When uniform weak convergence fails: Empirical processes for dependence functions and residuals via epi- and hypographs

Axel Bücher, Johan Segers and Stanislav Volgushev

Université catholique de Louvain and Ruhr-Universität Bochum

Van Dantzig Seminar, Mathematical Institute, Leiden University, 11 Apr 2014

InterUniversity Attraction Poles, Phase VII, 2012-2017 P7/06 StUDvS

SFB 823

Developing crucial Statistical methods for Understanding major complex Dynamic Systems in natural, biomedical and social sciences

Uniform convergence of bounded functions

Strong implications vs. Restricted applicability

Uniform convergence of bounded functions

Strong implications vs. Restricted applicability

 Implies pointwise, continuous, L^p-convergence . . .

Uniform convergence of bounded functions

Restricted applicability

Strong implications vs.

- Implies pointwise, continuous, L^p-convergence . . .
- Well-developed weak convergence theory

Great success story in mathematical statistics

[Van der Vaart and Wellner (1996): Weak convergence and empirical processes]

Uniform convergence of bounded functions

Strong implications vs.

- Implies pointwise, continuous,
 L^p-convergence . . .
- Well-developed weak convergence theory

Great success story in mathematical statistics

[Van der Vaart and Wellner (1996): Weak convergence and empirical processes]

 Many applications through the continuous mapping theorem and the functional delta method Restricted applicability

Uniform convergence of bounded functions

Strong implications

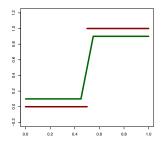
- Implies pointwise, continuous, L^p-convergence . . .
- Well-developed weak convergence theory

Great success story in mathematical statistics

[Van der Vaart and Wellner (1996): Weak convergence and empirical processes]

 Many applications through the continuous mapping theorem and the functional delta method **Restricted applicability**

 Continuous functions cannot converge to jump functions



Uniform convergence of bounded functions

Strong implications

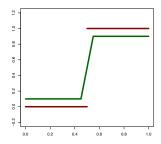
- Implies pointwise, continuous, L^p-convergence . . .
- Well-developed weak convergence theory

Great success story in mathematical statistics

[Van der Vaart and Wellner (1996): Weak convergence and empirical processes]

 Many applications through the continuous mapping theorem and the functional delta method **Restricted applicability**

 Continuous functions cannot converge to jump functions



Questions: Weaker metric? Weak convergence theory? Applications? Empirical processes via epi- and hypographs

The empirical copula process

Weak convergence with respect to the uniform metric

Non-smooth copulas: when weak convergence fails

The hypi-semimetric and weak convergence

Applications

Empirical processes via epi- and hypographs

The empirical copula process

Weak convergence with respect to the uniform metric

Non-smooth copulas: when weak convergence fails

The hypi-semimetric and weak convergence

Applications

► A *d*-variate copula *C* is a *d*-variate distribution function with uniform (0,1) margins.

- ► A *d*-variate copula *C* is a *d*-variate distribution function with uniform (0,1) margins.
- Sklar's (1959) theorem: If F is a d-variate distribution function with margins F_1, \ldots, F_d , then there exists a copula C such that

 $F(x_1,\ldots,x_d)=C\big(F_1(x_1),\ldots,F_d(x_d)\big)$

- ► A *d*-variate copula *C* is a *d*-variate distribution function with uniform (0, 1) margins.
- Sklar's (1959) theorem: If F is a d-variate distribution function with margins F_1, \ldots, F_d , then there exists a copula C such that

$$F(x_1,\ldots,x_d)=C(F_1(x_1),\ldots,F_d(x_d))$$

▶ Moreover, if the margins are continuous, then C is unique and is given by the distribution function of (F₁(X₁),..., F_d(X_d)), with (X₁,..., X_d) ~ F:

$$C(u_1, \dots, u_d) = P[F_1(X_1) \le u_1, \dots, F_d(X_d) \le u_d]$$

= $P[X_1 \le F_1^-(u_1), \dots, X_d \le F_d^-(u_d)]$
= $F(F_1^-(u_1), \dots, F_d^-(u_d))$

with $F_j^-(u) = \inf\{x : F_j(x) \ge u\}$ the generalized inverse (quantile function)

- ► A *d*-variate copula *C* is a *d*-variate distribution function with uniform (0, 1) margins.
- Sklar's (1959) theorem: If F is a d-variate distribution function with margins F_1, \ldots, F_d , then there exists a copula C such that

$$F(x_1,\ldots,x_d)=C(F_1(x_1),\ldots,F_d(x_d))$$

► Moreover, if the margins are continuous, then C is unique and is given by the distribution function of (F₁(X₁),...,F_d(X_d)), with (X₁,...,X_d) ~ F:

$$C(u_1, \dots, u_d) = P[F_1(X_1) \le u_1, \dots, F_d(X_d) \le u_d]$$

= $P[X_1 \le F_1^-(u_1), \dots, X_d \le F_d^-(u_d)]$
= $F(F_1^-(u_1), \dots, F_d^-(u_d))$

with $F_j^-(u) = \inf\{x : F_j(x) \ge u\}$ the generalized inverse (quantile function)

 Usage: Modelling dependence between components X₁,..., X_d, irrespective of their marginal distributions

▶ Situation: $(\mathbf{X}_i)_{i=1,...,n}$ i.i.d. rvs, $\mathbf{X}_i \sim F = C(F_1,...,F_d)$, continuous marginals F_j .

[hence $C(\mathbf{u}) = F\{F_1^-(u_1), \dots, F_d^-(u_d)\}$ with the generalized inverse $F_j^-(u) = \inf\{x : F_j(x) \ge u\}$]

▶ Situation: $(X_i)_{i=1,...,n}$ i.i.d. rvs, $X_i \sim F = C(F_1,...,F_d)$, continuous marginals F_j .

[hence $C(\mathbf{u}) = F\{F_1^-(u_1), \dots, F_d^-(u_d)\}$ with the generalized inverse $F_j^-(u) = \inf\{x : F_j(x) \ge u\}$]

▶ Goal: Estimate *C* nonparametrically.

▶ Situation: $(X_i)_{i=1,...,n}$ i.i.d. rvs, $X_i \sim F = C(F_1,...,F_d)$, continuous marginals F_j .

[hence $C(\mathbf{u}) = F\{F_1^-(u_1), \dots, F_d^-(u_d)\}$ with the generalized inverse $F_j^-(u) = \inf\{x : F_j(x) \ge u\}$]

- Goal: Estimate C nonparametrically.
- Simple plug-in estimation: empirical cdfs

$$F_n(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_{i1} \leq x_1, \ldots, X_{id} \leq x_d), \quad F_{nj}(x_j) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_{ij} \leq x_j).$$

yield the empirical copula

$$C_n(\mathbf{u}) = F_n\{F_{n1}^-(u_1), \ldots, F_{nd}^-(u_d)\} = n^{-1} \sum_{i=1}^n \mathbb{I}\{X_{i1} \le F_{n1}^-(u_1), \ldots, X_{id} \le F_{nd}^-(u_d)\}$$

▶ Situation: $(X_i)_{i=1,...,n}$ i.i.d. rvs, $X_i \sim F = C(F_1,...,F_d)$, continuous marginals F_j .

[hence $C(\mathbf{u}) = F\{F_1^-(u_1), \dots, F_d^-(u_d)\}$ with the generalized inverse $F_j^-(u) = \inf\{x : F_j(x) \ge u\}$]

- Goal: Estimate C nonparametrically.
- Simple plug-in estimation: empirical cdfs

$$F_n(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_{i1} \leq x_1, \ldots, X_{id} \leq x_d), \quad F_{nj}(x_j) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_{ij} \leq x_j).$$

yield the empirical copula

$$C_{n}(\mathbf{u}) = F_{n}\{F_{n1}^{-}(u_{1}), \dots, F_{nd}^{-}(u_{d})\} = n^{-1} \sum_{i=1}^{n} \mathbb{I}\{X_{i1} \le F_{n1}^{-}(u_{1}), \dots, X_{id} \le F_{nd}^{-}(u_{d})\}$$
$$= n^{-1} \sum_{i=1}^{n} \mathbb{I}(\hat{U}_{i1} \le u_{1}, \dots, \hat{U}_{id} \le u_{d}) + O(n^{-1})$$

[where $\hat{U}_{ij} = \operatorname{rank}(X_{ij})/n$ are 'pseudo-observations' of C (rescaled ranks)]

 $\mathbf{u} \mapsto \mathbb{C}_n(\mathbf{u}) = \sqrt{n} \{ C_n(\mathbf{u}) - C(\mathbf{u}) \} \in \ell^{\infty}([0,1]^d)$ is called empirical copula process.

 $[\ell^\infty([0,1]^d)$ the space of bounded functions on $[0,1]^d.]$

 $\mathbf{u} \mapsto \mathbb{C}_n(\mathbf{u}) = \sqrt{n} \{ C_n(\mathbf{u}) - C(\mathbf{u}) \} \in \ell^{\infty}([0,1]^d)$ is called empirical copula process.

 $[\ell^{\infty}([0,1]^d)$ the space of bounded functions on $[0,1]^d$.]

Many applications.

▶ Testing for structural assumptions. Example: symmetry [Genest, Nešlehová, Quessy (2012)]. Null hypothesis: C(u, v) = C(v, u) for all u, v.

$$T_n = n \int \{C_n(u, v) - C_n(v, u)\}^2 \, du \, dv \stackrel{H_0}{=} \int \{\mathbb{C}_n(u, v) - \mathbb{C}_n(v, u)\}^2 \, du \, dv$$

 $\mathbf{u} \mapsto \mathbb{C}_n(\mathbf{u}) = \sqrt{n} \{ C_n(\mathbf{u}) - C(\mathbf{u}) \} \in \ell^{\infty}([0,1]^d)$ is called empirical copula process.

 $[\ell^{\infty}([0,1]^d)$ the space of bounded functions on $[0,1]^d$.]

Many applications.

▶ Testing for structural assumptions. Example: symmetry [Genest, Nešlehová, Quessy (2012)]. Null hypothesis: C(u, v) = C(v, u) for all u, v.

$$T_n = n \int \{C_n(u, v) - C_n(v, u)\}^2 \, du \, dv \stackrel{H_0}{=} \int \{\mathbb{C}_n(u, v) - \mathbb{C}_n(v, u)\}^2 \, du \, dv$$

▶ Minimum-distance estimators of parametric copulas [Tsukahara (2005)]. $\{C_{\theta} \mid \theta \in \Theta\}$ class of parametric candidate models. Estimator:

$$\hat{\theta} := \operatorname{argmin}_{\theta} \int \{C_{\theta}(u, v) - C_{n}(u, v)\}^{2} du dv.$$

 $\mathbf{u} \mapsto \mathbb{C}_n(\mathbf{u}) = \sqrt{n} \{ C_n(\mathbf{u}) - C(\mathbf{u}) \} \in \ell^{\infty}([0,1]^d)$ is called empirical copula process.

 $[\ell^{\infty}([0,1]^d)$ the space of bounded functions on $[0,1]^d$.]

Many applications.

▶ Testing for structural assumptions. Example: symmetry [Genest, Nešlehová, Quessy (2012)]. Null hypothesis: C(u, v) = C(v, u) for all u, v.

$$T_n = n \int \{C_n(u,v) - C_n(v,u)\}^2 \, du \, dv \stackrel{H_0}{=} \int \{\mathbb{C}_n(u,v) - \mathbb{C}_n(v,u)\}^2 \, du \, dv$$

▶ Minimum-distance estimators of parametric copulas [Tsukahara (2005)]. $\{C_{\theta} \mid \theta \in \Theta\}$ class of parametric candidate models. Estimator:

$$\hat{\theta} := \operatorname{argmin}_{\theta} \int \{C_{\theta}(u, v) - C_{n}(u, v)\}^{2} du dv.$$

► Goodness-of fit tests, Asymptotics of estimators for Pickands dep. fct. ...

 $\mathbf{u} \mapsto \mathbb{C}_n(\mathbf{u}) = \sqrt{n} \{ C_n(\mathbf{u}) - C(\mathbf{u}) \} \in \ell^{\infty}([0,1]^d)$ is called empirical copula process.

 $[\ell^\infty([0,1]^d)$ the space of bounded functions on $[0,1]^d.]$

Many applications.

▶ Testing for structural assumptions. Example: symmetry [Genest, Nešlehová, Quessy (2012)]. Null hypothesis: C(u, v) = C(v, u) for all u, v.

$$T_n = n \int \{C_n(u,v) - C_n(v,u)\}^2 \, du \, dv \stackrel{H_0}{=} \int \{\mathbb{C}_n(u,v) - \mathbb{C}_n(v,u)\}^2 \, du \, dv$$

▶ Minimum-distance estimators of parametric copulas [Tsukahara (2005)]. $\{C_{\theta} \mid \theta \in \Theta\}$ class of parametric candidate models. Estimator:

$$\hat{\theta} := \operatorname{argmin}_{\theta} \int \{C_{\theta}(u, v) - C_{n}(u, v)\}^{2} du dv.$$

► Goodness-of fit tests, Asymptotics of estimators for Pickands dep. fct. ...

Derivation of asymptotic distributions: Process convergence of \mathbb{C}_n

Empirical processes via epi- and hypographs

The empirical copula process

Weak convergence with respect to the uniform metric

Non-smooth copulas: when weak convergence fails

The hypi-semimetric and weak convergence

Applications

Key quantities

Vector of quantile functions:

$$\mathbf{F}^{-}(\mathbf{u}) = (F_{1}^{-}(u_{1}), \dots, F_{d}^{-}(u_{d}))$$
$$\mathbf{F}_{n}^{-}(\mathbf{u}) = (F_{n,1}^{-}(u_{1}), \dots, F_{n,d}^{-}(u_{d}))$$

Copula and empirical copula:

$$C(\mathbf{u}) = F(\mathbf{F}^{-}(\mathbf{u}))$$
$$C_{n}(\mathbf{u}) = F_{n}(\mathbf{F}_{n}^{-}(\mathbf{u}))$$

Empirical process:

$$\alpha_n(\mathbf{x}) = \sqrt{n} \{F_n(\mathbf{x}) - F(\mathbf{x})\}$$

Standard empirical process theory

- Since the empirical copula is rank-based, we can without loss of generality assume that margins are uniform, hence F = C.
- Classical empirical process theory yields

$$\begin{aligned} \alpha_n(\mathbf{u}) &= \sqrt{n} \{ F_n(\mathbf{u}) - C(\mathbf{u}) \} \\ & \rightsquigarrow \mathbb{B}_C(\mathbf{u}) \quad \text{in } \left(\ell^{\infty}([0,1]^d), \| \cdot \|_{\infty} \right) \end{aligned}$$

- a C-Brownian bridge.
- ▶ The Bahadur–Kiefer theorem links the empirical quantile and distribution functions:

Decomposition of the empirical copula process

Fundamental decomposition:

$$\mathbb{C}_{n}(\mathbf{u}) = \sqrt{n} (C_{n}(\mathbf{u}) - C(\mathbf{u}))$$

= $\sqrt{n} \{F_{n}(\mathbf{F}_{n}^{-}(\mathbf{u})) - F(\mathbf{F}^{-}(\mathbf{u}))\}$
= $\sqrt{n} \{F_{n}(\mathbf{F}_{n}^{-}(\mathbf{u})) - F(\mathbf{F}_{n}^{-}(\mathbf{u}))\} + \sqrt{n} \{F(\mathbf{F}_{n}^{-}(\mathbf{u})) - F(\mathbf{F}^{-}(\mathbf{u}))\}$

Recall F = C (uniform margins). We find

$$\mathbb{C}_n(\mathbf{u}) = \alpha_n \big(\mathbf{F}_n^-(\mathbf{u}) \big) + \sqrt{n} \big\{ C \big(\mathbf{F}_n^-(\mathbf{u}) \big) - C(\mathbf{u}) \big\}$$

Treat each of the two terms separately:

$$\alpha_n(\mathbf{F}_n^{-}(\mathbf{u})) = \alpha_n(\mathbf{u}) + o_{\mathbb{P}}(1)$$
$$\sqrt{n} \{ C(\mathbf{F}_n^{-}(\mathbf{u})) - C(\mathbf{u}) \} = \sum_{j=1}^d \dot{C}_j(\mathbf{u}) \sqrt{n} \{ F_{n,j}^{-}(u_j) - u_j \} + o_{\mathbb{P}}(1)$$

Weak convergence of the empirical copula process in the topology of uniform convergence

Theorem [Weak uniform convergence of \mathbb{C}_n] Suppose that

(S₁) $\dot{C}_j = \frac{\partial}{\partial u_j} C$ exists and is continuous for $\mathbf{u} \in [0, 1]^d$ with $u_j \in (0, 1)$. Then, in $(\ell^{\infty}([0, 1]^d), \|\cdot\|_{\infty})$, $\sqrt{n}(C_n - C)(\mathbf{u}) \rightsquigarrow \mathbb{C}_C(\mathbf{u}) := \mathbb{B}_C(\mathbf{u}) - \sum_{j=1}^d \dot{C}_j(\mathbf{u}) \mathbb{B}_{C,j}(u_j)$ where \mathbb{B}_C is a C-brownian bridge and $\mathbb{B}_{C,j}(u_j) = \mathbb{B}_C(1, ..., 1, u_j, 1..., 1)$. Weak convergence of the empirical copula process in the topology of uniform convergence

Theorem [Weak uniform convergence of \mathbb{C}_n] Suppose that

(S₁) $\dot{C}_j = \frac{\partial}{\partial u_j} C$ exists and is continuous for $\mathbf{u} \in [0, 1]^d$ with $u_j \in (0, 1)$. Then, in $(\ell^{\infty}([0, 1]^d), \|\cdot\|_{\infty})$, $\sqrt{n}(C_n - C)(\mathbf{u}) \rightsquigarrow \mathbb{C}_C(\mathbf{u}) := \mathbb{B}_C(\mathbf{u}) - \sum_{j=1}^d \dot{C}_j(\mathbf{u}) \mathbb{B}_{C,j}(u_j)$ where \mathbb{B}_C is a C-brownian bridge and $\mathbb{B}_{C,j}(u_j) = \mathbb{B}_C(1, ..., 1, u_j, 1..., 1)$.

Discussion

- ▶ Dating back to Rüschendorf (1976), Gaenssler and Stute (1987)
- Assumption (S1) due to S. (2012)
- Possible relaxation: stationary and short range dependent instead of i.i.d.

Empirical processes via epi- and hypographs

The empirical copula process

Weak convergence with respect to the uniform metric

Non-smooth copulas: when weak convergence fails

The hypi-semimetric and weak convergence

Applications

'Non-smooth' copulas: examples

► (Un)fortunately: The assumption

(S₁) \dot{C}_j exists and is continuous for $\mathbf{u} \in [0,1]^d$ with $u_j \in (0,1)$

is satisfied by many, but not by all interesting copulas.

'Non-smooth' copulas: examples

(Un)fortunately: The assumption

(S₁) \dot{C}_j exists and is continuous for $\mathbf{u} \in [0,1]^d$ with $u_j \in (0,1)$

is satisfied by many, but not by all interesting copulas.

Example:

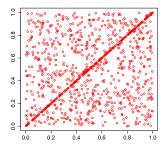
 $C(\mathbf{u}) := \lambda u_1 u_2 + (1 - \lambda) min(u_1, u_2)$

Here

$$\dot{C}_1(\mathbf{u}) = \lambda u_2 + (1 - \lambda) \mathbf{1}_{\{u_1 < u_2\}},$$

 $\dot{C}_2(\mathbf{u}) = \lambda u_1 + (1 - \lambda) \mathbf{1}_{\{u_1 > u_2\}},$

for $u_1 \neq u_2$ and the partial derivatives do not exist for $u_1 = u_2$.



'Non-smooth' copulas: examples

(Un)fortunately: The assumption

 (S_1) \dot{C}_j exists and is continuous for $\mathbf{u} \in [0,1]^d$ with $u_j \in (0,1)$

is satisfied by many, but not by all interesting copulas.

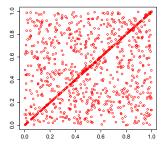
• Example:

 $C(\mathbf{u}) := \lambda u_1 u_2 + (1 - \lambda) min(u_1, u_2)$

Here

$$\begin{split} \dot{C}_{1}(\mathbf{u}) &= \lambda u_{2} + (1 - \lambda) \mathbf{1}_{\{u_{1} < u_{2}\}}, \\ \dot{C}_{2}(\mathbf{u}) &= \lambda u_{1} + (1 - \lambda) \mathbf{1}_{\{u_{1} > u_{2}\}}, \end{split}$$

for $u_1 \neq u_2$ and the partial derivatives do not exist for $u_1 = u_2$.



Other examples

- Extreme-value copulas with non-differentiable Pickands dependence function
- Marshall-Olkin copulas
- Archimedean copulas with non-smooth generators

▶ ...

Non-smooth copulas: pointwise vs. functional weak convergence

Pointwise limit for the previous example:

$$\mathbb{C}_n(\mathbf{u}) \rightsquigarrow \mathbb{C}^*_{\mathcal{C}}(\mathbf{u}) = \mathbb{B}_{\mathcal{C}}(\mathbf{u}) - \dot{\mathcal{C}}_1(\mathbf{u}) \mathbb{B}_{\mathcal{C}}(u_1, 1) - \dot{\mathcal{C}}_2(\mathbf{u}) \mathbb{B}_{\mathcal{C}}(1, u_2),$$

apart from the diagonal and

$$\mathbb{C}_n(\mathbf{u}) \rightsquigarrow \mathbb{C}_c^*(\mathbf{u}) = \mathbb{B}_c(\mathbf{u}) - \lambda u \{\mathbb{B}_c(u, 1) + \mathbb{B}_c(1, u)\} - (1 - \lambda) \max\{\mathbb{B}_c(u, 1), \mathbb{B}_c(1, u)\}\$$

on the diagonal.

Non-smooth copulas: pointwise vs. functional weak convergence

Pointwise limit for the previous example:

$$\mathbb{C}_n(\mathbf{u}) \rightsquigarrow \mathbb{C}^*_{\mathcal{C}}(\mathbf{u}) = \mathbb{B}_{\mathcal{C}}(\mathbf{u}) - \dot{\mathcal{C}}_1(\mathbf{u}) \mathbb{B}_{\mathcal{C}}(u_1, 1) - \dot{\mathcal{C}}_2(\mathbf{u}) \mathbb{B}_{\mathcal{C}}(1, u_2),$$

apart from the diagonal and

$$\mathbb{C}_{n}(\mathbf{u}) \rightsquigarrow \mathbb{C}_{C}^{*}(\mathbf{u}) = \mathbb{B}_{C}(\mathbf{u}) - \lambda u \{\mathbb{B}_{C}(u, 1) + \mathbb{B}_{C}(1, u)\} - (1 - \lambda) \max\{\mathbb{B}_{C}(u, 1), \mathbb{B}_{C}(1, u)\}\$$

on the diagonal.

• Question: Can we have: $\mathbb{C}_n \rightsquigarrow \mathbb{C}_C^*$ in $(\ell^{\infty}([0,1]^2), \|\cdot\|_{\infty})$?

Non-smooth copulas: pointwise vs. functional weak convergence

Pointwise limit for the previous example:

$$\mathbb{C}_n(\mathbf{u}) \rightsquigarrow \mathbb{C}^*_{\mathcal{C}}(\mathbf{u}) = \mathbb{B}_{\mathcal{C}}(\mathbf{u}) - \dot{\mathcal{C}}_1(\mathbf{u}) \mathbb{B}_{\mathcal{C}}(u_1, 1) - \dot{\mathcal{C}}_2(\mathbf{u}) \mathbb{B}_{\mathcal{C}}(1, u_2),$$

apart from the diagonal and

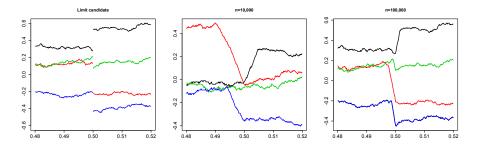
$$\mathbb{C}_n(\mathbf{u}) \rightsquigarrow \mathbb{C}_{\mathcal{C}}^*(\mathbf{u}) = \mathbb{B}_{\mathcal{C}}(\mathbf{u}) - \lambda u \{ \mathbb{B}_{\mathcal{C}}(u, 1) + \mathbb{B}_{\mathcal{C}}(1, u) \} - (1 - \lambda) \max\{\mathbb{B}_{\mathcal{C}}(u, 1), \mathbb{B}_{\mathcal{C}}(1, u) \}$$

on the diagonal.

- Question: Can we have: $\mathbb{C}_n \rightsquigarrow \mathbb{C}_C^*$ in $(\ell^{\infty}([0,1]^2), \|\cdot\|_{\infty})$?
- ► Answer: Lemma [Bücher, Segers, Volgushev, 2013]: If C_n converges weakly with respect to || · ||_∞, then the limit must have continuous trajectories, a.s.

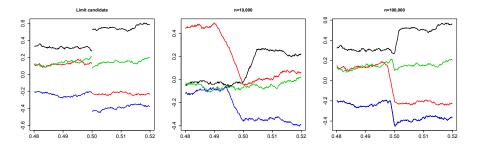
This is not the case here!

Lack of uniform convergence.



- ▶ Left: sample paths of candidate limit process (based on n = 100,000) on [-0.48, 0.52] × {0.5}.
- Middle and right: 'typical realizations' of the empirical copula process, n = 10,000 and n = 100,000.

Lack of uniform convergence.



- ▶ Left: sample paths of candidate limit process (based on n = 100,000) on [-0.48, 0.52] × {0.5}.
- Middle and right: 'typical realizations' of the empirical copula process, n = 10,000 and n = 100,000.

Suggestion: Weak convergence may hold with respect to a metric, for which jump functions can be 'close' to continuous functions. \rightsquigarrow Generalize Skorohod's M_2 metric.

Empirical processes via epi- and hypographs

The empirical copula process

Weak convergence with respect to the uniform metric

Non-smooth copulas: when weak convergence fails

The hypi-semimetric and weak convergence

Applications

Painlevé-Kuratowski convergence

Sequence of sets A_n in a metric space (\mathbb{T}, d) .

$$\liminf_{n \to \infty} A_n = \{ x \in \mathbb{T} \mid \exists x_n \in A_n : x_n \to x \}$$
$$\limsup_{n \to \infty} A_n = \{ x \in \mathbb{T} \mid \exists x_{n_k} \in A_{n_k} : x_{n_k} \to x \}$$

Painlevé-Kuratowski convergence

Sequence of sets A_n in a metric space (\mathbb{T}, d) .

$$\liminf_{n \to \infty} A_n = \{ x \in \mathbb{T} \mid \exists x_n \in A_n : x_n \to x \}$$
$$\limsup_{n \to \infty} A_n = \{ x \in \mathbb{T} \mid \exists x_{n_k} \in A_{n_k} : x_{n_k} \to x \}$$

Painlevé–Kuratowski convergence: $A_n \rightarrow A$ if

$$A = \liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$$

Painlevé-Kuratowski convergence

Sequence of sets A_n in a metric space (\mathbb{T}, d) .

$$\liminf_{\substack{n \to \infty}} A_n = \{ x \in \mathbb{T} \mid \exists x_n \in A_n : x_n \to x \}$$
$$\limsup_{n \to \infty} A_n = \{ x \in \mathbb{T} \mid \exists x_{n_k} \in A_{n_k} : x_{n_k} \to x \}$$

Painlevé–Kuratowski convergence: $A_n \rightarrow A$ if

$$A = \liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$$

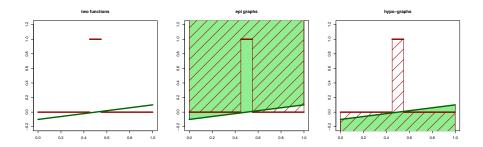
Properties:

- ▶ Necessarily, A is closed.
- $A_n \to A$ iff $cl(A_n) \to A$.
- Metrizable if (\mathbb{T}, d) is locally compact and separable: Fell topology
- If (\mathbb{T}, d) is compact, then PK convergence is convergence in the Hausdorff metric.

Introducing hypi-convergence

• Epi- and hypograph of a function $f \in \ell^{\infty}([0,1]^d)$:

$$\begin{split} \mathsf{epi}\, f &:= \{(\mathbf{u},t) \in [0,1]^d \times \mathbb{R} \mid f(\mathbf{u}) \leq t\} \\ \mathsf{hypo}\, f &:= \{(\mathbf{u},t) \in [0,1]^d \times \mathbb{R} \mid f(\mathbf{u}) \geq t\} \end{split}$$



Introducing hypi-convergence

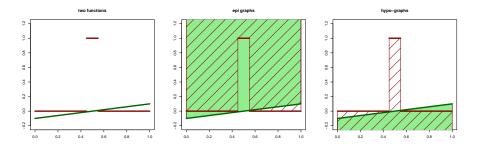
• Epi- and hypograph of a function $f \in \ell^{\infty}([0,1]^d)$:

$$\begin{split} \mathsf{epi}\, f &:= \{(\mathbf{u},t) \in [0,1]^d \times \mathbb{R} \mid f(\mathbf{u}) \leq t\} \\ \mathsf{hypo}\, f &:= \{(\mathbf{u},t) \in [0,1]^d \times \mathbb{R} \mid f(\mathbf{u}) \geq t\} \end{split}$$

The hypi-semimetric is defined as

 $d_{\text{hypi}}(f,g) = \max\{d_{\mathcal{F}}(\text{cl}(\text{epi} f), \text{cl}(\text{epi} g)), d_{\mathcal{F}}(\text{cl}(\text{hypo} f), \text{cl}(\text{hypo} g))\}.$

where $d_{\mathcal{F}}$ is a metric on closed sets inducing Painlevé–Kuratowski convergence.



Introducing hypi-convergence

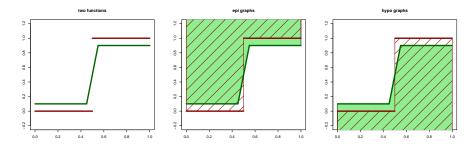
• Epi- and hypograph of a function $f \in \ell^{\infty}([0,1]^d)$:

$$\begin{split} \mathsf{epi}\, f &:= \{(\mathbf{u},t) \in [0,1]^d \times \mathbb{R} \mid f(\mathbf{u}) \leq t\} \\ \mathsf{hypo}\, f &:= \{(\mathbf{u},t) \in [0,1]^d \times \mathbb{R} \mid f(\mathbf{u}) \geq t\} \end{split}$$

The hypi-semimetric is defined as

 $d_{\text{hypi}}(f,g) = \max\{d_{\mathcal{F}}(\text{cl}(\text{epi} f), \text{cl}(\text{epi} g)), d_{\mathcal{F}}(\text{cl}(\text{hypo} f), \text{cl}(\text{hypo} g))\}.$

where $d_{\mathcal{F}}$ is a metric on closed sets inducing Painlevé–Kuratowski convergence.



Point-wise criteria for hypi-convergence

Define lower and upper semicontinuous hulls of f:

$$f_{\wedge}(x) = \sup_{\varepsilon > 0} \inf \{ f(x') : ||x' - x|| < \varepsilon \}$$

$$f_{\vee}(x) = \inf_{\varepsilon > 0} \sup \{ f(x') : ||x' - x|| < \varepsilon \}$$

Point-wise criteria for hypi-convergence

Define lower and upper semicontinuous hulls of f:

$$f_{\wedge}(x) = \sup_{\varepsilon > 0} \inf \{ f(x') : ||x' - x|| < \varepsilon \}$$

$$f_{\vee}(x) = \inf_{\varepsilon > 0} \sup \{ f(x') : ||x' - x|| < \varepsilon \}$$

Then $d_{\text{hypi}}(f_n, f) \rightarrow 0$ iff the following two conditions hold:

1. f_{\wedge} and f_{\vee} provide asymptotic bounds for f_n :

$$orall x \in [0,1]^d : orall x_n o x : f_\wedge(x) \leq \liminf_{n o \infty} f_n(x_n)$$

 $\leq \limsup_{n o \infty} f_n(x_n) \leq f_\vee(x)$

Point-wise criteria for hypi-convergence

Define lower and upper semicontinuous hulls of f:

$$f_{\wedge}(x) = \sup_{\varepsilon > 0} \inf \{ f(x') : \|x' - x\| < \varepsilon \}$$

$$f_{\vee}(x) = \inf_{\varepsilon > 0} \sup \{ f(x') : \|x' - x\| < \varepsilon \}$$

Then $d_{\text{hypi}}(f_n, f) \rightarrow 0$ iff the following two conditions hold:

1. f_{\wedge} and f_{\vee} provide asymptotic bounds for f_n :

$$orall x \in [0,1]^d : orall x_n o x : f_\wedge(x) \leq \liminf_{n o \infty} f_n(x_n) \ \leq \limsup_{n o \infty} f_n(x_n) \leq f_\vee(x)$$

2. f_{\wedge} and f_{\vee} are asymptotically attainable by f_n :

$$\forall x \in [0,1]^d : \begin{cases} \exists x_n \to x : \liminf_{n \to \infty} f_n(x_n) = f_{\wedge}(x), \\ \exists x_n \to x : \limsup_{n \to \infty} f_n(x_n) = f_{\vee}(x) \end{cases}$$

Theorem [Handy implications of hypi-convergence]

Let $f_n, f \in \ell^{\infty}([0,1]^d)$ and $d_{\text{hypi}}(f_n, f) \to 0$.

▶ Let μ be a finite measure on $[0,1]^d$. If μ (discontinuity points of f) = 0, then $\|f_n - f\|_{L^p(\mu)} \to 0$ for any $p \in [1,\infty)$.

Theorem [Handy implications of hypi-convergence]

Let $f_n, f \in \ell^{\infty}([0,1]^d)$ and $d_{\text{hypi}}(f_n, f) \to 0$.

- Let μ be a finite measure on $[0,1]^d$. If μ (discontinuity points of f) = 0, then $\|f_n f\|_{L^p(\mu)} \to 0$ for any $p \in [1,\infty)$.
- $\sup f_n \to \sup f$ and $\inf f_n \to \inf f$

Theorem [Handy implications of hypi-convergence]

Let $f_n, f \in \ell^{\infty}([0,1]^d)$ and $d_{\text{hypi}}(f_n, f) \to 0$.

- ▶ Let μ be a finite measure on $[0,1]^d$. If μ (discontinuity points of f) = 0, then $\|f_n f\|_{L^p(\mu)} \to 0$ for any $p \in [1,\infty)$.
- $\sup f_n \to \sup f$ and $\inf f_n \to \inf f$
- ▶ If *f* is continuous in *x*, then $f_n(x_n) \rightarrow f(x)$ whenever $x_n \rightarrow x$. Also uniformly over compact sets.

Theorem [Handy implications of hypi-convergence]

Let $f_n, f \in \ell^{\infty}([0,1]^d)$ and $d_{\text{hypi}}(f_n, f) \to 0$.

- ▶ Let μ be a finite measure on $[0,1]^d$. If μ (discontinuity points of f) = 0, then $||f_n f||_{L^p(\mu)} \to 0$ for any $p \in [1,\infty)$.
- $\sup f_n \to \sup f$ and $\inf f_n \to \inf f$
- ▶ If *f* is continuous in *x*, then $f_n(x_n) \rightarrow f(x)$ whenever $x_n \rightarrow x$. Also uniformly over compact sets.

Interpretation:

 d_{hypi} is 'between' $\|\cdot\|_{\infty}$ and $\|\cdot\|_{p}$ with $p < \infty$. It adapts to regularity of the limit function.

hypi = epi + hypo:

$$d_{\text{hypi}}(f_n, f) \iff \begin{cases} f_n \text{ epi-converges to } f_{\wedge}, & \text{ i.e., epi } f_n \to \text{epi } f_{\wedge} \\ f_n \text{ hypo-converges to } f_{\vee}, & \text{ i.e., hypo } f_n \to \text{hypo } f_{\vee} \end{cases}$$

Epi- and hypoconvergence have a long history in the analysis of minimizers and maximizers of functions (Rockafeller & Wets 1998, Molchanov 2005)

▶ hypi = epi + hypo:

$$d_{\text{hypi}}(f_n, f) \iff \begin{cases} f_n \text{ epi-converges to } f_{\wedge}, & \text{ i.e., epi } f_n \to \text{epi } f_{\wedge} \\ f_n \text{ hypo-converges to } f_{\vee}, & \text{ i.e., hypo } f_n \to \text{hypo } f_{\vee} \end{cases}$$

Epi- and hypoconvergence have a long history in the analysis of minimizers and maximizers of functions (Rockafeller & Wets 1998, Molchanov 2005)

Only defines a semi-metric:

$$d_{ ext{hypi}}(f,g) = 0 \iff \left\{ egin{array}{c} f_\wedge = g_\wedge \ f_ee = g_ee \ f_ee = g_ee$$

Care must be taken when considering weak convergence.

▶ hypi = epi + hypo:

$$d_{\text{hypi}}(f_n, f) \iff \begin{cases} f_n \text{ epi-converges to } f_{\wedge}, & \text{ i.e., epi } f_n \to \text{epi } f_{\wedge} \\ f_n \text{ hypo-converges to } f_{\vee}, & \text{ i.e., hypo } f_n \to \text{hypo } f_{\vee} \end{cases}$$

Epi- and hypoconvergence have a long history in the analysis of minimizers and maximizers of functions (Rockafeller & Wets 1998, Molchanov 2005)

Only defines a semi-metric:

$$d_{ ext{hypi}}(f,g) = 0 \iff \left\{ egin{array}{c} f_\wedge = g_\wedge \ f_ee = g_ee \ f_ee = g_ee$$

Care must be taken when considering weak convergence.

Addition is not continuous! Extra work needed to deal with convergence of sums.

▶ hypi = epi + hypo:

$$d_{\text{hypi}}(f_n, f) \iff \begin{cases} f_n \text{ epi-converges to } f_{\wedge}, & \text{ i.e., epi } f_n \to \text{epi } f_{\wedge} \\ f_n \text{ hypo-converges to } f_{\vee}, & \text{ i.e., hypo } f_n \to \text{hypo } f_{\vee} \end{cases}$$

Epi- and hypoconvergence have a long history in the analysis of minimizers and maximizers of functions (Rockafeller & Wets 1998, Molchanov 2005)

Only defines a semi-metric:

$$d_{ ext{hypi}}(f,g) = 0 \iff \left\{ egin{array}{c} f_\wedge = g_\wedge \ f_ee = g_ee \ f_ee = g_ee$$

Care must be taken when considering weak convergence.

- Addition is not continuous! Extra work needed to deal with convergence of sums.
- Can be generalized to functions on locally compact, separable metric spaces.

Weak hypi-convergence of the empirical copula process

Theorem [Bücher, Segers, Volgushev, 2013] Let

 $\mathcal{D}(C) := \{\mathbf{u} \in [0,1]^d \mid \dot{C}_j(\mathbf{u}) \text{ does not exist or is not continuous for some } 1 \le j \le d\}$ and suppose that (S₂) $\mathcal{D}(C)$ is a Lebesgue-null set. Then,

$$[\mathbb{C}_n]_{d_{\mathrm{hypi}}} = [\sqrt{n}(C_n - C)]_{d_{\mathrm{hypi}}} \rightsquigarrow [\mathbb{C}_C]_{d_{\mathrm{hypi}}}$$

in $(L^{\infty}([0,1]^d), d_{hypi})$, where

$$\mathbb{C}_{C}(\mathbf{u}) = \mathbb{B}_{C}(\mathbf{u}) + dC_{(-\mathbb{B}_{C,1},\ldots,-\mathbb{B}_{C,d})}(\mathbf{u})$$

and where, for $a=(a_1,\ldots,a_d)$ with $a_j:[0,1]
ightarrow \mathbb{R}$ continuous,

$$dC_{s}(\mathbf{u}) = \lim_{arepsilon o 0} \inf \left\{ \sum_{j=1}^{d} \dot{C}_{j}(\mathbf{v}) \, a_{j}(v_{j}) : \mathbf{v} \in [0,1]^{d} ackslash \mathcal{D}(\mathcal{C}), \; |\mathbf{v}-\mathbf{u}| < arepsilon
ight\}.$$

▶ Recall (S₁): $\dot{C}_j(\mathbf{u})$ exists and is continuous for \mathbf{u} with $u_j \in (0, 1)$.

• Recall $\mathbb{C}_C(\mathbf{u}) := \mathbb{B}_C(\mathbf{u}) - \sum_{j=1}^d \dot{C}_j(\mathbf{u}) \mathbb{B}_{C,j}(u_j).$

Consequences of hypi-convergence of the empirical copula process

Consequences for \mathbb{C}_n through the continuous mapping theorem:

- ▶ Hypi-convergence implies uniform convergence if the limit is continuous
 - \Rightarrow Retrieve usual weak convergence result under (S₁)

Consequences of hypi-convergence of the empirical copula process

Consequences for \mathbb{C}_n through the continuous mapping theorem:

- Hypi-convergence implies uniform convergence if the limit is continuous \Rightarrow Retrieve usual weak convergence result under (S₁)
- ▶ Hypi-convergence implies L^p convergence for $p < \infty$
 - \Rightarrow Weak convergence with respect to L^{p}
 - \Rightarrow Cramér–von Mises type statistics

Consequences of hypi-convergence of the empirical copula process

Consequences for \mathbb{C}_n through the continuous mapping theorem:

- Hypi-convergence implies uniform convergence if the limit is continuous \Rightarrow Retrieve usual weak convergence result under (S₁)
- ▶ Hypi-convergence implies L^p convergence for $p < \infty$
 - \Rightarrow Weak convergence with respect to L^{p}
 - \Rightarrow Cramér–von Mises type statistics
- ► Hypi-convergence implies convergence of infima and suprema ⇒ Weak convergence of and Kolmogorov–Smirnov statistics.

Empirical processes via epi- and hypographs

The empirical copula process

Weak convergence with respect to the uniform metric

Non-smooth copulas: when weak convergence fails

The hypi-semimetric and weak convergence

Applications

Comparing test statistics via local power curves

Test for

 $H_0: C = C_0$, where C_0 is a given copula (e.g., $C_0 = \Pi$).

Comparing test statistics via local power curves

Test for

 $H_0: C = C_0$, where C_0 is a given copula (e.g., $C_0 = \Pi$).

Two competing test statistics

$$S_n = n \int \{C_n - C_0\}^2 d\Pi$$
$$T_n = \sqrt{n} \|C_n - C_0\|_{\infty}$$

Cramér-von Mises

Kolmogorov-Smirnov

Comparing test statistics via local power curves

Test for

 $H_0: C = C_0$, where C_0 is a given copula (e.g., $C_0 = \Pi$).

Two competing test statistics

$$S_n = n \int \{C_n - C_0\}^2 d\Pi$$
 Cramér–von Mises
$$T_n = \sqrt{n} \|C_n - C_0\|_{\infty}$$
 Kolmogorov–Smirnov

Comparing the quality of tests: Local power curves How well does a test detect alternatives that converge to the null hypothesis?

Local power curves of simple goodness-of-fit tests

Local alternatives in direction Λ: Let (X_i⁽ⁿ⁾)_{i=1,...,n} be row-wise i.i.d. with copula C⁽ⁿ⁾. Assume

$$\Delta_n = \sqrt{n} (C^{(n)} - C_0) \to \delta \Lambda$$

uniformly, $\delta > 0, \Lambda \not\equiv 0$.

Local power curves of simple goodness-of-fit tests

 Local alternatives in direction Λ: Let (X_i⁽ⁿ⁾)_{i=1,...,n} be row-wise i.i.d. with copula C⁽ⁿ⁾. Assume

$$\Delta_n = \sqrt{n} (C^{(n)} - C_0) \to \delta \Lambda$$

uniformly, $\delta > 0, \Lambda \not\equiv 0$.

• **Proposition.** If C_0 satisfies (S₂), then

$$\sqrt{n}(C_n - C_0) \rightsquigarrow \mathbb{C}_{C_0} + \delta \Lambda$$
 in $(L^{\infty}([0, 1]^d), d_{\text{hypi}})$.

Consequence: limit distribution of the test statistics under the local alternatives

$$S_n \to S_{\delta} = \int \{ \mathbb{C}_{C_0} + \delta \Lambda \}^2 \, d\Gamma$$
$$T_n \to \mathcal{T}_{\delta} = \| \mathbb{C}_{C_0} + \delta \Lambda \|_{\infty}.$$

Local power curves of simple goodness-of-fit tests

 Local alternatives in direction Λ: Let (X_i⁽ⁿ⁾)_{i=1,...,n} be row-wise i.i.d. with copula C⁽ⁿ⁾. Assume

$$\Delta_n = \sqrt{n} (C^{(n)} - C_0) \to \delta \Lambda$$

uniformly, $\delta > 0, \Lambda \not\equiv 0$.

• **Proposition.** If C_0 satisfies (S₂), then

$$\sqrt{n}(C_n - C_0) \rightsquigarrow \mathbb{C}_{C_0} + \delta \Lambda$$
 in $(L^{\infty}([0, 1]^d), d_{\text{hypi}})$

Consequence: limit distribution of the test statistics under the local alternatives

$$S_n \to S_{\delta} = \int \{ \mathbb{C}_{C_0} + \delta \Lambda \}^2 \, d\Gamma$$
$$T_n \to \mathcal{T}_{\delta} = \| \mathbb{C}_{C_0} + \delta \Lambda \|_{\infty}.$$

► Local power curves in direction Λ : ' $\delta \mapsto$ asymptotic power(δ)' at significance level α

$$\delta \mapsto \mathsf{Pr}\{\mathcal{S}_{\delta} > q_{\mathcal{S}_0}(1-\alpha)\},\ \delta \mapsto \mathsf{Pr}\{\mathcal{T}_{\delta} > q_{\mathcal{T}_0}(1-\alpha)\}$$

Minimum L^2 -distance estimators à la Tsukahara

• Let $\{C_{\theta} \mid \theta \in \Theta \subset \mathbb{R}^{\rho}\}$ be a class of parametric candidate models. Estimator:

$$\hat{\theta} := \operatorname{argmin}_{\theta} \int (C_{\theta} - C_{n})^{2} d\mu$$

Minimum L^2 -distance estimators à la Tsukahara

▶ Let $\{C_{\theta} \mid \theta \in \Theta \subset \mathbb{R}^{p}\}$ be a class of parametric candidate models. Estimator:

$$\hat{ heta} := \operatorname{argmin}_{ heta} \int (C_{ heta} - C_{ heta})^2 \, d\mu$$

Proposition (Asymptotic normality of $\hat{\theta}$):

Suppose that (S₂) holds and that $\mu(\mathcal{D}(C)) = 0$. Under usual regularity conditions on the model:

(i) for correctly specified models (θ_0 is the 'true' parameter):

$$\sqrt{n}(\hat{\theta}-\theta_0) \rightsquigarrow \left\{\int \nabla C_{\theta_0} \nabla C_{\theta_0}^{\mathsf{T}} d\mu\right\}^{-1} \int \nabla C_{\theta_0} \mathbb{C}_C d\mu,$$

Minimum L^2 -distance estimators à la Tsukahara

▶ Let $\{C_{\theta} \mid \theta \in \Theta \subset \mathbb{R}^{p}\}$ be a class of parametric candidate models. Estimator:

$$\hat{ heta} := \operatorname{argmin}_{ heta} \int (C_{ heta} - C_{ heta})^2 \, d\mu$$

Proposition (Asymptotic normality of $\hat{\theta}$):

Suppose that (S₂) holds and that $\mu(\mathcal{D}(C)) = 0$. Under usual regularity conditions on the model:

(i) for correctly specified models (θ_0 is the 'true' parameter):

$$\sqrt{n}(\hat{\theta}-\theta_0) \rightsquigarrow \left\{\int \nabla C_{\theta_0} \nabla C_{\theta_0}^{\mathsf{T}} d\mu\right\}^{-1} \int \nabla C_{\theta_0} \mathbb{C}_C d\mu,$$

(ii) for incorrectly specified models:

$$\sqrt{n}(\hat{\theta}-\theta_0) \rightsquigarrow \left\{\int \nabla C_{\theta_0} \nabla C_{\theta_0}^{\mathsf{T}} + (C_{\theta_0}-C)J_{\theta_0} d\mu\right\}^{-1} \int \nabla C_{\theta_0} \mathbb{C}_C d\mu,$$

where $\theta_0 = \arg \min \int (C_{\theta} - C)^2 d\mu$.

Beyond copulas...

Helpful for different problems?

 The hypi-semimetric can be defined for real-valued, locally bounded functions on a compact, separable, metrizable domain

Beyond copulas...

Helpful for different problems?

- The hypi-semimetric can be defined for real-valued, locally bounded functions on a compact, separable, metrizable domain
- Might help whenever a (pointwise) candidate limit has discontinuities that are not exactly matched for finite n

Empirical processes of residuals (measurement error in the ordinates)

Conclusion

- Weak convergence w.r.t. topology of uniform convergence: great success story in mathematical statistics
- Occasionally, it fails: continuous functions cannot converge to functions with jumps
- Alternative: weak convergence with respect to a new topology:

 $hypi = epi \cap hypo$

- implies uniform convergence for continuous limits
- implies convergence of infima and suprema
- adapts to limit functions with jumps
- stronger than L^p convergence
- Potentially useful for empirical processes based on estimated data Examples: empirical copula processes, empirical processes of regression residuals

Thank you!

A. BÜCHER, J. SEGERS & S. VOLGUSHEV (2013)

When uniform weak convergence fails: Empirical processes for dependence functions via epi- and hypographs Submitted for publication, arXiv:1305.6408