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Distributed methods



Applications

• Volunteer computing (NASA, CERN, SETI,... projects)

• Massive multiplayer online games (peer network)

• Aircraft control systems

• Meteorology, Astronomy

• Medical data from different hospitals



Distributed setting



Distributed setting II
Interested in high-dimensional and nonparametric models.

• Methods have tunning-, regularity-, sparsity-, bandwidth-hyperparameters to
adjust for optimal bias-variance trade-off. How does it work in distributed settings?

• Several approach in the literature (Consensus MC, WASP, Fast-KRR, Distributed
GP,...)

• Limited theoretical underpinning

• No unified framework to compare methods

• Statistical models for illustration:

• Kernel density estimation,
• Gaussian white noise model,
• Random design nonparametric regression.
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Kernel density estimation I

• Model: Observe X1, ...,Xn
iid∼ f0 with f0 ∈ Hβ(L).

• Distributed setting: distribute data randomly over m machines.

• Method:

• Local machines: Kernel density estimation in each

f̂
(i)
h (x) =

1
hn/m

n/m∑
j=1

K
(x − X

(i)
j

h

)
.

• Central machine: average local estimators

f̂h(x) =
1
m

m∑
i=1

f̂
(i)
h (x).



Kernel density estimation II
Problem: The choice of the bandwidth parameter h:

• Local bias-variance trade-off:

|f0(x)− Ef0 f̂
(i)
h (x)| . hβ, and Varf0 f̂

(i)
h (x) � m

hn
,

optimal bandwidth: h = (n/m)−1/(1+2β).

• Global bias-variance trade-off:

|f0(x)− Ef0 f̂h(x)| . hβ, and Varf0 f̂h(x) � 1
hn
,

optimal bandwidth: h = n−1/(1+2β).

• Local bias-variance trade-off results too big bias for f̂h: oversmoothing.

• In practice β is unknown: distributed data-driven methods?
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Gaussian white noise model

Single observer:

dYt = f0(t) +
1√
n
dWt , t ∈ [0, 1].

Distributed case: m observer

dY
(i)
t = f0(t) +

√
m

n
dW

(i)
t , t ∈ [0, 1], i ∈ {1, ...,m},

W
(i)
t are independent Brownian motions.

Assumption: f0 ∈ Sβ(L), for β > 0.
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Distributed Bayesian approach

• Endow f0 in each local problem with GP prior of the form

f |α ∼
∞∑
j=1

j−1/2−αZjφj ,

where Zj are iid N(0, 1) and (φj)j the Fourrier basis.

• Compute locally the posterior (or a modification of it)

• Aggregate the local posteriors into a global one.

• Can we get optimal recovery and reliable uncertainty quantification?



Benchmark: Non-distributed setting I

• One server: m = 1.

• Squared bias (of posterior mean): ‖f0 − E f̂α‖22 . n−
2β

1+2α

• Variance, posterior spread: Var(f̂α) � σ2
|Y � n−

2α
1+2α .

• Optimal bias-variance trade-off: at α = β.



Benchmark: Non-distributed setting II
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Distributed naive method

• We have m local machines, with data (Y (1), ...,Y (m)).

• Take α = β.

• Local posteriors:

Π
(i)
β (f ∈ B|Y (i)) =

∫
B pf (Y (i))dΠβ(f )∫
pf (Y (i))dΠβ(f )

.

• Aggregate the local posteriors by averaging the draws taken from them.

Result: Sub-optimal contraction, misleading uncertainty quantification.

‖f0 − E f̂ ‖22 . (n/m)−
2β

1+2β , Var(f̂ ) � σ2
|Y � m−

1
1+2β n−

2β
1+2β .



Distributed naive method II
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The likelihood approach

• Again m local machines, with data (Y (1), ...,Y (m)) and take α = β.

• Modify the local likelihoods for each machine:

Π(i)(f ∈ B|Y (i)) =

∫
B pf (Y (i))mdΠ(f )∫
pf (Y (i))mdΠ(f )

.

• Aggregate the modified posteriors by averaging the draws taken from them.

Result: Optimal posterior contraction, but bad uncertainty quantification.

‖f0 − E f̂ ‖22 . n−
2β

1+2β , Var(f̂ ) � n−
2β

1+2β , , σ2
|Y � m−1n−

2β
1+2β .
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The likelihood approach II
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The prior rescaling approach

• Again m local machines, with data (Y (1), ...,Y (m)).

• Modify the local priors for each machine:

Π(i)(f ∈ B|Y (i)) =

∫
B pf (Y (i))π(f )1/mdλ(f )∫
pf (Y (i))π(f )1/mdλ(f )

.

• Aggregate the modified posteriors by averaging the draws taken from them.

Result: Optimal posterior contraction and uncertainty quantification.
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2β

1+2β , Var(f̂ ) � σ2
|Y � n−

2β
1+2β .
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The prior rescaling approach II
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Other approaches

Methods posterior contraction rate coverage
naive, average sub-optimal no
naive,Wasserstein sub-optimal yes
likelihood, average minimax no
likelihood, Wasserstein (WASP) minimax yes
scaling, average (consensus MC) minimax yes
scaling, Wasserstein minimax yes

undersmoothing
minimax

(on a range of β, m)
yes

(on a range of β, m)
PoE sub-optimal no
gPoE sub-optimal yes
BCM minimax yes
rBCM sub-optimal yes



Data-driven methods
Note: All methods above use the knowledge of the true regularity parameter β, which
is in practice usually not available.

Solution: Data-driven choice of the regularity-, tunning-hyperparameter.

Benchmark: In the non-distributed case (m = 1)

• Hierarchical Bayes: endow α with hyperprior.

• Empirical Bayes: estimate α from the data (marginal maximum likelihood
estimator).

• Adaptive minimax posterior contraction rate.

• Coverage of credible sets (under polished tail/self-similarity assumption, using
blow-up factors).
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Empirical Bayes posterior
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Marginal likelihood
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Data driven distributed methods
Proposed methods:

• Naive EB: local MMLE

α̂(i) = argmax
α

∫
pf (Y (i))dΠα(f ).

• Interactive EB Deisenroth and Ng (2015):

α̂ = argmax
α

m∑
i=1

log
∫

pf (Y (i))dΠα(f ).

• Other EB: Lepskii’s method α̃(i) or cross-validation (in the context of ridge
regression Zhang, Duchi, Wainwright (2015))



Counter example
Theorem: Consider f0 ∈ Sβ(L) with Fourrier coefficients

f 2
0,j =

{
j−1−2β, if j ≥ (n/

√
m)

1
1+2β ,

0, else.

Then for all the above empirical Bayes methods (Naive, Interactive, Lepskii) the
regularity hyper-parameter is oversmoothed

P(min(α̂(i), α̂, α̃(i)) ≥ β + 1/2) = 1 + o(1).

By combining it with any (in non-adaptive case) optimal aggregation methods (above)
one gets

Πaggr ,α̂(f : ‖f − f0‖22 ≥ c(n/
√
m)−

2β
1+2β |Y ) = 1 + o(1).



Aggregated empirical Bayes posterior
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Local marginal likelihoods
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Data-driven methods: constraints
Question: Is it possible to construct data-driven distributed methods with good
recovery at all?

• Yes: by transferring all data from local machines to central machine and then
data-driven method in the centralmachine.

• BUT this is clearly not what we are looking for...

• In practice there are constraints on the method:

• Computational: in the central machine minimize the amount of
computation.

• Communication: as less communication between servers as possible.

New Question: Are there distributed data-driven methods with optimal recovery and
“optimal” communication/computational costs.
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Communication constraints



Communication constraints: minimax rate

• No restriction (Bi =∞): back to non-distributed case.

• No communcation (Bi = 0): no (sensible) inference is possible.

• In parametric models: Zhang et al. (2013). No result in nonparametric models.

Theorem: For β, L > 0

inf
f̂ ∈Fdist:B1,..,Bm

sup
f ∈Bβ2,∞(L)

Ef ‖f̂ − f ‖22 & δn
2β

1+2β ,

where δn is the solution of

δn = min
{ m

n logm
,

m

n logm
∑m

i=1(δ
1

1+2β
n Bi ∧ 1)

}
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• No restriction (Bi =∞): back to non-distributed case.

• No communcation (Bi = 0): no (sensible) inference is possible.

• In parametric models: Zhang et al. (2013). No result in nonparametric models.

Theorem: For β, L > 0

inf
f ∈Fdist:B1,..,Bm

sup
f ∈Bβ2,∞(L)

Ef ‖f̂ − f ‖22 & δ
2β

1+2β
n ,

where δn is the solution of (for B = B1 = ... = Bm)

δn = min
{ m

n logm
,

1

n logm(δ
1

1+2β
n B ∧ 1)

}



Remarks

• The proof is via Fano’s inequality (using mutual information).

• If Bi ≥ n
1

1+2β , then δn � (logm)γ1/n and the minimax lower bound is

(logm)γ2n−
2β

1+2β .

• If Bi ≤ nρn
1

1+2β (for some ρ < 0), then the lower bound is nρ1n−
2β

1+2β (for some
ρ1 > 0).

• It is easy to construct estimators, which attain the lower bounds up to logaritmic
terms.

• So the optimal communication cost is Bi = n
1

1+2β (up tp logm term).

• Problem: β is usually not available in practice.



Adaptive distributed methods - bad news

Question: Is it possible to achieve the minimax (non-distributed) convergence rate and
optimal communication at the same time (without knowing β)?

Theorem: Let β, L > 0 be arbitrary. If m� n
1

2+2β , then there exist no ideal procedure
that can adapt both the transmission rate and the estimation rate uniformly over all
f0 ∈ Bβ2,∞(L).

Corollary: Suppose m = np for p ∈ (0, 1/2), let β, L > 0 be arbitrary. If
β > 1/(4p)− 1/2, then there exist no ideal procedure that can adapt both the
transmission rate and the estimation rate uniformly over all f0 ∈ Bβ2,∞(L).
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Idea of the proof

One can construct a finite sieve F ⊂ Bβ2,∞(L), such that

• Local machines can not test consistently if f = 0 or f ∈ F (they are close to 0
and there aren’t too many of them).

• The set is large enough, such that the minimax (non-dstributed) rate for

estimation is n−
2β

1+2β .

• To achieve this rate (up to a logaritmic factor) one has to transmit (in average)
n1/(1+2β) bits (up to a logaritmic factor).

• Using the number of transmitted bits one could construct tests with higher
precision, than possible via the first theoretical limit. Contradiction.



Adaptive distributed methods - good news

Theorem: Assume that m = np for p ∈ (0, 1/2), let β, L > 0. Then there exists a
distributed procedure with transmission rates B̂i and agrregated estimator f̂ such that
for all 0 < β < β< 1/(4p)− 1/2

inf
β≤β≤β

inf
f ∈Bβ2,∞(L)

Pf (B̂i ≤ C (log n)δn
1

1+2β )→ 1,

inf
β≤β≤β

inf
f ∈Bβ2,∞(L)

Pf (‖f − f̂ ‖22 ≤ C (log n)δn−
2β

1+2β )→ 1.



Good news: Idea of the proof I
We show adaptation to two classes indexed with 0 < β1 < β2 < 1/(4p)− 1/2
(adaptation for continuum classes can be done by introducing a grid).

Local machines:

• Split data into two iid parts (twice the variance)

• Using the first part construct consistent test φ for

H0 : f ∈ Bβ2
2,∞(L) vs Ha : f ∈ {f ∈ Bβ1

2,∞(L) : ‖f −Bβ2
2,∞(L)‖22 ≥ (

n

m
)
− β1

1/2+2β1 }.

• Turn the test into an estimator for the smoothness

β̂(i) =

{
β1, if φ = 0,
β2, if φ = 1.

• Transmit log n bits of the first N̂(i) = n
1

1+2β̂(i) wavelet coefficients of Y (i)
t .
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Good news: Idea of the proof II

Central machine:

• Compute the median number of transmitted coefficients: N̂.

• Define estimator:

f̂j ,k =

{
1

Nj,k

∑
i∈Nj,k

Y
(i)
j ,k , if 2j ≤ N̂,

0, else,

where Y
(i)
j ,k is the (first log n bits) of the (j , k)th wavelet coefficient of Y (i)

t , f̂j ,k
the (j , k)th wavelet coefficient of f̂ , and Nj ,k = {1 ≤ i ≤ m : N̂(i) ≥ 2j}.



Summary

• Several distributed methods proposed in the literature (Bayes and frequentist).

• Compared them on a unified framework (distributed Gaussian white noise).

• Investigated standard data-driven methods: do not work.

• Theoretical limitations: under communication constraints.

• Only on a range of regularity classes exists adaptive estimator with optimal
communication costs (in L2).



Further results/Ongoing work

• For f0 ∈ Bβ∞,∞ and L∞ doesn’t exist an adaptive procedure (not even on a limited
range).

• Under self-similarity assumption there exists an adaptive procedure.

• Similar results can be derived for random design regression (technically more
demanding): ongoing.

• Uncertainty quantification in adaptive setting: ongoing.

• Computational constraints: NP vs P, quadratic, linear algorithms: future.

• Combining computational and communication constraints: future.

• General theorem (both Bayesian and non-bayesian): future.
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