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Distributed methods




Volunteer computing (NASA, CERN, SETI,... projects)
Massive multiplayer online games (peer network)
Aircraft control systems

Meteorology, Astronomy

Medical data from different hospitals

Applications
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Distributed setting

data 1 data 2 datam
s calc calc calc
machines T
central 5
machine 99

—

Universiteit
Leiden

T



Distributed setting |l

Interested in high-dimensional and nonparametric models.

e Methods have tunning-, regularity-, sparsity-, bandwidth-hyperparameters to
adjust for optimal bias-variance trade-off. How does it work in distributed settings?
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Distributed setting |l

Interested in high-dimensional and nonparametric models.

e Methods have tunning-, regularity-, sparsity-, bandwidth-hyperparameters to
adjust for optimal bias-variance trade-off. How does it work in distributed settings?

Several approach in the literature (Consensus MC, WASP, Fast-KRR, Distributed
GP,...)

Limited theoretical underpinning

No unified framework to compare methods

Statistical models for illustration:

o Kernel density estimation,
e Gaussian white noise model,
e Random design nonparametric regression.
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Kernel density estimation |

o Model: Observe X1, ..., X, < fo with fy € H?(L).
e Distributed setting: distribute data randomly over m machines.

e Method:

¢ Local machines: Kernel density estimation in each

n/m (V)
20) 1L X=X
f (X)_hn/mjz_;K( hJ >

¢ Central machine: average local estimators

1 m
I
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Kernel density estimation |l
Problem: The choice of the bandwidth parameter h:

e |ocal bias-variance trade-off:
m

fo(x) — E i) S B2, and Varg K7 (x) = o

optimal bandwidth: h = (n/m)~1/(1+28),
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Kernel density estimation |l
Problem: The choice of the bandwidth parameter h:

e |ocal bias-variance trade-off:

fo(x) — EnF0(x)| < H%, and  Varg B (x) < hl;
optimal bandwidth: h = (n/m)~1/(1+28),
e Global bias-variance trade-off:
~ 3 ~ 1
600~ Eoh()| S . and Varghy(x) = -

optimal bandwidth: h = n=1/(1+25),
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Kernel density estimation |l

Problem: The choice of the bandwidth parameter h:

e |ocal bias-variance trade-off:

fo(x) — EnF0(x)| < H%, and  Varg B (x) < hl;
optimal bandwidth: h = (n/m)~1/(1+28),
e Global bias-variance trade-off:
~ 3 ~ 1
600~ Eoh()| S . and Varghy(x) = -

optimal bandwidth: h = n=1/(1+25),

e Local bias-variance trade-off results too big bias for fi,: oversmoothing.
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Kernel density estimation |l
Problem: The choice of the bandwidth parameter h:

e |ocal bias-variance trade-off:

6() = Eafi ()| S 47, and Var F0(x) < .,

optimal bandwidth: h = (n/m)~1/(1+28),

e Global bias-variance trade-off:

~ ~ 1
() ~ Exh(x)| S ¥, and Varghi(x) = .

optimal bandwidth: h = n=1/(1+25),

e |ocal bias-variance trade-off results too big bias for f,: oversmoothing. )
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e In practice 3 is unknown: distributed data-driven methods?



Gaussian white noise model

Single observer:
1

dY: = fo(t) + n

dW,, te]0,1].




Gaussian white noise model

Single observer:
1

dYy = ﬁ](t) + \/ﬁ

dW,, te]0,1].

Distributed case: m observer
dY = fo(t) + ,/%dwt("), tel0,1,ie{1,..,m,

Wt(i) are independent Brownian motions.

Assumption: fy € S?(L), for 8 > 0.
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Distributed Bayesian approach

Endow fy in each local problem with GP prior of the form
oo
flo ~ Zj—1/2—azj¢j,
j=1
where Z; are iid N(0, 1) and (¢;); the Fourrier basis.
Compute locally the posterior (or a modification of it)
Aggregate the local posteriors into a global one.

Can we get optimal recovery and reliable uncertainty quantification?




Benchmark: Non-distributed setting |

One server: m = 1.
~ 28
Squared bias (of posterior mean): |fo — Ef,||3 < n™ Tea
2a

Variance, posterior spread: Var(f,) =< 0‘2\, = n TH2a,

Optimal bias-variance trade-off: at oo = 3.




f(t)
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Benchmark: Non-distributed setting ||

Posterior from non—-distributed data

0.2 0.4 0.6 0.8 1.0
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Distributed naive method

e We have m local machines, with data (Y1), ..., Y(m),
o Take o = f.

e Local posteriors: '
g pe(YD)dNg(F)
J pe(YD)dM4(f)

e Aggregate the local posteriors by averaging the draws taken from them.

n{(f e B]y")

Result: Sub-optimal contraction, misleading uncertainty quantification.

A 28 ~ 1 _ 2B
H fb - Ef”% S_; (n/m)im7 Var(f) = U‘2Y =m 2 n 120 - -‘j Universiteit
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Distributed naive method |l

Posterior from naive distributed method

0.0
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The likelihood approach

e Again m local machines, with data (Y1), ..., Y(™)) and take o = §.

e Modify the local likelihoods for each machine:

_ Jope(YO)mdn()
= e (YO)mdn(r)

na(f e B y")

o Aggregate the modified posteriors by averaging the draws taken from them.
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The likelihood approach

e Again m local machines, with data (Y1), ..., Y(™)) and take o = §.

e Modify the local likelihoods for each machine:

_ Jope(YO)mdn()
= e (YO)mdn(r)

na(f e B y")

o Aggregate the modified posteriors by averaging the draws taken from them.

Result: Optimal posterior contraction, but bad uncertainty quantification.

28 2 1 28

. _ 28 2 - R

Hfo B EfH% 5 i Var(f) =n 1528, Ty = m ~n 128, .
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f(t)
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The likelihood approach Il

Posterior from likelihood distributed method
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The prior rescaling approach

e Again m local machines, with data (Y1), ..., Y(m),

e Modify the local priors for each machine:

Ji Pr( Y"‘ ) (F)Y/™dA(f)
[ P (YO)r(F)/mdA(F)

N e By =

o Aggregate the modified posteriors by averaging the draws taken from them.
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The prior rescaling approach

e Again m local machines, with data (Y1), ..., Y(m),

e Modify the local priors for each machine:

Ji Pr( Y"‘ ) (F)Y/™dA(f)
[ P (YO)r(F)/mdA(F)

N e By =

o Aggregate the modified posteriors by averaging the draws taken from them.

Result: Optimal posterior contraction and uncertainty quantification.

28

lfo— EFR < n T2, Var(f) = 02, = n 178,
~ 9 |Y
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The prior rescaling approach Il

Posterior from rescaled distributed method
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Other approaches

Methods posterior contraction rate coverage
naive, average sub-optimal no
naive, Wasserstein sub-optimal yes
likelihood, average minimax no
likelihood, Wasserstein (WASP) minimax yes
scaling, average (consensus MC) minimax yes
scaling, Wasserstein minimax yes
undersmoothing minimax yes

(on a range of 3, m) (on a range of 3, m)
PoE sub-optimal no
gPoE sub-optimal yes
BCM minimax yes )
rBCM sub-optimal yes Gk Lo

Biteit



Data-driven methods

Note: All methods above use the knowledge of the true regularity parameter 3, which
is in practice usually not available.

Solution: Data-driven choice of the regularity-, tunning-hyperparameter.
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Data-driven methods

Note: All methods above use the knowledge of the true regularity parameter 3, which
is in practice usually not available.

Solution: Data-driven choice of the regularity-, tunning-hyperparameter.

Benchmark: In the non-distributed case (m = 1)
e Hierarchical Bayes: endow o with hyperprior.

e Empirical Bayes: estimate o from the data (marginal maximum likelihood
estimator).

e Adaptive minimax posterior contraction rate.

e Coverage of credible sets (under polished tail/self-similarity assumption, using
blow-up factors). 5
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Data driven distributed methods
Proposed methods:

e Naive EB: local MMLE

&) = arg max/pf(Y(i))dI_Ia(f).
e Interactive EB Deisenroth and Ng (2015):

& = arg mo?xz |Og/pf(Y(f))d|_|a(f).

i=1

e Other EB: Lepskii's method @!") or cross-validation (in the context of ridge
regression Zhang, Duchi, Wainwright (2015))




Counter example

Theorem: Consider fy € SP(L) with Fourrier coefficients

fz_{fJQﬂ i) = (n//m)©i5s,
0 —

0, else.

Then for all the above empirical Bayes methods (Naive, Interactive, Lepskii) the
regularity hyper-parameter is oversmoothed

P(min(a®",a,aD) > B 4+1/2) =1+ o(1).

By combining it with any (in non-adaptive case) optimal aggregation methods (above)
one gets

Magera(f  If — BI2 > c(n/v/m) T2 Y) =1+ o(1).




Aggregated empirical Bayes posterior

PERS: oo o
4 4 Universiteit
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Local marginal likelihoods
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Data-driven methods: constraints

Question: s it possible to construct data-driven distributed methods with good
recovery at all?




Data-driven methods: constraints

Question: s it possible to construct data-driven distributed methods with good
recovery at all?

e Yes: by transferring all data from local machines to central machine and then
data-driven method in the centralmachine.
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Data-driven methods: constraints

Question: s it possible to construct data-driven distributed methods with good
recovery at all?

e Yes: by transferring all data from local machines to central machine and then
data-driven method in the centralmachine.

e BUT this is clearly not what we are looking for...

e |n practice there are constraints on the method:

e Computational: in the central machine minimize the amount of
computation.

e Communication: as less communication between servers as possible.
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Data-driven methods: constraints

Question: s it possible to construct data-driven distributed methods with good
recovery at all?

e Yes: by transferring all data from local machines to central machine and then
data-driven method in the centralmachine.

e BUT this is clearly not what we are looking for...

e |n practice there are constraints on the method:

e Computational: in the central machine minimize the amount of
computation.

e Communication: as less communication between servers as possible.

New Question: Are there distributed data-driven methods with optimal recovery %fiu“gmm
Leiden
“optimal” communication/computational costs.



Communication constraints

dxX{® = f(t)di+ /%dwj“ L dx™ = f(t)dt+ 1;’%11“’}'“)

local
machines

central
machine

agg
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Communication constraints: minimax rate

¢ No restriction (B; = c0): back to non-distributed case.
e No communcation (B; = 0): no (sensible) inference is possible.

e In parametric models: Zhang et al. (2013). No result in nonparametric models.

Theorem: For 3,L >0

. PN 28
~inf sup  Ef||f —f||3 > 6,725,
fEFdist:By,...Bm feroo(L)

where ¢, is the solution of

. m m
dp = min { , —— }
nlogm>-" (6,77 B; A1)




Communication constraints: minimax rate

¢ No restriction (B; = c0): back to non-distributed case.
e No communcation (B; = 0): no (sensible) inference is possible.

e In parametric models: Zhang et al. (2013). No result in nonparametric models.

Theorem: For 3,L >0

2B
: r 2 1+2
inf sup  Ef||f —fll5 = 8777,
f€Fdist:By,..,Bm feB§ (L)
, OO

where §, is the solution of (for B = B; = ... = B,)

. m 1
0, = min { i , —— }
TOEM hlogm(5y B A1)




Remarks

The proof is via Fano's inequality (using mutual information).

1
If B > n1+23, then §, < (log m) /n and the minimax lower bound is

(log m)2n— =l

1 . -2
If B < n”nt#2 (for some p < 0), then the lower bound is n*n~ 1+25 (for some
p1 > 0).

It is easy to construct estimators, which attain the lower bounds up to logaritmic
terms.

1
So the optimal communication cost is B; = n™+28 (up tp log m term).
p p tp log

X Universiteit
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Problem: [ is usually not available in practice.



Adaptive distributed methods - bad news

Question: s it possible to achieve the minimax (non-distributed) convergence rate and
optimal communication at the same time (without knowing ()7




Adaptive distributed methods - bad news

Question: s it possible to achieve the minimax (non-distributed) convergence rate and
optimal communication at the same time (without knowing ()7

1 : :
Theorem: Let 3, L > 0 be arbitrary. If m > n2+25 then there exist no ideal procedure
that can adapt both the transmission rate and the estimation rate uniformly over all

fo € By o (L).
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Adaptive distributed methods - bad news

Question: s it possible to achieve the minimax (non-distributed) convergence rate and
optimal communication at the same time (without knowing ()7

1 . :
Theorem: Let 3, L > 0 be arbitrary. If m > n2+25 then there exist no ideal procedure
that can adapt both the transmission rate and the estimation rate uniformly over all
fo € By o (L).

Corollary: Suppose m = nP for p € (0,1/2), let 3, L > 0 be arbitrary. If
> 1/(4p) — 1/2, then there exist no ideal procedure that can adapt both the
transmission rate and the estimation rate uniformly over all f, € Bﬁm(L).
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|dea of the proof

One can construct a finite sieve F C Bz'BOO(L), such that

Local machines can not test consistently if f =0 or f € F (they are close to 0
and there aren't too many of them).

The set is large enough, such that the minimax (non-dstributed) rate for
26

estimation is n 1+28

To achieve this rate (up to a logaritmic factor) one has to transmit (in average)
n/(1+25) bits (up to a logaritmic factor).

Using the number of transmitted bits one could construct tests with higher
precision, than possible via the first theoretical limit. Contradiction.

i Universiteit
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Adaptive distributed methods - good news

Theorem: Assume that m = n” for p € (0,1/2), let 3, L > 0. Then there exists a
distributed procedure with transmission rates B; and agrregated estimator f such that
forall 0 < 8 < B<1/(4p) —1/2

N

inf _inf  Pe(B; < C(ngOEHFéE)-% L
B<B<B feBf (L)

inf inf Pr(|If — FI2 < C(log n)?n 127 - 1.
B<B<B feBy (L)

) Umver:.xle)t



Good news: Idea of the proof |

We show adaptation to two classes indexed with 0 < 51 < B2 < 1/(4p) —1/2
(adaptation for continuum classes can be done by introducing a grid).

. Universiteit
eiden




Good news: Idea of the proof |

We show adaptation to two classes indexed with 0 < 51 < B2 < 1/(4p) —1/2
(adaptation for continuum classes can be done by introducing a grid).

Local machines:

e Split data into two iid parts (twice the variance)

e Using the first part construct consistent test ¢ for

% B 8 2o (M \
Ho: fe By (L) vs Hy: fe{feBy(L): [[f=By2 (L)]3> (=) Y22},

m
e Turn the test into an estimator for the smoothness

B\(I) _ 515 if ¢ = 07
5o, if o =1.

. . . .
e Transmit log n bits of the first N() = n1+25@ wavelet coefficients of Yt(').




Good news: Idea of the proof Il

Central machine:
e Compute the median number of transmitted coefficients: N.
e Define estimator:

1 () eni
fip =1 Nik Dieny Vikr F2Z =N,
’ 0, else,

where YJ('k) is the (first log n bits) of the (j, k)th wavelet coefficient of Yt(i), 6-7;(
the (Jj, k)th wavelet coefficient of f, and Nie={1<i<m: NG > 2}
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Summary

Several distributed methods proposed in the literature (Bayes and frequentist).
Compared them on a unified framework (distributed Gaussian white noise).
Investigated standard data-driven methods: do not work.

Theoretical limitations: under communication constraints.

Only on a range of regularity classes exists adaptive estimator with optimal
communication costs (in Ly).
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Further results/Ongoing work
For fy € Bgo,oo and L., doesn't exist an adaptive procedure (not even on a limited
range).
Under self-similarity assumption there exists an adaptive procedure.

Similar results can be derived for random design regression (technically more
demanding): ongoing.

Uncertainty quantification in adaptive setting: ongoing.
Computational constraints: NP vs P, quadratic, linear algorithms: future.

Combining computational and communication constraints: future.

. Universiteit
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General theorem (both Bayesian and non-bayesian): future.
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