∑
i=1

I(Xij ≤ xj).

yield the empirical copula

Cn(u) = Fn{F−n1(u1), . . . ,F−nd(ud)} = n−1
n∑

i=1

I{Xi1 ≤ F−n1(u1), . . . ,Xid ≤ F−nd(ud)}

= n−1
n∑

i=1

I
(
Ûi1 ≤ u1, . . . , Ûid ≤ ud

)
+ O(n−1)

[where Ûij = rank(Xij )/n are ‘pseudo-observations’ of C (rescaled ranks)]
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[where Ûij = rank(Xij )/n are ‘pseudo-observations’ of C (rescaled ranks)]

6/ 32



The empirical copula process

u 7→ Cn(u) =
√
n{Cn(u)− C(u)} ∈ `∞([0, 1]d) is called empirical copula process.

[`∞([0, 1]d ) the space of bounded functions on [0, 1]d .]

Many applications.

I Testing for structural assumptions. Example: symmetry [Genest, Nešlehová, Quessy
(2012)]. Null hypothesis: C(u, v) = C(v , u) for all u, v .

Tn = n

∫
{Cn(u, v)− Cn(v , u)}2 du dv

H0=

∫
{Cn(u, v)− Cn(v , u)}2 du dv

I Minimum-distance estimators of parametric copulas [Tsukahara (2005)].
{Cθ | θ ∈ Θ} class of parametric candidate models. Estimator:

θ̂ := argminθ

∫
{Cθ(u, v)− Cn(u, v)}2 du dv .

I Goodness-of fit tests, Asymptotics of estimators for Pickands dep. fct. ...

Derivation of asymptotic distributions: Process convergence of Cn
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Key quantities

Vector of quantile functions:

F−(u) =
(
F−1 (u1), . . . ,F−d (ud)

)
F−n (u) =

(
F−n,1(u1), . . . ,F−n,d(ud)

)
Copula and empirical copula:

C(u) = F
(
F−(u)

)
Cn(u) = Fn

(
F−n (u)

)
Empirical process:

αn(x) =
√
n{Fn(x)− F (x)}

9/ 32



Standard empirical process theory

I Since the empirical copula is rank-based, we can without loss of generality assume
that margins are uniform, hence F = C .

I Classical empirical process theory yields

αn(u) =
√
n{Fn(u)− C(u)}

 BC (u) in
(
`∞([0, 1]d), ‖ · ‖∞

)
a C -Brownian bridge.

I The Bahadur–Kiefer theorem links the empirical quantile and distribution functions:

√
n{F−n,j(uj)− uj} = −

√
n{Fn,j(uj)− uj}+ oP(1)

 − BC ,j(uj) = BC (1, . . . , 1, uj , 1, . . . , 1)

10/ 32



Decomposition of the empirical copula process

Fundamental decomposition:

Cn(u) =
√
n
(
Cn(u)− C(u)

)
=
√
n
{
Fn

(
F−n (u)

)
− F

(
F−(u)

)}
=
√
n
{
Fn

(
F−n (u)

)
− F

(
F−n (u)

)}
+
√
n
{
F
(
F−n (u)

)
− F

(
F−(u)

)}
Recall F = C (uniform margins). We find

Cn(u) = αn

(
F−n (u)

)
+
√
n
{
C
(
F−n (u)

)
− C(u)

}
Treat each of the two terms separately:

αn

(
F−n (u)

)
= αn(u) + oP(1)

√
n
{
C
(
F−n (u)

)
− C(u)

}
=

d∑
j=1

Ċj(u)
√
n{F−n,j(uj)− uj}+ oP(1)
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Weak convergence of the empirical copula process in the topology of
uniform convergence

Theorem [Weak uniform convergence of Cn]
Suppose that

(S1) Ċj = ∂
∂uj

C exists and is continuous for u ∈ [0, 1]d with uj ∈ (0, 1).

Then, in (`∞([0, 1]d), ‖ · ‖∞),

√
n(Cn − C)(u) CC (u) := BC (u)−

d∑
j=1

Ċj(u)BC ,j(uj)

where BC is a C -brownian bridge and BC ,j(uj) = BC (1, ..., 1, uj , 1..., 1).

Discussion

I Dating back to Rüschendorf (1976), Gaenssler and Stute (1987)

I Assumption (S1) due to S. (2012)

I Possible relaxation: stationary and short range dependent instead of i.i.d.
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’Non-smooth’ copulas: examples

I (Un)fortunately: The assumption

(S1) Ċj exists and is continuous for u ∈ [0, 1]d with uj ∈ (0, 1)

is satisfied by many, but not by all interesting copulas.

I Example:

C(u) := λu1u2 + (1− λ)min(u1, u2)

Here

Ċ1(u) = λu2 + (1− λ)1{u1<u2},

Ċ2(u) = λu1 + (1− λ)1{u1>u2},

for u1 6= u2 and the partial derivatives
do not exist for u1 = u2. 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

I Other examples
I Extreme-value copulas with non-differentiable Pickands dependence function
I Marshall-Olkin copulas
I Archimedean copulas with non-smooth generators
I ...
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Non-smooth copulas: pointwise vs. functional weak convergence

I Pointwise limit for the previous example:

Cn(u) C∗C (u) = BC (u)− Ċ1(u)BC (u1, 1)− Ċ2(u)BC (1, u2),

apart from the diagonal and

Cn(u) C∗C (u) = BC (u)− λu{BC (u, 1) + BC (1, u)}
− (1− λ) max{BC (u, 1),BC (1, u)}

on the diagonal.

I Question: Can we have: Cn  C∗C in (`∞([0, 1]2), ‖ · ‖∞)?

I Answer: Lemma [Bücher, Segers, Volgushev, 2013]:
If Cn converges weakly with respect to ‖ · ‖∞, then the limit must have continuous
trajectories, a.s.

This is not the case here!
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Lack of uniform convergence.
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I Left: sample paths of candidate limit process (based on n = 100, 000) on
[−0.48, 0.52]× {0.5}.

I Middle and right: ’typical realizations’ of the empirical copula process, n = 10, 000
and n = 100, 000.

Suggestion: Weak convergence may hold with respect to a metric, for which jump
functions can be ‘close’ to continuous functions.  Generalize Skorohod’s M2 metric.
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Empirical processes via epi- and hypographs

The empirical copula process

Weak convergence with respect to the uniform metric

Non-smooth copulas: when weak convergence fails

The hypi-semimetric and weak convergence

Applications
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Painlevé–Kuratowski convergence

Sequence of sets An in a metric space (T, d).

lim inf
n→∞

An = {x ∈ T | ∃xn ∈ An : xn → x}

lim sup
n→∞

An = {x ∈ T | ∃xnk ∈ Ank : xnk → x}

Painlevé–Kuratowski convergence: An → A if

A = lim inf
n→∞

An = lim sup
n→∞

An

Properties:

I Necessarily, A is closed.

I An → A iff cl(An)→ A.

I Metrizable if (T, d) is locally compact and separable: Fell topology

I If (T, d) is compact, then PK convergence is convergence in the Hausdorff metric.
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Painlevé–Kuratowski convergence

Sequence of sets An in a metric space (T, d).

lim inf
n→∞

An = {x ∈ T | ∃xn ∈ An : xn → x}

lim sup
n→∞

An = {x ∈ T | ∃xnk ∈ Ank : xnk → x}
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Introducing hypi-convergence

I Epi- and hypograph of a function f ∈ `∞([0, 1]d):

epi f := {(u, t) ∈ [0, 1]d × R | f (u) ≤ t}

hypo f := {(u, t) ∈ [0, 1]d × R | f (u) ≥ t}

I The hypi-semimetric is defined as

dhypi(f , g) = max{dF (cl(epi f ), cl(epi g)), dF (cl(hypo f ), cl(hypo g))}.

where dF is a metric on closed sets inducing Painlevé–Kuratowski convergence.
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Point-wise criteria for hypi-convergence

Define lower and upper semicontinuous hulls of f :

f∧(x) = sup
ε>0

inf{f (x ′) : ‖x ′ − x‖ < ε}

f∨(x) = inf
ε>0

sup{f (x ′) : ‖x ′ − x‖ < ε}

Then dhypi(fn, f )→ 0 iff the following two conditions hold:

1. f∧ and f∨ provide asymptotic bounds for fn:

∀x ∈ [0, 1]d : ∀xn → x : f∧(x) ≤ lim inf
n→∞

fn(xn)

≤ lim sup
n→∞

fn(xn) ≤ f∨(x)

2. f∧ and f∨ are asymptotically attainable by fn:

∀x ∈ [0, 1]d :


∃xn → x : lim inf

n→∞
fn(xn) = f∧(x),

∃xn → x : lim sup
n→∞

fn(xn) = f∨(x)
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Hypi-convergence: Useful at all?

Theorem [Handy implications of hypi-convergence]

Let fn, f ∈ `∞([0, 1]d) and dhypi(fn, f )→ 0.

I Let µ be a finite measure on [0, 1]d . If µ(discontinuity points of f ) = 0, then
‖fn − f ‖Lp(µ) → 0 for any p ∈ [1,∞).

I sup fn → sup f and inf fn → inf f

I If f is continuous in x , then fn(xn)→ f (x) whenever xn → x .
Also uniformly over compact sets.

Interpretation:
dhypi is ‘between’ ‖ · ‖∞ and ‖ · ‖p with p <∞.
It adapts to regularity of the limit function.
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Comments on hypi-convergence

I hypi = epi + hypo:

dhypi(fn, f ) ⇐⇒
{

fn epi-converges to f∧, i.e., epi fn → epi f∧
fn hypo-converges to f∨, i.e., hypo fn → hypo f∨

Epi- and hypoconvergence have a long history in the analysis of minimizers and
maximizers of functions (Rockafeller & Wets 1998, Molchanov 2005)

I Only defines a semi-metric:

dhypi(f , g) = 0 ⇐⇒
{

f∧ = g∧
f∨ = g∨

Care must be taken when considering weak convergence.

I Addition is not continuous! Extra work needed to deal with convergence of sums.

I Can be generalized to functions on locally compact, separable metric spaces.
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Weak hypi-convergence of the empirical copula process

Theorem [Bücher, Segers, Volgushev, 2013] Let

D(C) := {u ∈ [0, 1]d | Ċj(u) does not exist or is not continuous for some 1 ≤ j ≤ d}

and suppose that (S2) D(C) is a Lebesgue-null set. Then,

[Cn]dhypi = [
√
n(Cn − C)]dhypi  [CC ]dhypi

in (L∞([0, 1]d), dhypi), where

CC (u) = BC (u) + dC(−BC,1,...,−BC,d )(u)

and where, for a = (a1, . . . , ad) with aj : [0, 1]→ R continuous,

dCa(u) = lim
ε→0

inf

{ d∑
j=1

Ċj(v) aj(vj) : v ∈ [0, 1]d\D(C), |v − u| < ε

}
.

I Recall (S1): Ċj (u) exists and is continuous for u with uj ∈ (0, 1).

I Recall CC (u) := BC (u)−
∑d

j=1 Ċj (u)BC ,j (uj ).
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Consequences of hypi-convergence of the empirical copula process

Consequences for Cn through the continuous mapping theorem:

I Hypi-convergence implies uniform convergence if the limit is continuous
⇒ Retrieve usual weak convergence result under (S1)

I Hypi-convergence implies Lp convergence for p <∞
⇒ Weak convergence with respect to Lp

⇒ Cramér–von Mises type statistics

I Hypi-convergence implies convergence of infima and suprema
⇒ Weak convergence of and Kolmogorov–Smirnov statistics.
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Empirical processes via epi- and hypographs

The empirical copula process

Weak convergence with respect to the uniform metric

Non-smooth copulas: when weak convergence fails

The hypi-semimetric and weak convergence
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Comparing test statistics via local power curves

I Test for
H0 : C = C0, where C0 is a given copula (e.g, C0 = Π).

I Two competing test statistics

Sn = n

∫
{Cn − C0}2 dΠ Cramér–von Mises

Tn =
√
n‖Cn − C0‖∞ Kolmogorov–Smirnov

I Comparing the quality of tests: Local power curves
How well does a test detect alternatives that converge to the null hypothesis?
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Local power curves of simple goodness-of-fit tests

I Local alternatives in direction Λ:
Let (X(n)

i )i=1,...,n be row-wise i.i.d. with copula C (n). Assume

∆n =
√
n(C (n) − C0)→ δΛ

uniformly, δ > 0,Λ 6≡ 0.

I Proposition. If C0 satisfies (S2), then
√
n(Cn − C0) CC0 + δΛ in (L∞([0, 1]d), dhypi).

Consequence: limit distribution of the test statistics under the local alternatives

Sn → Sδ =

∫
{CC0 + δΛ}2 dΠ

Tn → Tδ = ‖CC0 + δΛ‖∞.

I Local power curves in direction Λ:
‘δ 7→ asymptotic power(δ)’ at significance level α

δ 7→ Pr{Sδ > qS0 (1− α)},
δ 7→ Pr{Tδ > qT0 (1− α)}
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Minimum L2-distance estimators à la Tsukahara

I Let {Cθ | θ ∈ Θ ⊂ Rp} be a class of parametric candidate models. Estimator:

θ̂ := argminθ

∫
(Cθ − Cn)2 dµ

Proposition (Asymptotic normality of θ̂):
Suppose that (S2) holds and that µ(D(C)) = 0. Under usual regularity conditions on
the model:

(i) for correctly specified models (θ0 is the ‘true’ parameter):

√
n(θ̂ − θ0) 

{∫
∇Cθ0∇C

T
θ0
dµ

}−1 ∫
∇Cθ0CC dµ,

(ii) for incorrectly specified models:

√
n(θ̂ − θ0) 

{∫
∇Cθ0∇C

T
θ0

+ (Cθ0 − C)Jθ0 dµ

}−1 ∫
∇Cθ0CC dµ,

where θ0 = arg min
∫

(Cθ − C)2 dµ.
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Beyond copulas. . .

Helpful for different problems?

I The hypi-semimetric can be defined for real-valued, locally bounded functions on a
compact, separable, metrizable domain

I Might help whenever a (pointwise) candidate limit has discontinuities that are not
exactly matched for finite n

Empirical processes of residuals (measurement error in the ordinates)
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Conclusion

I Weak convergence w.r.t. topology of uniform convergence:
great success story in mathematical statistics

I Occasionally, it fails: continuous functions cannot converge to functions with jumps

I Alternative: weak convergence with respect to a new topology:

hypi = epi ∩ hypo

I implies uniform convergence for continuous limits
I implies convergence of infima and suprema
I adapts to limit functions with jumps
I stronger than Lp convergence

I Potentially useful for empirical processes based on estimated data
Examples: empirical copula processes, empirical processes of regression residuals
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Thank you!

A. Bücher, J. Segers & S. Volgushev (2013)

When uniform weak convergence fails:
Empirical processes for dependence functions via epi- and hypographs

Submitted for publication, arXiv:1305.6408
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