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Motivation

Uniform convergence of bounded functions

Strong implications

> Implies pointwise, continuous,
LP-convergence . ..

> Well-developed weak convergence
theory

Great success story in
mathematical statistics

[Van der Vaart and Wellner (1996): Weak
convergence and empirical processes]

» Many applications through the
continuous mapping theorem and
the functional delta method

Restricted applicability

» Continuous functions cannot
converge to jump functions

> Questions: Weaker metric? Weak
convergence theory? Applications?
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Copulas

> A d-variate copula C is a d-variate distribution function with uniform (0, 1)
margins.

> Sklar's (1959) theorem: If F is a d-variate distribution function with margins
Fi,..., F4, then there exists a copula C such that

F(Xl7 . .,Xd) = C(Fl(Xl)7 ey Fd(Xd))

> Moreover, if the margins are continuous, then C is unique and is given by the
distribution function of (F1(X1),..., F4(Xq)), with (X1,...,Xq) ~ F:

C(U17 ey le) = P[Fl(Xl) S ui, ..., Fd(Xd) S Ud]
=P[X1 < F (w1),-.., Xa < Fy(uq)]
= F(Fy (n),...,Fy (ug))
with F~(u) = inf{x : Fj(x) > u} the generalized inverse (quantile function)

> Usage: Modelling dependence between components Xi, ..., Xy, irrespective of their
marginal distributions
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» Situation: (Xj)i=1,...,n i.i.d. rvs, X;~F = C(F1,..., Fq), continuous marginals F;.
[hence C(u) = F{F (u1),..., F; (ug)} with the generalized inverse
Fj*(u) =inf{x: Fj(x) > u}]
» Goal: Estimate C nonparametrically.

» Simple plug-in estimation: empirical cdfs

n n

1 1
Fa(x) =~ D I(Xn < xa,., Xia < xa), Faj() = . D OI(X; < ).

i=1 i=1

yield the empirical copula

C,,(u) = Fn{F,T(Ul), ey an,(ud)} = n71 Z]I{X,‘l S F,H(Ul), .o ,X,'d S F,;,(ud)}

=n! Z]I(U,'l <up,..., U,'d < ud) + O(n_l)
i=1

[where U; = rank(X;;)/n are ‘pseudo-observations’ of C (rescaled ranks)]
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The empirical copula process

u— Co(u) = v/n{Co(u) — C(u)} € £°([0,1]¢) s called empirical copula process.
[€2°([0,1]?) the space of bounded functions on [0, 1]9.]

Many applications.

» Testing for structural assumptions. Example: symmetry [Genest, Neglehovd, Quessy
(2012)]. Null hypothesis: C(u,v) = C(v, u) for all u,v.

T_n/{Cuv) Co(v, 1)} dudv 2 /{(C,,(uv Co(v, 1)) durdv

» Minimum-distance estimators of parametric copulas [Tsukahara (2005)].
{Cy | 6 € O} class of parametric candidate models. Estimator:

0 := argmin, /{Cg(u, v) — Co(u, v)} dudv.

» Goodness-of fit tests, Asymptotics of estimators for Pickands dep. fct. ...

Derivation of asymptotic distributions: Process convergence of C,
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Key quantities

Vector of quantile functions:

F(u) = (F (w),..., Fy (ud))
Fo(u) = (Foa(w),. .., Fpg(ug))
Copula and empirical copula:
C(u) = F(Ff(u))
Co(u) = Fyo(F, (u))

Empirical process:

an(x) = V/n{Fa(x) = F(x)}

32



Standard empirical process theory

» Since the empirical copula is rank-based, we can without loss of generality assume
that margins are uniform, hence F = C.

» Classical empirical process theory yields

an(u) = v/n{F,(u) — C(u)}
~ Bc(u) in (600([07 1]d)7 H ’ Hoo)

a C-Brownian bridge.

> The Bahadur—Kiefer theorem links the empirical quantile and distribution functions:

Vn{F, (1) — u} = —v/n{F;(1) — uj} + oe(1)
v = Bej(u) =Be(l,...,1,u;,1,...,1)

10/ 32



Decomposition of the empirical copula process

Fundamental decomposition:

Cn(u) = v/n(Ca(u) — C(u))
= Vn{Fa(F; (u)) — F(F(u))}
= V/n{Fa(F; (u)) — F(F, (u)} + vn{F(F, (u)) — F(F (u))}

Recall F = C (uniform margins). We find
Cn(u) = an(F, (u)) + Vn{C(F, (1)) — C(u)}

Treat each of the two terms separately:

an(Fy () = otn(l') +ox(1)

Vn{C(F, (u)) — C(u)} = Zc u) Vn{F, (1) — u} + or(1)

11/ 32



Weak convergence of the empirical copula process in the topology of
uniform convergence

Theorem [Weak uniform convergence of C,]
Suppose that

(S1) G = #-C exists and is continuous for u € [0, 1]? with u; € (0,1).
J

Then, in (£([0,1]9), || - llso).

d

Vi(Cy = C)(u) ~ Ce(u) :=Be(u) = Y G(u)Be (1)

=t

where B¢ is a C-brownian bridge and B¢ j(u;) = Bc(1, ..., 1, uyj, 1...,1).




Weak convergence of the empirical copula process in the topology of
uniform convergence

Theorem [Weak uniform convergence of C,]
Suppose that

(S1) G = #-C exists and is continuous for u € [0, 1]? with u; € (0,1).
J

Then, in (£([0,1]9), || - llso).

d

V(Co = C)(u) ~ Cc(u) :=Be(u) = > G(u)Be,(u)

=t

where B¢ is a C-brownian bridge and B¢ j(u;) = Bc(1, ..., 1, uyj, 1...,1).

Discussion
> Dating back to Riischendorf (1976), Gaenssler and Stute (1987)
» Assumption (S1) due to S. (2012)

> Possible relaxation: stationary and short range dependent instead of i.i.d.
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'Non-smooth’ copulas: examples
> (Un)fortunately: The assumption
(S1) G exists and is continuous for u € [0,1]¢ with u; € (0,1)

is satisfied by many, but not by all interesting copulas.
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'Non-smooth’ copulas: examples
> (Un)fortunately: The assumption
(S1) G exists and is continuous for u € [0,1]¢ with u; € (0,1)

is satisfied by many, but not by all interesting copulas.

» Example:
C(u) := Az + (1 — N)min(u, up)
Here

Cl(u) = )\Uz + (1 - A)]-{u1<uz}7
CQ(U) =+ (1- >\)1{u1>uz}7

for 11 # wp and the partial derivatives
do not exist for u; = us.

» Other examples
> Extreme-value copulas with non-differentiable Pickands dependence function
> Marshall-Olkin copulas

> Archimedean copulas with non-smooth generators
| 4

14/ 32



Non-smooth copulas: pointwise vs. functional weak convergence

» Pointwise limit for the previous example:
(C,,(u) ~ CZ(u) = Bc(u) - Cl(u) Bc(U1, 1) - Cz(u) Bc(l, Uz),
apart from the diagonal and

Ch(u) ~ Ce(u) = Bc(u) — Au{Bc(u,1) +Be(1, u)}
— (1= A)max{Bc(u, 1), Bc(1, u)}

on the diagonal.
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Non-smooth copulas: pointwise vs. functional weak convergence

» Pointwise limit for the previous example:
Ca(u) ~ C&(u) = Be(u) — Gi(u) Be(u, 1) — Co(u) Be(L, w2),
apart from the diagonal and
Cn(u) ~ C¢(u) = Be(u) — Au{Bc(u,1) + Be(1,u)}
— (1 = X)max{Bc(u,1),Bc(1,u)}
on the diagonal.
» Question: Can we have: C, ~ CZ in (£°([0,1]%), || - [lo0)?

» Answer: Lemma [Biicher, Segers, Volgushev, 2013]:
If C, converges weakly with respect to || - ||oo, then the limit must have continuous
trajectories, a.s.

This is not the case here!
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Lack of uniform convergence.

Limit candidate n=10,000 n=100,000
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> Left: sample paths of candidate limit process (based on n = 100, 000) on
[-0.48,0.52] x {0.5}.

» Middle and right: 'typical realizations’ of the empirical copula process, n = 10,000
and n = 100, 000.
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Lack of uniform convergence.

Limit candidate n=10,000 n=100,000
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> Left: sample paths of candidate limit process (based on n = 100, 000) on
[-0.48,0.52] x {0.5}.

» Middle and right: 'typical realizations’ of the empirical copula process, n = 10,000
and n = 100, 000.

Suggestion: Weak convergence may hold with respect to a metric, for which jump
functions can be ‘close’ to continuous functions. ~» Generalize Skorohod's M, metric.
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The hypi-semimetric and weak convergence
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Painlevé—Kuratowski convergence

Sequence of sets A, in a metric space (T, d).
liminfA, ={x €T |3x, € As : x» = x}
n— oo

limsup A, = {x € T | Ixn, € A, : Xn, = X}

n—oo
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Painlevé—Kuratowski convergence

Sequence of sets A, in a metric space (T, d).
liminfA, ={x €T |3x, € As : x» = x}
n— oo

limsup A, = {x € T | Ixn, € A, : Xn, = X}

n—oo

Painlevé—Kuratowski convergence: A, — A if

A =liminf A, = limsup A,

n—o0 n—o00o
Properties:
> Necessarily, A is closed.
> A, — Aiff cl(Ay) — A
» Metrizable if (T, d) is locally compact and separable: Fell topology
» If (T, d) is compact, then PK convergence is convergence in the Hausdorff metric.
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Introducing hypi-convergence
» Epi- and hypograph of a function f € £°°([0,1]):
epif = {(u,t) € [0,1] xR | f(u) < t}
hypo f := {(u,t) € [0,1]7 x R | f(u) > t}

two functions epi graphs hypo-graphs
7 7 . 7 W ’ /L
00 02 04 06 08 10 00 02 04 05 08 10 00 02 04 06 08 10
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Introducing hypi-convergence
» Epi- and hypograph of a function f € £°°([0,1]):
epif = {(u,t) € [0,1] xR | f(u) < t}
hypo f := {(u,t) € [0,1]Y x R | f(u) > t}

> The hypi-semimetric is defined as

dhypi(f, g) = max{dz(cl(epi f), cl(epig)), d=(cl(hypo ), cl(hypo g)) }.

where dr is a metric on closed sets inducing Painlevé—Kuratowski convergence.

two functions epi graphs hypo graphs
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Point-wise criteria for hypi-convergence

Define lower and upper semicontinuous hulls of f:
fa(x) = supinf{f(x") : |IxX' — x|| < €}
e>0

fu(x) = ig%sup{f(x') DX = x| < e}
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Point-wise criteria for hypi-convergence

Define lower and upper semicontinuous hulls of f:
fa(x) = supinf{f(x") : |IxX' — x|| < €}
e>0
fu(x) = ig%sup{f(x') DX = x| < e}

Then dhypi(fn, ) — 0 iff the following two conditions hold:

1. fn and f, provide asymptotic bounds for f,:

Vx € [0, l]d 1 Vxp = x 1 fa(x) < liminf f,(x,)

n— oo

< limsup f(xa) < f/(x)

n—oo

2. fa and f, are asymptotically attainable by f,:

Ix, — x : liminf f(x,) = fa(x),
vx €[0,1]¢: e
Ixy — x : limsup f(x,) = /(%)

n— oo
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Hypi-convergence: Useful at all?

Theorem [Handy implications of hypi-convergence]

Let £y, £ € £([0,1]%) and dhyyi(fy, ) = 0.

> Let p1 be a finite measure on [0,1]?. If u(discontinuity points of f) = 0, then
[|fa — fllzp(u)y — O for any p € [1,00).



Hypi-convergence: Useful at all?

Theorem [Handy implications of hypi-convergence]

Let £y, £ € £([0,1]%) and dhyyi(fy, ) = 0.

> Let p1 be a finite measure on [0,1]?. If u(discontinuity points of f) = 0, then
[|fa — fllzp(u)y — O for any p € [1,00).

> supf, = supf and inf f, — inf f



Hypi-convergence: Useful at all?

Theorem [Handy implications of hypi-convergence]

Let f, £ € £2°([0,1]%) and dhypi(fa, f) — 0.
> Let p1 be a finite measure on [0,1]?. If u(discontinuity points of f) = 0, then
[|fa — fllzp(u)y — O for any p € [1,00).

> supf, = supf and inf f, — inf f

» If f is continuous in x, then f,(x,) — f(x) whenever x, — x.
Also uniformly over compact sets.
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Hypi-convergence: Useful at all?

Theorem [Handy implications of hypi-convergence]

Let f, £ € £2°([0,1]%) and dhypi(fa, f) — 0.
> Let p1 be a finite measure on [0,1]?. If u(discontinuity points of f) = 0, then
|fa — fllzp(u)y — O for any p € [1, 00).

> supf, = supf and inf f, — inf f

» If f is continuous in x, then f,(x,) — f(x) whenever x, — x.
Also uniformly over compact sets.

Interpretation:
dhypi is ‘between’ || - ||o and || - ||, with p < oco.
It adapts to regularity of the limit function.



Comments on hypi-convergence

> hypi = epi + hypo:

f» epi-converges to fn, i.e., epif, — epifa

hypi(Fn, £) = { f, hypo-converges to £,, i.e., hypof, — hypo fy

Epi- and hypoconvergence have a long history in the analysis of minimizers and
maximizers of functions (Rockafeller & Wets 1998, Molchanov 2005)
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Comments on hypi-convergence

> hypi = epi + hypo:

f» epi-converges to fn, i.e., epif, — epifa

hypi(Fn, £) = { f, hypo-converges to £,, i.e., hypof, — hypo fy

Epi- and hypoconvergence have a long history in the analysis of minimizers and
maximizers of functions (Rockafeller & Wets 1998, Molchanov 2005)

v

Only defines a semi-metric:

A = 8n

dhypi(f,8) =0 <= { £, = g

Care must be taken when considering weak convergence.

v

Addition is not continuous! Extra work needed to deal with convergence of sums.

» Can be generalized to functions on locally compact, separable metric spaces.
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Weak hypi-convergence of the empirical copula process

Theorem [Biicher, Segers, Volgushev, 2013] Let
D(C) := {u € [0,1]? | C;(u) does not exist or is not continuous for some 1 < j < d}
and suppose that  (S2) D(C) is a Lebesgue-null set.  Then,
[Colas = [V1(Co = O)lahys ~ [Cclay
in (L°°([0,1]9), dhypi), where

Cc(u) =Bc(u) + dC—5c ..., ~Bc 4)(u)

and where, for a = (ay, ..., aq) with a; : [0,1] — R continuous,
d .
dC,(u) = lim inf{z Ci(v)aj(v)) : v €[0,1]\D(C), |v—u| < s}.
e—0 |
=

> Recall (S1): Cj(u) exists and is continuous for u with u; € (0,1).

> Recall Cc(u) :=Bc(u) — 7:1 Ci(u)Bc j(u)).
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Consequences of hypi-convergence of the empirical copula process

Consequences for C, through the continuous mapping theorem:

» Hypi-convergence implies uniform convergence if the limit is continuous
= Retrieve usual weak convergence result under (S;)
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Consequences of hypi-convergence of the empirical copula process

Consequences for C, through the continuous mapping theorem:

» Hypi-convergence implies uniform convergence if the limit is continuous
= Retrieve usual weak convergence result under (S;)

» Hypi-convergence implies LP convergence for p < oo
= Weak convergence with respect to LP
= Cramér—von Mises type statistics

» Hypi-convergence implies convergence of infima and suprema
= Weak convergence of and Kolmogorov—Smirnov statistics.



Empirical processes via epi- and hypographs

Applications
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Comparing test statistics via local power curves

> Test for
Ho : C = Gy, where G is a given copula (e.g, Co = ).
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Ho : C = Gy, where G is a given copula (e.g, Co = ).

» Two competing test statistics

S = n/{C,, — G} dn Cramér—von Mises
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Comparing test statistics via local power curves

> Test for
Ho : C = Gy, where G is a given copula (e.g, Co = ).

» Two competing test statistics
S = n/{C,, — G} dn Cramér—von Mises
To=Vn||C — Golloo Kolmogorov—Smirnov

» Comparing the quality of tests: Local power curves
How well does a test detect alternatives that converge to the null hypothesis?
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Local power curves of simple goodness-of-fit tests

» Local alternatives in direction A:
Let (Xﬁ")),-zlww,, be row-wise i.i.d. with copula C”. Assume

A, = /n(C™ = G) = SA
uniformly, 6 > 0, #Z 0.
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Local power curves of simple goodness-of-fit tests

» Local alternatives in direction A:
Let (Xﬁ")),':LM,, be row-wise i.i.d. with copula C”. Assume

A, = /n(C™ = G) = SA
uniformly, 6 > 0, #Z 0.

» Proposition. If G satisfies (S2), then
Vn(Cy — G) ~ Cg, + OA in (L([0,1]9), dhypi)-
Consequence: limit distribution of the test statistics under the local alternatives
Sy — 85 = /{(Cco + 0N} dn
To — Ts = ||Cq + 0| co-
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Local power curves of simple goodness-of-fit tests

» Local alternatives in direction A:
Let (Xﬁ")),':h“’,, be row-wise i.i.d. with copula C”. Assume

A, =+/n(C" = G) — A
uniformly, 6 > 0, #Z 0.
» Proposition. If G satisfies (S2), then
Vn(Cy— Go) ~ Cey + A in (L([0,1]), dhypi)-
Consequence: limit distribution of the test statistics under the local alternatives
Sy — 85 = /{(Cco + 6N} dn
To — Ts = ||Cq + 0| co-

» Local power curves in direction A:
‘0 — asymptotic power(d)’ at significance level «

§ = Pr{Ss > gs,(1 — )},
0= Pr{Ts > g1 (1 — )}
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Minimum L2-distance estimators 3 la Tsukahara

> Let {Cy | 0 € © C RP} be a class of parametric candidate models. Estimator:

6 := argmin, /(Cg —G)du
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> Let {Cy | 0 € © C RP} be a class of parametric candidate models. Estimator:

6 := argmin, /(Cg —G)du
Proposition (Asymptotic normality of é):

Suppose that (S2) holds and that p(D(C)) = 0. Under usual regularity conditions on
the model:

(i) for correctly specified models (6o is the ‘true’ parameter):

-1
V(@ — 6o) ~ {/vcgovcgo dp} /vcgoccc dp,
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Minimum L2-distance estimators 3 la Tsukahara

> Let {Cy | 0 € © C RP} be a class of parametric candidate models. Estimator:

6 := argmin, /(Cg —G)du
Proposition (Asymptotic normality of é):

Suppose that (S2) holds and that p(D(C)) = 0. Under usual regularity conditions on
the model:

(i) for correctly specified models (6o is the ‘true’ parameter):

-1
V(@ — 6o) ~ {/vcgovcgo du} /vcgoccc dp,

(ii) for incorrectly specified models:

-1
V(0 — o) ~ {/VCgOVCgTO + (Coy — C)Ja, du} /vceocc du,

where 6 = argmin [(Cy — C)2 du.
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Beyond copulas. ..

Helpful for different problems?

» The hypi-semimetric can be defined for real-valued, locally bounded functions on a
compact, separable, metrizable domain
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Beyond copulas. ..

Helpful for different problems?

» The hypi-semimetric can be defined for real-valued, locally bounded functions on a
compact, separable, metrizable domain

» Might help whenever a (pointwise) candidate limit has discontinuities that are not
exactly matched for finite n

Empirical processes of residuals (measurement error in the ordinates)
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Conclusion

» Weak convergence w.r.t. topology of uniform convergence:
great success story in mathematical statistics

» Occasionally, it fails: continuous functions cannot converge to functions with jumps

> Alternative: weak convergence with respect to a new topology:

hypi = epi N hypo

implies uniform convergence for continuous limits
implies convergence of infima and suprema
adapts to limit functions with jumps

stronger than LP convergence

vvyyy

» Potentially useful for empirical processes based on estimated data
Examples: empirical copula processes, empirical processes of regression residuals



Thank you!

A. BUCHER, J. SEGERS & S. VOLGUSHEV (2013)

When uniform weak convergence fails:
Empirical processes for dependence functions via epi- and hypographs
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