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Diffusion Markov Processes
Consider a process (Xt : t > 0) that solves the stochastic differential
equation

dXt = b(Xt)dt + σ(Xt)dWt , t > 0.

Here b is a drift coefficient, σ the diffusion coefficient, (Wt)t>0 Brownian
motion

Under mild assumptions on (σ, b), (Xt : t > 0) is a unique Markov process
with transition densities pt,σb(x , y) describing the operator

Eσb[f (Xt+s)|Xs = x ] =

∫
Y
f (y)pt,σb(x , y)dy =: Pt f (x), f ∈ Cb(Y), s > 0.
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Applications

→ Diffusion models are ubiquitous in modern science: They serve as
fundamental building blocks in the modelling of dynamic phenomena in

• physics, biology, geosciences
• evolutionary dynamics and life sciences
• engineering
• economics & finance

They are closely related to stochastic models that model a dynamical system
by some differential operator L that propagates the system state perturbed
with statistical noise.

Buzzwords: ‘data assimilation, uncertainty quantification, filtering problems,
Hidden Markov Models’.

→ Often the parameters (σ, b) are unknown and one wants to infer their
values from some form of sample of the diffusion.
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Statistical Inference & Observation Schemes

• An idealised assumption would be to observe an entire trajectory
(Xt : 0 6 t 6 T ), up to time T . Inference on b becomes possible as
T →∞. (Note that σ is known in this case.)

• More realistic: discrete observations X0,X∆,X2∆, . . . ,Xn∆ of the
continuous process, where ∆ is the ‘observation distance’.

• high-frequency observations: ∆→ 0 and n∆ = T →∞
• low-frequency observations: ∆ > 0 fixed as n→∞.

• The high-frequency regime asymptotically reflects the ‘continuous data’
setting. Low-frequency is harder.
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Some Spectral Theory
When the diffusion is restricted to a regular compact space by reflection, say
[0, 1] for simplicity, the transition operator Pt coincides with the action of
the semigroup (etL : t > 0) on L2(µ) where the infinitesimal generator

L = Lσb = b(x)
d

dx
+
σ(x)2

2

d2

dx2

admits (subject to suitable boundary conditions) a discrete spectrum of
eigenfunctions uk : k = 0, 1, 2, . . . with eigenvalues λk ∈ [−Ck2,−C ′k2],
k > 1. Here µ is the invariant density of the Markov process. We deduce the
expansion

pt,σb(x , y) =
∑
k

eλk tuk(x)uk(y)µ(y), x , y ∈ [0, 1].

→ In the case of a scalar diffusion reflected at {0, 1} the boundary
conditions are of von Neumann type (u′k(0) = u′k(1) = 0). If b = 0 and
σ = 1 we have reflected Brownian motion. Dirichlet conditions correspond
to killed Brownian motion.
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Frequentist Estimation at Low Frequency
• In a seminal paper, Gobet, Hoffmann & Reiß (2004) studied the above

model in the nonparametric setting. They started from the spectral
identities

σ2 =
2λ1

∫ ·
0
u1 dµ

u′1µ
, b = λ1

u1u
′
1µ− u′′1

∫ ·
0
u1 dµ

(u′1)2µ
.

• While estimation of µ is straightforward, recovery of the first eigen-pair
(u1, λ1) requires estimation of the entire transition operator P∆. GHR
show that this can be done empirically in a minimax optimal way, with
resulting L2-convergence rates

n−s/(2s+3) for σ2 and n−(s−1)/(2s+3) for b

whenever, for C s a s-Hölder or Sobolev space,

(σ, b) ∈ Θs = {‖σ‖C s + ‖b‖C s−1 6 B, σ > c > 0}.

These rates reveal an ill-posed nonlinear inverse problem of order 1
and 2.
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whenever, for C s a s-Hölder or Sobolev space,

(σ, b) ∈ Θs = {‖σ‖C s + ‖b‖C s−1 6 B, σ > c > 0}.

These rates reveal an ill-posed nonlinear inverse problem of order 1
and 2.
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Bayesian Methods

From a Bayesian perspective it is natural to put a prior Π on the pair (σ, b).
The resulting posterior distribution is obtained from Bayes’ formula. For
instance if the process is started in equilibrium, X0 ∼ µσb, then

dΠ((σ, b)|X0,X∆, . . .Xn∆) =
µσb(X0)

∏n
i=1 p∆,σb(X(i−1)∆,Xi∆)dΠ(σ, b)∫

µσb(X0)
∏n

i=1 p∆,σb(X(i−1)∆,Xi∆)dΠ(σ, b)
.

Direct evaluation is out of reach, since the transition probabilities depend in
an analytically intractable, non-linear way on σ, b.
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Sampling from the Posterior Distribution

Papaspiliopoulos, Pokern, Roberts & Stuart (2012) showed how one can
sample from the posterior distribution when σ = 1 (or parametric) and the
prior on b comes from a Gaussian process. One uses conjugacy under
continuous sampling, combined with a ‘latent’ variables sampling idea.

Can this ‘work’, particularly if the prior only models the regularity of σ, b –
so is ignorant of the ‘inverse problem’? The same question can be asked
about many similar Bayesian ‘solutions’ of inverse problems (Stuart (2010)).
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Frequentist Posterior Contraction Rates for
Inverse Problems

• Following the program of van der Vaart, Ghosal et al., one can ask
whether the posterior distribution contracts about the ‘true value’
(σ0, b0) at the right rate. Do we have, for large enough M > 0 that

Π
(

(σ, b) : ns/(2s+3)‖σ − σ0‖+ n(s−1)/(2s+3)‖b − b0‖ > M|X0, . . . ,Xn∆

)
→ 0

in Pσ0b0 -probability as n→∞?

• For general linear inverse problems

Y = Af + ε; A : H1 → H2 linear, compact,

with Gaussian white noise ε, results are available: see Knapik, van der
Vaart & van Zanten (2011), Agapiou, Larsson & Stuart (2013) for the
Gaussian conjugate setting, and Ray (2013) for a general approach.
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Bayesian Estimation for Low-Frequency
Observations

For nonlinear settings, very little is known. Particularly in the diffusion model
with low-frequency observations only consistency in a weak topology (with
σ = 1 known) has been proved so far (van der Meulen & van Zanten, 2013).

There are extensions to multidimensional diffusions (Gugushvili & Spreij,
2014) and to jump diffusions (Koskela, Spano & Jenkins, 2015).

All three papers assume σ = 1 known and show consistency in a weak
topology.
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Wavelet Series Priors I

ψlk boundary corrected Daubechies wavelets, 0 < α < β < 1,
I = {(l , k) : ψlk supported in [α, β]}

Model diffusion coefficient σ by

log(σ−2(x)) =
∑

(l,k)∈I

2−l(s+1/2)

l2
ulkψlk(x), ulk ∼iid U(−B,B).

Comments:

• Could replace uniform distributions U(−B,B) by any distribution with
bouded support and density bounded away from zero.

• Could truncate sum in l at Ln →∞ sufficiently fast.

• By connection between Hölder norms and wavelet series log(σ−2) is
modelled as typical s-Hölder smooth function (with a ‘convenient’
log-factor).
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Wavelet Series Priors II

Model invariant density µ through

H(x) =
∑

(l,k)∈I

2−l(s+3/2)

l2
ūlkψlk(x), ūlk ∼iid U(−B,B),

µ = eH/

∫
eH .

Drift coefficient b indirectly given by

2b = (σ2)′ + σ2(logµ)′.

Overall Prior is given by Π = L(σ2, ((σ2)′ + σ2H ′)/2).

Comments:

• Priors on b, σ2 are not independent.

• Invariant density is modelled explicitely.
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Assumptions on σ0 and µ0

We define the Hölder-type space

Ct([0, 1]) := {f ∈ C ([0, 1]) : ‖f ‖Ct <∞} , where

‖f ‖Ct :=

btc∑
k=0

‖Dk f ‖∞ + sup
h>0

sup
x∈[0,1]

|Dbtcf (x + h)− Dbtcf (x)|
ht−btc log(1/h)−2

.

Assume diffusion coefficient σ0 ∈ Cs is of form

log σ−2
0 (x) =

∑
(l,k)∈I

τlkψlk(x), x ∈ [0, 1], with 2l(s+1/2)l2|τlk | 6 B.

Assume invariant density µ0 ∈ Cs+1 is of form

logµ0(x) =
∑

(l,k)∈I

νlkψlk(x), x ∈ [0, 1], with 2l(s+3/2)l2|νlk | 6 B.
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Contraction Theorem

For s > 2 we define Θs by{
(σ, b) : ‖σ‖Cs 6 D, ‖b‖Cs−1 6 D, inf

x
σ(x) > d , boundary conditions

}

Theorem

(Xt : t > 0) reflected diffusion with (σ0, b0) ∈ Θs . σ0 and µ0 as above. Π
wavelet series prior. Then for all 0 < α < β < 1 there exists γ > 0 such that
in the L2([α, β])-norm

Π

(
(σ, b) :

ns/(2s+3)‖σ2 − σ2
0‖L2 > logγ n or

n(s−1)/(2s+3)‖b − b0‖L2 > logγ n

∣∣∣∣X0, . . . ,Xn∆

)
→ 0

in Pσ0b0 -probability for ∆ > 0 fixed and n→∞.
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Comments on Contraction Theorem

• The contraction theorem shows that the posterior distribution contracts
about the true parameters at the minimax rate within log n factors.

• Note that the above prior does not require knowledge of the ‘inverse
problem’ at all, in particular not the singular value decomposition of the
operator.

• Bayes formula gives a (near-) optimal solution of this ill-posed
non-linear inverse problem. It illustrates the power of the Bayesian
approach to inverse problems.
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Comments on the Conditions

• The additional logarithmic factor in the definition of Cs might change
the minimax rate by a logarithmic factor (log n)η, η > 0.

• The assumption µ0 ∈ Cs+1 is restricting (σ0, b0) beyond having to lie in
Θs . As the lower bounds by GHR are for µ0 ≡ 1 ∈ Cs+1 this does not
affect the minimax rates.

• µ0 assumed to be in Cs+1 and µ modelled explicitely since information
theoretic distance involves the term ‖µ− µ0‖L2 .
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General Contraction Theorem
The basic strategy follows Ghosal, Ghosh & van der Vaart (2000)

Small ball probability condition: C , L, r constants so that

Π (Bεn,r ) > e−Cnε
2
n ,

and Π(B\Bn) 6 Le−(C+4)nε2
n for some sequence Bn ⊆ B

Tests: Sequence of tests Ψn ≡ Ψ(X0, . . . ,Xn∆) and of metrics dn such that
for M > 0 large enough,

Eσ0b0 [Ψn]→n→∞ 0, sup
(σ,b)∈Bn:dn((σ,b),(σ0,b0))>Mεn

Eσb[1−Ψn] 6 Le−(C+4)nε2
n .

Give posterior contraction: Then the posterior Π(·|X0, . . . ,Xn∆) satisfies

Π((σ, b) : dn((σ, b), (σ0, b0)) > Mεn|X0, . . . ,Xn∆)→ 0

in Pσ0b0 -probability, as n→∞.
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Small Ball Probability Condition

B ⊆ Θ with a σ-field S, Π prior distribution on S, (σ0, b0) ∈ Θ, εn → 0,√
nεn →∞, and C , r fixed constants

Suppose Π satisfies

Π (Bεn,r ) > e−Cnε
2
n ,

where

Bε,r =

{
(σ, b) ∈ B : KL((σ0, b0), (σ, b)) 6 ε2,

Varσ0b0

(
log

pσb(∆,X0,X∆)

pσ0b0 (∆,X0,X∆)

)
6 2ε2,

KL(µσ0b0 , µσb) 6 r ,Varσ0b0

(
log

µσb(X0)

µσ0b0 (X0)

)
6 2r

}
.

with transition density pσb and invariant density µσb.
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Bound on Information Theoretic Distance

Information theoretic distance

KL((σ0, b0), (σ, b)) := Eσ0b0

[
log

(
pσ0b0 (∆,X0,X∆)

pσb(∆,X0,X∆)

)]
,

pσb transition density, expectation Eσ0b0 w.r.t. stationary distribution

Need good bound on KL:

KL((σ0, b0), (σ, b)) . ‖pσb − pσ0b0‖2
L2

. ‖Pσb∆ − Pσ0b0

∆ ‖2
HS

. ‖e∆/L−1
σb − e

∆/L−1
σ0b0 ‖2

HS

. ‖L−1
σb − L−1

σ0b0
‖2
HS ,

where Pσb∆ transition operator and Lσb infinitesimal generator.
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Bound on Information Theoretic Distance II

Inverse of infinitesimal generator

L−1
σb f (x) =

∫
Kσb(x , z)f (z)µ0(z)dz

Bound distance between integral kernels

KL((σ0, b0), (σ, b)) . ‖L−1
σb − L−1

σ0b0
‖2
HS

.
∫ ∫

(Kσb − Kσ0b0 )2(x , z)µ0(x)µ0(z)dx dz

. ‖µσb − µσ0b0‖2
L2([0,1]) +

∥∥∥∥ 1

σ2
− 1

σ2
0

∥∥∥∥2

(B1
1∞)∗

+ ‖b − b0‖2
(B2

1∞)∗ ,

with dual spaces of Besov spaces B1
1∞ and B2

1∞.
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Concentration of Frequentist Estimators and
Tests
• A Birgé-Le Cam Hellinger testing theory like the one used in Ghosal,
Ghosh, van der Vaart, is not available for (non-linear) inverse problems.

• Instead we use a ‘concentration of measure approach’ to such tests, put
forward in Giné & Nickl (2011). In the present setting, for σ̂ and b̂
estimators by Gobet, Hoffmann & Reiß (2004) we can prove:

Theorem
There exists R > 0 such that for n large enough we have uniformly over Θs ,
s > 2,

P
(
‖σ̂2 − σ2‖L2([α,β]) > Rn−s/(2s+3) or

‖b̂ − b‖L2([α,β]) > Rn−(s−1)/(2s+3)

)
6 exp

(
−Dn1/(2s+3)

)
.

This means exponential concentration of σ̂2 and b̂ at minimax rates
n−s/(2s+3) and n−(s−1)/(2s+3), respectively.
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Concentration Inequality

Bernstein-type inequality

There exists κ > 0 such that for all reflected diffusions
dXt = b(Xt)dt + σ(Xt)dWt , t ∈ [0,∞) with (σ, b) ∈ Θ := Θ2 and arbitrary
initial distribution, ∀f : [0, 1]→ R bounded, ∀x > 0 and ∀n ∈ N,

P
(∣∣ n−1∑

j=0

(f (Xj∆)− Eµ[f ])
∣∣ > x

)

6 κ exp

(
− 1

κ
min

(
x2

n‖f ‖2
L2(µ)

,
x

log(n)‖f ‖∞

))
.
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Concentration Inequality for Suprema of
Empirical Processes
Class of functions F = {fi : i ∈ I} with 0 ∈ F and dim I = d

V 2 = κn supf∈F ‖f ‖2
L2(µ) and U = κ log n supf∈F ‖f ‖∞

Theorem
For κ̃ = 18 and for all x > 0 we have

P
(

sup
f∈F

∣∣∣ n−1∑
j=0

(f (Xj∆)− Eµ[f ])
∣∣∣ > κ̃

(
V
√
d + x + U(d + x)

))
6 2κe−x .

Follows from chaining and previous concentration inequality.

Using duality arguments from Giné & Nickl (2011) this gives deviation
bounds for the estimation errors of frequentist estimators of σ2, b.

Concentration inequality builds on results by Adamczak (2008) for Markov
chains based on regeneration approach.
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Lessons for General Non-Linear Inverse
Problems Y = Af + ε
Bayesian methods for inverse problems should work in principle.
Proving that may be quite difficult though!

Two key modifications of the standard Ghosal-Ghosh-van der Vaart approach
are required:

• If A is the operator to invert (possibly after linearisation), one needs to
show that the information distance is bounded above by ‖Af ‖ where ‖ · ‖
would be the information distance when A = Id . This allows to take ‘faster’
εn-sequences in the small ball computations. In our case the main
contribution is to achieve this by considering negative Besov norms on (σ, b).

• In absence of robust Hellinger tests, one can show that for a large support
set in the prior a frequentist estimator that solves the inverse problem admits
tight sub-Gaussian exponential concentration bounds on its estimation error,
which can be used in the construction of tests. In our case we had to derive
new concentration inequalities for samples means of discretely sampled
diffusions.
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Jakob Söhl (TU Delft) Bayesian inference for diffusion models 26 October 2016 26 / 27



Thank you for your attention!
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