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Introduction




@ System of ordinary differential equations (ODEs) in the standard form

{ x/(t) :f(x(t)at;9)7 re [OvT]v (1)
x(0)=¢,

where x(1),& € R? and 6 € R”.
e x(1;6,&) denotes the solution of (1) for given &, 6.

@ Many processes in science and engineering are modelled by (1).
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Example: The FitzHugh-Nagumo neural spike potential

equations

{ X (1) = e{xi (1) = x1 (1) /3 +x2(1)},
X (1) = —H{x1 (1) —a+bxy(1)}.

@ x; represents the voltage across an axon membrane.
@ xp summarizes outward currents.

Example:

0o {i=—1,5=1. R

0a=02,b=02,¢c=3.
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The problem

Noisy observations of x(z; 6y, &) of some states of the system are available:
yi(ty) = xi(1j:60,80) + &(4j), i=1,....di;j=1,....n.

where 0 <1 <. <¢, <T.
For simplicity, we consider Gaussian errors.

Estimate 6, from the data Y, where Y = (y;(#;));;.

This is inverse problem for the coefficients in a system of ODEs.
If &) is not known it is considered as parameter and estimated as well.
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FhNdata from R package ’CollocInfer’
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Some existing approaches

@ Non-linear least squares (MLE)
@ Smooth and match estimators

© Generalized profiling procedure
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Non-linear least squares

© Numerical solution X(#; 0, &) of the ODE system.
@ Criterion M,(6,&).

ZZIOgP Vi t] ]x,(t],e €));
i=1j=
where p(y;(t;)|Xi(#;;6,&)) is the probability density function of the data.
@ NLS estimator is y/n-consistent and asymptotically efficient.

@ Assumption: the maximum step size of the numerical solver goes to zero.
@ Otherwise NLS is not consistent. [Xue et al., 2010]
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Reference

@ Xue, H.,Miao, H. and Wu, Hulin (2010).

Sieve estimation of constant and time-varying coefficients in nonlinear ordinary
differential equation models by considering both numerical error and measurement error.

Annals of statistics, 38:2351-2387.
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Smooth and match estimator

© Smoother X(¢)
@ Criterion M, (0)

T
M, () :/o % (£) = (3(2), 0) || Tw(r)dr.

The /n-consistency was shown for:
@ regression splines for 0 < g < co. [Brunel et al., 2008]
@ kernel estimator for ¢ = 2. [Gugushvili and Klaassen, 2012]

Asymptotic normality was shown for regression splines for g = 2.
[Brunel et al., 2008]
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Smooth and match estimator: integral criterion

© Smoother X(t)
@ Criterion M,,(0,¢)

V(0.6 = [ 150 ~& ~ [ 100, 0asar

For f(x(t),0) = g(x(1))0, g : R? — R /u-consistency was shown for:
@ local polynomials [Dattner and Klaassen(2013)].

@ certain step function estimator in [Vujacic et al.(2014)].
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Generalized profiling procedure

@ Model based smoother X(t; 8, ), where X = argmin, . J(x).
@ Ciriterion M, (6,¢&)

Inner criterion

J(x ZZlogp Vil i1 8, €)) +7LZW,/ ((0) — £ (x(0),1,0) }2dr,

i=1j=

Outer criterion

dy n

M,(6,8)=—Y"Y logp(yi(t;)[xi(1:6,8)).

i=1j=1

o The estimator is consistent and asymptotically efficient.
[Ramsay et al.(2007)]

@ The only frequentist approach that can handle partially observed systems.
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Summary

The framework:
@ Stochastic or deterministic approximation X of the solution.

@ Criterion function M,,.
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This talk

For simplicity let & be known.
Otherwise, define augmented vector 8* = (6, §).
The framework:

L %(0) = argmin,cy, Toy(x]6),

2. 8y =argming.oM, (6[%(6),Y).

We consider log-likelihood criterion M,,.

Define Ty y such that:

o It yields asymptotically efficient estimator.

@ It can handle partially observed systems.
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Structure of the rest of the presentation

@ Background on regularization theory.

© Applying the regularization theory to ODE problem.

© Asymptotic results.

© Conceptual comparison with the generalized profiling procedure.

Only theory in this talk; no simulation studies.
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1. Background on regularization
theory.
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Well-posedness in the sense of Hadamard

Let F : X — Y where X, Y are linear normed spaces and consider the equation

F(x) =y, ()
xeX,yely.
The problem (2) is well-posed in the sense of Hadamard on (X,Y) if:
@ The solution of (2) exists.
© Itis unique.
@ Itis continuous with respect to y.

The problem (2) is ill-posed on (X, Y) if it is not well-posed.
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Objective functional

Equation
F(x) =y, 3)

can be solved on a set S C X by minimizing objective functional
) = |F(x) =],

on S.
Quasisolution of equation (3) on S C X is any minimizer of J on S.
It is also called pseudo solution or least squares solution.

Remark:
This idea dates back to the beginning of the 19th century (Gauss, Legendre).
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Stabilizing functional and Tikhonov regularization

o Q - stabilizing functional
@ Q incorporates a priori information on the smoothness of the solution x.

@ Qs usually given by a norm or a semi-norm on X.

Tikhonov regularization involves minimization of the Tikhonov functional
Ta(x) =3 (x) + 0 Q(x — xp),

where
@ X 1s trial solution

o «a > 0 is regularization parameter
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Similarity functional and generalized Tikhonov

regularization

@ Similarity functional § incorporates a priori information on values of x.

@ 8 measures the closeness of the solution to this a priori information.

Generalized Tikhonov regularization involves minimization of
Tay(x) =d(x) +0Q(x —x9) +¥8(x),

where v > 0 is the penalty parameter.

e We will call Ty y generalized Tikhonov functional.

e We will call any minimizer of T,y generalized Tikhonov regularizer.
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Finite-dimensional approximation

Numerical minimization - on some finite-dimensional subspace X,, C X.
Minimal assumptions:

Qo DCI C DCQ C...
@ U;_,X,, is dense in X.

Remarks:
o In statistics literature X,,;s are called sieves.
o Finite-dimensional approximation is a form of regularization.

o It is called self regularization or regularization by projection.
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Generalized Tikhonov functional

Tay(x) = J(x) + aQ(x — x0) + ¥8(x).

@ Objective functional .
@ Stabilizing functional Q.
© Similarity functional S.

© Finite-dimensional approximation.
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2. Applying the regularization
theory to ODE problem.
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Is the problem

NO.




Is the problem

ill-posed?

YES.

Even if the initial conditions are known, non-uniqueness can still be
introduced through finite dimensional approximation.
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Finite-dimensional approximation

@ The construction is for fixed 6.

@ We suppress dependence on 0 for notational simplicity.

e Solution of the system belongs to (C'[0,7])".
e X,, C C'[0,T] linear subspace of dimension m with basis {A, ..., hy}.

@ Each component of x is approximated by an element of X,,.

x(t) = kz Buhi(t) = BT (1),
=1

where
o Bi=Bit,---Bim) "
o h(t) = (y(t), .. hu(1))T
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d - objective functional

Consider

for fixed 0.

o Define F(x(-)) =x'(-) =f(x(-),~, 6),
e ODE system is equivalent to the equation F(x) = 0.

The corresponding objective functional is

I0) = [l =f(x,,0) 13-

where

o w=(wp,.. )w,>0forz—l d,

° HXHZW—\/): 1wi Jo 7 (1)dr.
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Q) - stabilizing functional

Here we list two options common in the literature.
Norm in (L,[0, T])¢

Q(x) = 113, = zw, I

Norm in Sobolev space (H?[0,T])¢

Zd: /T 1)}2dr.
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S - similarity functional

The observations Y represent:
@ the data for the problem of the estimation of 6.

@ a priori information for the problem of finding the solution x(z; 6y, &).
We have:

@ The true distribution of the data g.
@ Postulated, a priori distribution of the solution p(-|x(+;0,&)).

@ “Distance” between g and p(-|x(+;0,&)) should be small.
Taking KL divergence yields:

8(x) = KL(g(-); Z Zlogp yi(t)|xi(17)).-

i=1j=
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Ja,y - generalized Tikhonov functional

For fixed 6 the generalized Tikhonov functional is

Toy(x(B)) = I(x(B)) + a(x(B) —x0) + ¥8(x(B)), ©)

where the functionals J, Q and 8 are defined in previous slides.
The regularized solution is found by optimizing (4) over X
This can be achieved by optimizing (4) with respect to 8 over R%":

~

B = argminﬁ cRdm Ta,y(x(ﬁ )

and applying basis expansion X;(1) = Y, B,-khk(t) = th(t).
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Artificial example:smooth and match estimators fit into the

proposed framework

Tay(x) =d(x) + aQ(x —xo) + y8(x).

@ Take trial solution x to be some smoother of the data.

® X = argmin,cyu T 0(x) = X0.

Ma(8) = [ I¥0) 1 G0, 6) ()

Remark:
Similarly, taking trial solution x( to be numerical solution yields NLS.
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3. Asymptotics




The estimator

1. x(6) = argmin, ¢y« Ta y(x]6),

2. 6, =argming.gM,(0[x(0),Y).

We consider log-likelihood criterion M,, and

Result for
Q(x) = |[x[l3,,

carries over without any modification.
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Union of sieves is dense in (C'[0, T])¢

0 w 2 2W
An(975)=\|X0(97§7‘)*WH”VH%(G’&‘)*(317 V‘%“’f"*%
v 2xu 21/

B,(0.6) = 1#(0.6.) v [ 0.6 - | v[$F 0.80- 5

Lemma

Under Assumption 2 of [Qi and Zhao, 2010], there exist a sequence of finite-dimensional
subspaces X, of C [0, T] such that for any compact subset ®¢ of ® and any compact subset =
of E, it holds

lim r, = 0,
n—soo
where
rp = max sup inf An(6,8), sup inf  B,(0,€) ;.
! {(e,g)eeoxzowexmw<0)=53 " (0,€)€0 x Ty VEXn(0)=E " }
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Consistency and asymptotic efficiency

Let Assumptions 1-5 from [Qi and Zhao, 2010] hold. If as n — oo
Qrn—0
Q o,—0
Q 7.—0

then §,, — 6y =op(1).

Tay(x) =d(x) +aQ(x—xp) + ¥8(x).

Theorem (Asymptotic efficiency)

Let Assumptions 1-6 from [Qi and Zhao, 2010] hold. If r, = o(n™1),

o, = o(n=?) and ¥, = o(n=?) as n — o then 6, is asymptotically normal with
the same asymptotic covariance matrix as that of the maximum likelihood
estimation.
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4. Conceptual comparison with
the generalized profiling
procedure.
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Generalized profiling fits into the proposed framework

Inner criterion of the generalized profiling procedure

ZZlogp yi(t)|xi(1;0)) + A Zw,/ {xi(1) ),1,0)}2dr

i=1j=

can be written as

) =2 {186+ = 4T3 0.

Thus, model based smoother X is

~

x = argmin,cya Jo,1/2 (x).
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Smoothing VS Generalized Tikhonov regularization

” For solutions to the dynamic systems, however, the roles of goodness of fit
and 'roughness penalty’ seems more likely reversed, with fidelity to the ODE
the major concern and the ’error distribution’ of the data an afterthought
(Chong Gu - in the discussion section of [Ramsay et al.(2007)]).

In the generalized profiling:

o Fidelity to the ODE term is the penalty.

@ A must approach oo: leads to ill conditioning in the optimization.
In the regularization formulation

o Fidelity to the ODE term is the main term— objective functional.

@ Yy must approach O: no ill conditioning in the optimization.

Generalized Tikhonov regularization for ODEs



Generalized Tikhonov regularizer and its special cases

Parameters Tay(x) x = argmin,c o Ta ()
o>0,v>0 J(x)+aQ(x—xp)+7v8(x) Gen. Tikhonov’s regularizer
oa=0,7y=0 J(x) Ivanov’s quasi solution
oa>0,v=0 J(x) + aQ(x—xp) Tikhonov’s regularizer
oa=0,y>0 J(x) +v8(x) model based smoother
o =-c0,y=0 J(x0)/6(x—xo) trial solution x

Table: The last row should be interpreted as T 0(x) — J(x0)/8(x —x0) as & — oo,
where 6 is the Dirac’s delta function.
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Conclusion

@ Regularization provides a coherent and principled framework for
defining an approximation of the solution of ODE.

@ ODE system is solved in the least square sense.
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