Compressed sensing, sparsity and p-values

Sara van de Geer

April 16, 2015

Basis Pursuit

[Chen, Donoho and Saunders (1998)]
X : given $n \times p$ (sensing) matrix and
f^{0} : given n-vector of measurements.
We know $f^{0}=X \beta^{0}$.
We want to recover $\beta^{0} \in \mathbb{R}^{p}$.
There are n equations and p unknowns.
High-dimensional case: $p \gg n$.
Notation The ℓ_{1}-norm is

$$
\|\beta\|_{1}:=\sum_{j=1}^{p}\left|\beta_{j}\right|, \beta \in \mathbb{R}^{p} .
$$

Basis pursuit solution $\quad \beta^{*}:=\arg \min \left\{\|\beta\|_{1}: X \beta=f^{0}\right\}$.

Let $S \subset\{1, \ldots, p\}$.
Notation

$$
\begin{aligned}
& \beta_{S}:=\left\{\beta_{j}\{\{j \in S\}\}, \beta_{-S}:=\beta_{S^{c}}=\beta-\beta_{S} .\right. \\
& \beta_{S}=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
0 \\
\beta_{j} \\
\vdots \\
\vdots
\end{array}\right) \quad \leftarrow j \in S,\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\\
\leftarrow j \in S \\
\vdots \\
\beta_{j-1} \\
0 \\
\vdots \\
\beta_{p}
\end{array}\right)
\end{aligned}
$$

Definition
The matrix X satisfies the null-space property at S if for all $\beta \neq 0$ in null (X) it holds that $\left\|\beta_{-s}\right\|_{1}>\left\|\beta_{S}\right\|_{1}$.

Basis pursuit solution

$$
\beta^{*}:=\arg \min \left\{\|\beta\|_{1}: X \beta=f^{0}\right\}
$$

Let $S_{0}:=\left\{j: \beta_{j}^{0} \neq 0\right\}$ be the active set of β^{0}.
Loose definition The vector β^{0} is called sparse if S_{0} is small.
Theorem
Suppose X has the null-space property at S_{0}.
Then we have exact recovery:

$$
\beta^{*}=\beta^{0} .
$$

Proof.

Suppose $\beta^{*} \neq \beta^{0}$. Since $X \beta^{*}=X \beta^{0}=f^{0}$ we have $\beta^{*}-\beta^{0} \in \operatorname{null}(X)$. By the null-space property

$$
\left\|\beta_{-S_{0}}^{*}\right\|_{1}>\left\|\beta_{S_{0}}^{*}-\beta^{0}\right\|_{1} .
$$

Since β^{*} minimizes $\|\cdot\|_{1}$ we have

$$
\left\|\beta^{*}\right\|_{1} \leq\left\|\beta^{0}\right\|_{1} .
$$

We can decompose the ℓ_{1}-norm as

$$
\left\|\beta^{*}\right\|_{1}=\left\|\beta_{S_{0}}^{*}\right\|_{1}+\left\|\beta_{-S_{0}}^{*}\right\|_{1} .
$$

Hence

$$
\left\|\beta_{S_{0}}^{*}\right\|_{1}+\left\|\beta_{-S_{0}}^{*}\right\|_{1} \leq\left\|\beta^{0}\right\|_{1} .
$$

But then by the triangle inequality

$$
\left\|\beta_{-S_{0}}^{*}\right\|_{1} \leq\left\|\beta_{S_{0}}^{*}-\beta^{0}\right\|_{1} .
$$

Thus we arrived at a contradiction.

Definition [vdG (2007)]

The compatibility constant for the set S and the stretching constant $L>0$ is

$$
\hat{\phi}^{2}(L, S)=\min \left\{\frac{|S|}{n}\left\|X \beta_{S}-X \beta_{-S}\right\|_{2}^{2}:\left\|\beta_{-S}\right\|_{1} \leq L,\left\|\beta_{S}\right\|_{1}=1\right\} .
$$

We have:
X satisfies the null-space property at $S \Leftrightarrow \hat{\phi}(1, S)>0$.

The compatibility constant $\hat{\phi}(1, S)$ for the case $S=\{1\}$.

Regularized formulation

$$
\beta_{\lambda}:=\arg \min \left\{\left\|X \beta-f^{0}\right\|_{2}^{2} / n+2 \lambda\|\beta\|_{1}\right\}
$$

Lemma
We have

$$
\left\|X\left(\beta_{\lambda}-\beta^{0}\right)\right\|_{2}^{2} / n \leq \frac{\lambda^{2}\left|S_{0}\right|}{\hat{\phi}^{2}\left(1, S_{0}\right)}
$$

Adding noise

Let

$$
Y=f^{0}+\epsilon
$$

with ϵ unobservable noise.
Let β^{0} be a solution of $f^{0}=X \beta^{0}$.
Definition The Lasso is

$$
\hat{\beta}:=\hat{\beta}_{\lambda}:=\arg \min _{\beta}\left\{\|Y-X \beta\|_{2}^{2} / n+2 \lambda\|\beta\|_{1}\right\}
$$

Theorem (prediction error of the Lasso) Let

$$
\lambda_{\epsilon} \geq\left\|X^{\top} \epsilon\right\|_{\infty} / n
$$

Take $\lambda>\lambda_{\epsilon}$. Then for

$$
\underline{\lambda}:=\lambda-\lambda_{\epsilon}, \bar{\lambda}:=\lambda+\lambda_{\epsilon}, L:=\frac{\bar{\lambda}}{\underline{\lambda}}
$$

we have

$$
\left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n \leq \frac{\bar{\lambda}^{2}\left|S_{0}\right|}{\hat{\phi}^{2}\left(L, S_{0}\right)}
$$

Note $1\|\cdot\|_{\infty}$ is the dual norm of $\|\cdot\|_{1}$.
Note 2 Suppose $\epsilon \sim \mathcal{N}_{n}\left(0, \sigma_{0}^{2} I\right)$ and $\operatorname{diag}\left(X^{\top} X\right) / n=I$. Then

Note 3 Under compatibility conditions Lasso thus has prediction error

number of active parameters number of observations

$$
\begin{gathered}
=\text { oracle inequality } \\
\text { = adaptation }
\end{gathered}
$$

Note $1\|\cdot\|_{\infty}$ is the dual norm of $\|\cdot\|_{1}$.
Note 2 Suppose $\epsilon \sim \mathcal{N}_{n}\left(0, \sigma_{0}^{2} I\right)$ and $\operatorname{diag}\left(X^{\top} X\right) / n=I$.
Then

$$
\mathbb{P}\left(\left\|X^{\top} \epsilon\right\|_{\infty} / n \geq \sigma_{0} \sqrt{\frac{2 \log (2 p / \alpha)}{n}}\right) \leq \alpha
$$

Note $1\|\cdot\|_{\infty}$ is the dual norm of $\|\cdot\|_{1}$.
Note 2 Suppose $\epsilon \sim \mathcal{N}_{n}\left(0, \sigma_{0}^{2} I\right)$ and $\operatorname{diag}\left(X^{\top} X\right) / n=I$.
Then

$$
\mathbb{P}\left(\left\|X^{T} \epsilon\right\|_{\infty} / n \geq \sigma_{0} \sqrt{\frac{2 \log (2 p / \alpha)}{n}}\right) \leq \alpha
$$

Note 3 Under compatibility conditions Lasso thus has prediction error

$$
\begin{gathered}
\left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n \sim \sigma_{0}^{2} \log p \times \frac{\left|S_{0}\right|}{n} \\
=\sigma_{0}^{2} \log p \times \frac{\text { number of active parameters }}{\text { number of observations }} .
\end{gathered}
$$

= oracle inequality
= adaptation

What if β^{0} is only approximately sparse?

Theorem (trade-off approximation error and sparsity) Let

$$
\lambda_{\epsilon} \geq\left\|X^{T} \epsilon\right\|_{\infty} / n
$$

Take $\lambda>\lambda_{\epsilon}$. Then for

$$
\underline{\lambda}:=\lambda-\lambda_{\epsilon}, \bar{\lambda}:=\lambda+\lambda_{\epsilon}, L:=\frac{\bar{\lambda}}{\underline{\lambda}}
$$

we have for all β and S

$$
\left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n \leq \underbrace{\left\|X\left(\beta-\beta^{0}\right)\right\|_{2}^{2} / n+4 \lambda\left\|\beta_{-S}\right\|_{1}}_{\text {approximation error }}+\underbrace{\frac{\bar{\lambda}^{2}|S|}{\hat{\phi}^{2}(L, S)}}_{\text {"effective sparsity" }} .
$$

Corollary

Let $S \subset\{1, \ldots, p\}$ be arbitrary.
Let f_{S} be the projection of f^{0} on the space spanned by $\left\{X_{j}\right\}_{j \in S}$.
Then

$$
\left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n \leq\left\|f_{S}-f^{0}\right\|_{2}^{2} / n+\frac{\bar{\lambda}^{2}|S|}{\hat{\phi}^{2}(L, S)} .
$$

So

$$
\left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n \leq \min _{S}\left\{\left\|f_{S}-f^{0}\right\|_{2}^{2} / n+\frac{\bar{\lambda}^{2}|S|}{\hat{\phi}^{2}(L, S)}\right\} .
$$

What about the ℓ_{1}-estimation error?

Theorem(including the ℓ_{1}-error) Let

$$
\lambda_{\epsilon} \geq\left\|X^{T} \epsilon\right\|_{\infty} / n
$$

Take $\lambda>\lambda_{\epsilon}$. Then for

$$
\underline{\lambda}:=\lambda-\lambda_{\epsilon}, \bar{\lambda}:=\lambda+\lambda_{\epsilon}+\delta \underline{\lambda}, L:=\frac{\bar{\lambda}}{(1-\delta) \underline{\lambda}}
$$

we have for all β and S
$2 \delta \underline{\lambda}\|\hat{\beta}-\beta\|_{1}+\left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n \leq\left\|X\left(\beta-\beta^{0}\right)\right\|_{2}^{2} / n+\frac{\bar{\lambda}^{2}|S|}{\hat{\phi}^{2}(L, S)}+4 \lambda\left\|\beta_{-S}\right\|_{1}$.

Corollary (weak sparsity) Let

$$
\begin{gathered}
\rho_{r}^{r}:=\sum_{j=1}^{p}\left|\beta_{j}^{0}\right|^{r}, 0<r<1, \\
S_{*}:=\left\{j:\left|\beta_{j}^{0}\right|>3 \lambda_{\epsilon}\right\} .
\end{gathered}
$$

We have (with $\delta=1 / 5, \lambda=2 \lambda_{\epsilon}$)

$$
\left\|\hat{\beta}-\beta^{0}\right\|_{1} \leq 2^{8} \lambda_{\epsilon}^{1-r} \frac{\rho_{r}^{r}}{\hat{\phi}^{2}\left(4, S_{*}\right)} .
$$

Asymptopia
Suppose $1 / \hat{\phi}^{2}\left(4, S_{*}\right)=\mathcal{O}(1)$.
Let $\lambda_{\epsilon} \asymp \sqrt{\log p / n}$.
When $\rho_{r}^{r}=o\left((n / \log p)^{\frac{1-r}{2}}\right)$ we have $\left\|\hat{\beta}-\beta^{0}\right\|_{1}=o_{\mathbb{P}}(1)$.

Question
 What is so special about the ℓ_{1}-norm?
 Why does it lead to exact recovery and oracle inequalities?

Question
 What is so special about the ℓ_{1}-norm?

Why does it lead to exact recovery and oracle inequalities?
Answer

Question

What is so special about the ℓ_{1}-norm?
Why does it lead to exact recovery and oracle inequalities?
Answer
Its decomposability:

$$
\|\beta\|_{1}=\left\|\beta_{S}\right\|_{1}+\left\|\beta_{-S}\right\|_{1} .
$$

Definition The sub-differential of $\beta \mapsto\|\beta\|_{1}$ is

$$
\partial\|\beta\|_{1}=\left\{z:\|z\|_{\infty}=1, z^{T} \beta=\|\beta\|_{1}\right\} .
$$

subdifferential calculus

We invoke decomposability actually as the triangle property

$$
\max _{z \in \partial\left\|\beta^{0}\right\|_{1}} z^{T} \beta \geq\left\|\beta_{-S_{0}}\right\|_{1}-\left\|\beta_{S_{0}}\right\|_{1} .
$$

Other norms

Let Ω be a norm on \mathbb{R}^{p}.
Definition The dual norm of Ω is

$$
\Omega_{*}(z):=\max _{\Omega(\beta) \leq 1} z^{T} \beta, z \in \mathbb{R}^{p} .
$$

Other norms

Let Ω be a norm on \mathbb{R}^{p}.
Definition The dual norm of Ω is

$$
\Omega_{*}(z):=\max _{\Omega(\beta) \leq 1} z^{T} \beta, z \in \mathbb{R}^{p} .
$$

Definition The sub-differential of $\beta \mapsto \Omega(\beta)$ is

$$
\partial \Omega(\beta):=\left\{z: \Omega_{*}(z)=1, z^{\top} \beta=\Omega(\beta)\right\} .
$$

Definition We say that Ω is weakly decomposable at β^{0} if there exists semi-norms Ω^{+}and Ω^{-}(depending on β^{0}) with $\Omega^{-}\left(\beta^{0}\right)=0$ such that for all β

$$
\Omega(\beta) \geq \Omega^{+}(\beta)+\Omega^{-}(\beta)
$$

Definition We say that Ω satisfies the triangle property at β^{0} if there exists semi-norms Ω^{+}and Ω^{-}(depending on β^{0}) such that for all β

Definition We say that Ω is weakly decomposable at β^{0} if there exists semi-norms Ω^{+}and Ω^{-}(depending on β^{0}) with $\Omega^{-}\left(\beta^{0}\right)=0$ such that for all β

$$
\Omega(\beta) \geq \Omega^{+}(\beta)+\Omega^{-}(\beta)
$$

Definition We say that Ω satisfies the triangle property at β^{0} if there exists semi-norms Ω^{+}and Ω^{-}(depending on β^{0}) such that for all β

$$
\max _{z_{0} \in \partial \Omega\left(\beta^{0}\right)} z^{T}\left(\beta-\beta^{0}\right) \geq \Omega^{-}(\beta)-\Omega^{+}\left(\beta-\beta^{0}\right)
$$

Example 1: group penalty

$$
\begin{aligned}
\Omega(\beta) & :=\sum_{k=1}^{m}\left\|\beta_{G_{k}}\right\|_{2} \\
\Omega_{*}(z) & =\max _{k}\left\|z_{G_{k}}\right\|_{2} .
\end{aligned}
$$

Let $S_{0} \subset \cup_{k \in T_{0}} G_{k}$. Then
$\Omega^{+}(\beta)=\sum_{k \in T_{0}}\left\|\beta_{G_{k}}\right\|_{2}$,

Group LASSO with groups \{1, 2],(3)\}

Unit ball of the group penalty

Norms generated from cones
Let $\mathcal{A} \subset \mathbb{R}_{+}^{p}$ be a convex cone and

$$
\Omega(\beta):=\min _{a \in \mathcal{A},\|a\|_{1}=1} \sqrt{\sum_{j=1}^{p} \frac{\beta_{j}^{2}}{a_{j}}}
$$

Then

$$
\Omega_{*}(z)=\max _{a \in \mathcal{A},\|a\|_{1}=1} \sqrt{\sum_{j=1}^{p} a_{j} z_{j}^{2}}
$$

Suppose $a_{S_{0}} \in \mathcal{A}$ for all $a \in \mathcal{A}$.
Then Ω is weakly decomposable at β^{0}, with

$$
\Omega^{+}(\beta)=\min _{a_{S_{0}} \in \mathcal{A}_{S_{0}},\left\|a_{S_{0}}\right\|_{1}=1} \sqrt{\sum_{j \in S_{0}} \frac{\beta_{j}^{2}}{a_{j}}}
$$

and

$$
\Omega^{-}(\beta)=\min _{a_{-s_{0}} \in \mathcal{A}_{-s_{0}},\left\|a_{-s_{0}}\right\|_{1}=1} \sqrt{\sum_{j \notin S_{0}} \frac{\beta_{j}^{2}}{a_{j}}} .
$$

Example 2: wedge penalty

$$
\mathcal{A}:=\left\{a_{1} \geq a_{2} \geq \cdots\right\}
$$

Then Ω is decomposable at $\beta^{0}=\left(\beta_{1}^{0}, \cdots, \beta_{s_{0}}^{0}, 0, \cdots, 0\right)^{T}$.

Unit ball of the wedge penalty

Example 3: nuclear norm penalty
Let $\beta^{0}=\operatorname{vec}\left(B^{0}\right)$ and

$$
\Omega(\beta)=\|B\|_{\text {nuclear }} .
$$

Then

$$
\Omega_{*}(z)=\Lambda_{\max }(Z)
$$

where $\Lambda_{\max }^{2}(Z)$ is the largest eigenvalue of $Z^{\top} Z$.
Write the SVD of B^{0} as

$$
B^{0}=P_{0} \Lambda^{0} Q_{0}^{T}, \quad P_{0}^{T} P_{0}=I, Q_{0}^{T} Q_{0}=I, \Lambda^{0}=\left(\begin{array}{ccc}
\Lambda_{1}^{0} & & \\
& \ddots & \\
& & \Lambda_{s_{0}}^{0}
\end{array}\right)
$$

Then

$$
\partial \Omega\left(\beta^{0}\right)=\left\{Z=P_{0} Q_{0}^{T}+\left(I-P_{0} P_{0}^{T}\right) W\left(I-Q_{0} Q_{0}^{T}\right): \Lambda_{\max }(W) \leq 1\right\}
$$

We have the triangle property with

$$
\Omega^{+}(B)=\left\|P_{0} P_{0}^{T} B Q_{0} Q_{0}^{T}\right\|_{\text {nuclear }}, \Omega^{-}(B)=\left\|\left(I-P_{0} P_{0}^{T}\right) B\left(I-Q_{0} Q_{0}^{T}\right)\right\|_{\text {nuclear }}
$$

Definition

Suppose Ω is weakly decomposable at β^{0}

- or alternatively has the triangle property at β^{0} -

The effective sparsity with stretching constant $L>0$ is

$$
\hat{\Gamma}\left(L, \beta^{0}\right):=\left(\min \left\{\|X \beta\|_{2}^{2} / n: \Omega^{-}(\beta) \leq L, \Omega^{+}(\beta)=1\right\}\right)^{-1}
$$

Ω-basis pursuit

$$
\beta_{\Omega}^{*}:=\arg \min \left\{\Omega(\beta): X \beta=f^{0}\right\} .
$$

Lemma
Suppose Ω is weakly decomposable at β^{0}.
If $\Gamma\left(1, \beta^{0}\right)<\infty$ we have $\beta_{\Omega}^{*}=\beta^{0}$.
Ω-regularized formulation

$$
\beta_{\Omega, \lambda}:=\arg \min \left\{\left\|X \beta-f^{0}\right\|_{2}^{2} / n+2 \lambda \Omega(\beta)\right\}
$$

Lemma
Suppose Ω is weakly decomposable at β^{0}

- or alternatively has the triangle property at β^{0} -

Then

$$
\left\|X\left(\beta_{\Omega, \lambda}-\beta^{0}\right)\right\|_{2}^{2} / n \leq \hat{\Gamma}\left(1, \beta^{0}\right)^{2} \lambda^{2}
$$

Adding noise leads the requirement $\lambda>\underline{\Omega}_{*}\left(X^{T} \epsilon\right) / n$ where $\underline{\Omega}_{*}$ is the dual norm of $\underline{\Omega}:=\Omega^{+}+\Omega^{-}$

For approximately decomposable β^{0} we have sharp oracle inequalities
Increasing the stretching constant further leads to bounds for the Ω-estimation error.

Adding noise leads the requirement $\lambda>\underline{\Omega}_{*}\left(X^{T} \epsilon\right) / n$ where $\underline{\Omega}_{*}$ is the dual norm of $\underline{\Omega}:=\Omega^{+}+\Omega^{-}$

For approximately decomposable β^{0} we have sharp oracle inequalities
everything as for the Lasso

Adding noise leads the requirement $\lambda>\underline{\Omega}_{*}\left(X^{T} \epsilon\right) / n$ where $\underline{\Omega}_{*}$ is the dual norm of $\underline{\Omega}:=\Omega^{+}+\Omega^{-}$

For approximately decomposable β^{0} we have sharp oracle inequalities Increasing the stretching constant further leads to bounds for the Ω-estimation error.
everything as for the Lasso

Adding noise leads the requirement $\lambda>\underline{\Omega}_{*}\left(X^{T} \epsilon\right) / n$ where $\underline{\Omega}_{*}$ is the dual norm of $\underline{\Omega}:=\Omega^{+}+\Omega^{-}$

For approximately decomposable β^{0} we have sharp oracle inequalities Increasing the stretching constant further leads to bounds for the Ω-estimation error.

> everything as for the Lasso

General loss and norms

Let $R_{n}(\beta), \beta \in \mathbb{R}^{p}$ be some (observable) empirical risk.
Let $R(\beta), \beta \in \mathbb{R}^{p}$ be (unobservable) theoretical risk.
We assume R_{n} and R to be differentiable w.r.t. β. Denote their derivatives as \dot{R}_{n} and \dot{R}.
Ω-penalized empirical risk minimizer

$$
\hat{\beta}:=\arg \min \left\{R_{n}(\beta)+\lambda \Omega(\beta)\right\}
$$

Two point margin condition
There is a strictly convex function G with $G(0)=0$ and a semi-norm τ on \mathbb{R}^{p} such that for all β and β^{\prime} we have

$$
R(\beta)-R\left(\beta^{\prime}\right) \geq \dot{R}\left(\beta^{\prime}\right)^{T}\left(\beta-\beta^{\prime}\right)+G\left(\tau\left(\beta-\beta^{\prime}\right)\right)
$$

Definition The convex conjugate of G is

Two point margin condition
There is a strictly convex function G with $G(0)=0$ and a semi-norm τ on \mathbb{R}^{p} such that for all β and β^{\prime} we have

$$
R(\beta)-R\left(\beta^{\prime}\right) \geq \dot{R}\left(\beta^{\prime}\right)^{T}\left(\beta-\beta^{\prime}\right)+G\left(\tau\left(\beta-\beta^{\prime}\right)\right)
$$

Definition The convex conjugate of G is

$$
H(v)=\sup _{u \geq 0}\{u v-G(u)\}, v \geq 0
$$

Example

$$
G(u)=u^{2} / 2 \Rightarrow H(v)=v^{2} / 2
$$

Definition Let τ be a semi-norm, Ω be a norm and $L>0$ a stretching constant. Assume Ω is weakly decomposable - or has the triangle property - at β. The effective sparsity at β is

$$
\Gamma_{\Omega}(L, \beta, \tau):=\left(\min \left\{\tau\left(\beta^{\prime}\right): \Omega_{\beta}^{-}\left(\beta^{\prime}\right) \leq L, \Omega_{\beta}^{+}\left(\beta^{\prime}\right)=1\right\}\right)^{-1}
$$

Let be given some "target"

$$
\beta=\beta^{+}+\beta^{-}
$$

with

1. Ω weakly decomposable - or having the triangle property - at β^{+}
2. with $\Omega_{\beta^{+}}^{+}\left(\beta^{-}\right)=0$.

Let

$$
\Omega^{+}:=\Omega_{\beta^{+}}^{+}, \Omega^{-}:=\Omega_{\beta^{+}}^{-}, \quad \underline{\Omega}:=\Omega^{+}+\Omega^{-} .
$$

Write the dual norm of $\underline{\Omega}$ as $\underline{\Omega}_{*}$.

Theorem (sharp oracle inequality) Let

$$
\lambda_{\epsilon} \geq \Omega_{*}\left(\dot{R}_{n}(\hat{\beta})-\dot{R}(\hat{\beta})\right)
$$

Take $\lambda>\lambda_{\epsilon}$ and define

$$
\underline{\lambda}:=\lambda-\lambda_{\epsilon}, \bar{\lambda}:=\lambda+\lambda_{\epsilon}+\delta \underline{\lambda}, L:=\frac{\bar{\lambda}}{(1-\delta) \underline{\lambda}} .
$$

Then

$$
\delta \underline{\lambda} \Omega(\hat{\beta}-\beta)+R(\hat{\beta}) \leq R(\beta)+H\left(\bar{\lambda} \Gamma_{\Omega}(L, \beta, \tau)\right)+2 \lambda \Omega\left(\beta^{-}\right) .
$$

Example: matrix completion

Let

$$
Y_{i}=\operatorname{trace}\left(X_{i}^{\top} B^{0}\right)+\epsilon_{i}, i=1, \ldots, n,
$$

where X_{1}, \ldots, X_{n} are i.i.d. $p \times q$ matrices with

$$
\mathbb{P}\left(X_{i}=e_{j} e_{k}^{T}\right)=\frac{1}{p q}(i=1, \ldots, n)
$$

Let $\|\cdot\|_{2}$ be the Fobenius norm, and

$$
R_{n}(B):=-p q \sum_{i=1}^{n} Y_{i} \operatorname{trace}\left(X_{i}^{T} B\right) / n+\frac{1}{2}\|B\|_{2}^{2}
$$

Let

$$
R(B):=\mathbb{E} R_{n}(B)=-\operatorname{trace}\left(B^{T} B^{0}\right)+\frac{1}{2}\|B\|_{2}^{2}=\frac{1}{2}\left\|B-B^{0}\right\|_{2}^{2}-\frac{1}{2}\left\|B^{0}\right\|_{2}^{2}
$$

Then

$$
\dot{R}(B)=\left(B-B^{0}\right)
$$

Checking the two point margin condition We have

$$
\begin{gathered}
R(B)-R\left(B^{\prime}\right)=\frac{1}{2}\left\|B-B^{0}\right\|_{2}^{2}-\frac{1}{2}\left\|B^{\prime}-B^{0}\right\|_{2}^{2} \\
=\frac{1}{2}\left\|B-B^{\prime}\right\|_{2}^{2}+\frac{1}{2}\left\|B^{\prime}-B^{0}\right\|_{2}^{2}+\operatorname{trace}\left(\left(B-B^{\prime}\right)^{T}\left(B^{\prime}-B^{0}\right)\right)-\frac{1}{2}\left\|B^{\prime}-B^{0}\right\|_{2}^{2} \\
=\operatorname{trace}\left(\dot{R}\left(B^{\prime}\right)^{T}\left(B-B^{\prime}\right)\right)+\frac{1}{2}\left\|B-B^{\prime}\right\|_{2}^{2} .
\end{gathered}
$$

So we may take

$$
\tau(B):=\|B\|_{2}, G(u)=u^{2} / 2
$$

Hence

$$
H(v)=v^{2} / 2
$$

We moreover find

$$
\Gamma^{2}\left(L, B,\|\cdot\|_{2}\right) \leq \operatorname{rank}(B)
$$

Let

$$
W_{j, k}:=\left(\sqrt{\frac{p q}{n}} \sum_{i=1}^{n} X_{i, j, k} \epsilon_{i}\right), 1 \leq j \leq p, 1 \leq k \leq q
$$

Theorem [Koltchinskii et al. (2011)] Let

$$
\lambda_{\epsilon} \geq \Lambda_{\max }(W)
$$

Take $\lambda>\lambda_{\epsilon}$ and define

$$
\underline{\lambda}:=\lambda-\lambda_{\epsilon}, \bar{\lambda}:=\lambda+\lambda_{\epsilon}+\delta \underline{\lambda}, L:=\frac{\bar{\lambda}}{(1-\delta) \underline{\lambda}} .
$$

Then
$\delta \underline{\lambda}\|\hat{B}-B\|_{\text {nuclear }}+\frac{1}{2}\left\|\hat{B}-B^{0}\right\|_{2}^{2} \leq \frac{1}{2}\left\|B-B^{0}\right\|_{2}^{2}+\bar{\lambda}^{2} \operatorname{rank}\left(B^{+}\right)+2 \lambda\left\|B^{-}\right\|_{\text {nuclear }}$.

Note Inequality for random matrix $\leadsto \lambda_{\epsilon} \sim \sqrt{p q \log (p q) / n}$.

p-values

As before we consider some empirical risk R_{n}. We use the one step estimator

$$
\hat{b}=\hat{\beta}-\hat{\Theta}^{T} \dot{R}_{n}(\hat{\beta})
$$

where $\hat{\Theta}$ is some approximation of the inverse Fisher information matrix.

Let \hat{W} be a diagonal matrix of weights.

We have

$$
\begin{gathered}
\hat{W}\left(\hat{b}-\beta^{0}\right)=\hat{W}\left(\hat{\beta}-\beta^{0}\right)-\hat{W} \hat{\Theta}^{T} \dot{R}_{n}(\hat{\beta}) \\
=-\underbrace{\hat{W} \hat{\Theta}^{T} \dot{R}_{n}\left(\beta^{0}\right)}_{\text {main term }}+\underbrace{\hat{W}\left(1-\hat{\Theta}^{T} \ddot{R}_{n}(\tilde{\beta})\right)\left(\hat{\beta}-\beta^{0}\right)}_{\text {remainder }}
\end{gathered}
$$

Hence to show: for some surrogate inverse $\hat{\Theta}$ and matrix of weights \hat{W} :

$$
\hat{W}\left(I-\hat{\Theta}^{T} \ddot{R}_{n}(\tilde{\beta})\right) \text { is "small". }
$$

In addition, we want studentization:

$$
\operatorname{diag}\left(\hat{W} \hat{\Theta}^{T} \operatorname{Cov}\left(\dot{R}_{n}\left(\beta^{0}\right)\right) \hat{\Theta} \hat{W}\right) \approx I
$$

P-values using the Lasso

$$
\begin{gathered}
Y=X \beta^{0}+\epsilon \\
R_{n}(\beta):=\frac{1}{2 n}\|Y-X \beta\|_{2}^{2} \\
\dot{R}_{n}(\beta)=-X^{T}(Y-X \beta) / n, \dot{R}_{n}\left(\beta^{0}\right)=-X^{T} \epsilon / n \\
\ddot{R}_{n}(\beta)=X^{\top} X / n=: \hat{\Sigma} .
\end{gathered}
$$

So we need a surrogate inverse for $\hat{\Sigma}$.

Inverting a matrix Σ_{0}

Suppose $\Theta_{0}:=\Sigma_{0}^{-1}$ exists.
Then

$$
\Theta_{0}=\left(\begin{array}{llll}
\theta_{1}^{0} & \theta_{2}^{0} & \cdots & \theta_{p}^{0}
\end{array}\right)
$$

where

$$
\theta_{j}^{0}=\frac{1}{\tau_{j}^{2}}\left(\begin{array}{c}
-\gamma_{1, j} \\
\vdots \\
1 \\
\vdots \\
-\gamma_{p, j}
\end{array}\right) \leftarrow j^{\text {th }} \text { row }
$$

with
$\left\{\gamma_{k, j}\right\}_{k \neq j}$: coefficients of the projection of the $j^{\text {th }}$ variable on all others, τ_{j} : the length of the residual.

Square-root Lasso

$$
\hat{\beta}:=\arg \min _{\beta \in \mathbb{R}^{\rho}}\left\{\|Y-X \beta\|_{2} / \sqrt{n}+\lambda_{0}\|\beta\|_{1}\right\} .
$$

The surrogate inverse

Let $\hat{\gamma}_{j}$ be the square-root Lasso with tuning parameter λ_{\sharp} for the regression of X_{j} on X_{-j}.
Define the residuals

$$
\hat{\tau}_{j}:=\left\|X_{j}-X_{-j} \hat{\gamma}_{j}\right\|_{2} / \sqrt{n}=\left\|X \hat{C}_{j}\right\|_{2} / \sqrt{n} .
$$

Let $\tilde{\tau}_{j}^{2}:=\hat{\tau}_{j}\left(\hat{\tau}_{j}+\lambda_{\sharp}\|\hat{\gamma}\|_{1}\right)$.
Define $\hat{\theta}_{j}:=\hat{C}_{j} / \tilde{\tau}_{j}^{2}$.
Surrogate inverse of the Gram matrix $\hat{\Sigma}:=X^{\top} X / n$:

$$
\hat{\Theta}:=\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{p}\right)
$$

Let

$$
\hat{W}:=\frac{\sqrt{n}}{\hat{\sigma}}\left(\begin{array}{ccc}
\hat{\tau}_{1}+\lambda_{\sharp}\left\|\hat{\gamma}_{1}\right\|_{1} & & \\
& \ddots & \\
& & \hat{\tau}_{1}+\lambda_{\sharp}\left\|\hat{\gamma}_{1}\right\|_{1}
\end{array}\right)
$$

Then

$$
\begin{gathered}
\left\|\hat{W}\left(I-\hat{\Theta}^{T} \hat{\Sigma}\right)\left(\hat{\beta}-\beta^{0}\right)\right\|_{\infty} \\
\leq\left\|\hat{W}\left(I-\hat{\Theta}^{T} \hat{\Sigma}\right)\right\|_{\infty}\left\|\hat{\beta}-\beta^{0}\right\|_{1} \\
\leq \sqrt{n} \lambda_{\sharp}\left\|\hat{\beta}-\beta^{0}\right\|_{1} \hat{\sigma} .
\end{gathered}
$$

Moreover

$$
\operatorname{diag}\left(\hat{W} \hat{\Theta}^{T} \operatorname{Cov}\left(X^{T} \epsilon / n\right) \hat{\Theta} \hat{W}\right)=\frac{\sigma_{0}^{2}}{\hat{\sigma}^{2}} I
$$

Let the de-sparsified Lasso be the one step estimator

$$
\hat{b}:=\hat{\beta}+\hat{\Theta}^{T} \overbrace{X^{T}(Y-X \hat{\beta}) / n}^{-\dot{R}_{n}(\hat{\beta})}
$$

Asymptotic linearity We have

$$
\hat{W}\left(\hat{b}-\beta^{0}\right)=\underbrace{\hat{W} \hat{\Theta}^{T} X^{T} \epsilon / n}_{\text {studentized linear term }}+\mathrm{rem},
$$

where $\|$ rem $\left\|_{\infty} \leq \sqrt{n} \lambda_{\sharp}\right\| \hat{\beta}-\beta^{0} \|_{1} / \hat{\sigma}$.

Conclusion

- One can derive sharp oracle inequalities for empirical risk minimizers penalized by an appropriate norm.
- The choice of the norm depends on the sparsity structure one has in mind.
- Examples include exponential families, support vector machines, trace regression, graphical models , ...
- For certain cases these oracle estimators can serve as initial estimators in a one step procedure.
- The one-step procedure removes the asymptotic bias but yields non-sparse estimators....
- which serve as pivot for asymptotic p-values.

THANK YOU!

