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Introduction
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Motivation

System of ordinary differential equations (ODEs) in the standard form{
x′(t) = f (x(t), t;θ), t ∈ [0,T],
x(0) = ξ ,

(1)

where x(t),ξ ∈ Rd and θ ∈ Rp.

x(t;θ ,ξ ) denotes the solution of (1) for given ξ ,θ .

Many processes in science and engineering are modelled by (1).
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Example: The FitzHugh-Nagumo neural spike potential
equations

{
x′1(t) = c{x1(t)− x1(t)3/3+ x2(t)},
x′2(t) =−

1
c{x1(t)−a+bx2(t)}.

x1 represents the voltage across an axon membrane.
x2 summarizes outward currents.

Example:
ξ1 =−1, ξ2 = 1.

a = 0.2, b = 0.2, c = 3.
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The problem

Noisy observations of x(t;θ0,ξ0) of some states of the system are available:

yi(tj) = xi(tj;θ0,ξ0)+ εi(tj), i = 1, . . . ,d1; j = 1, . . . ,n.

where 0≤ t1 ≤ ·· · ≤ tn ≤ T .
For simplicity, we consider Gaussian errors.

Goal
Estimate θ0 from the data Y, where Y = (yi(ti))ij.

This is inverse problem for the coefficients in a system of ODEs.
If ξ0 is not known it is considered as parameter and estimated as well.
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FhNdata from R package ’CollocInfer’
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Ivan Vujačić (VU) Generalized Tikhonov regularization for ODEs Van Dantzig seminar, March 6, 2014 6 / 47



Some existing approaches

1 Non-linear least squares (MLE)
2 Smooth and match estimators
3 Generalized profiling procedure
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Non-linear least squares

1 Numerical solution x̂(t;θ ,ξ ) of the ODE system.
2 Criterion Mn(θ ,ξ ).

Mn(θ ,ξ ) =−
d1

∑
i=1

n

∑
j=1

logp(yi(tj)|̂xi(tj;θ ,ξ )),

where p(yi(tj)|̂xi(tj;θ ,ξ )) is the probability density function of the data.

NLS estimator is
√

n-consistent and asymptotically efficient.

Assumption: the maximum step size of the numerical solver goes to zero.

Otherwise NLS is not consistent. [Xue et al., 2010]
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Reference

Xue, H.,Miao, H. and Wu, Hulin (2010).
Sieve estimation of constant and time-varying coefficients in nonlinear ordinary
differential equation models by considering both numerical error and measurement error.
Annals of statistics, 38:2351–2387.
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Smooth and match estimator

1 Smoother x̂(t)
2 Criterion Mn(θ)

Mn(θ) =
∫ T

0
‖x̂′(t)− f (x̂(t),θ)‖qw(t)dt.

The
√

n-consistency was shown for:

regression splines for 0 < q≤ ∞. [Brunel et al., 2008]

kernel estimator for q = 2. [Gugushvili and Klaassen, 2012]

Asymptotic normality was shown for regression splines for q = 2.
[Brunel et al., 2008]
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Smooth and match estimator: integral criterion

1 Smoother x̂(t)
2 Criterion Mn(θ ,ξ )

Mn(θ ,ξ ) =
∫ T

0
‖x̂(t)−ξ −

∫ t

0
f (x(t),θ)ds‖2dt.

For f (x(t),θ) = g(x(t))θ , g : Rd→ Rd×p √n-consistency was shown for:

local polynomials [Dattner and Klaassen(2013)].

certain step function estimator in [Vujacic et al.(2014)].
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Generalized profiling procedure

1 Model based smoother x̂(t;θ ,ξ ), where x̂ = argminx∈Xm
J(x).

2 Criterion Mn(θ ,ξ )

Inner criterion

J(x) =−
d1

∑
i=1

n

∑
j=1

logp(yi(tj)|xi(tj;θ ,ξ ))+λ

d

∑
i=1

wi

∫ T

0
{x′i(t)− fi(x(t), t,θ)}2dt,

Outer criterion

Mn(θ ,ξ ) =−
d1

∑
i=1

n

∑
j=1

logp(yi(tj)|̂xi(tj;θ ,ξ )).

The estimator is consistent and asymptotically efficient.
[Ramsay et al.(2007)]

The only frequentist approach that can handle partially observed systems.
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Summary

The framework:

Stochastic or deterministic approximation x̂ of the solution.

Criterion function Mn.
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This talk

For simplicity let ξ0 be known.
Otherwise, define augmented vector θ ∗ = (θ ,ξ ).
The framework:

1. x̂(θ) = argminx∈Xm
Tα,γ(x|θ),

2. θ̂n = argminθ∈ΘMn(θ |̂x(θ),Y).

We consider log-likelihood criterion Mn.

Aim
Define Tα,γ such that:

It yields asymptotically efficient estimator.

It can handle partially observed systems.
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Structure of the rest of the presentation

1 Background on regularization theory.
2 Applying the regularization theory to ODE problem.
3 Asymptotic results.
4 Conceptual comparison with the generalized profiling procedure.

Only theory in this talk; no simulation studies.

Ivan Vujačić (VU) Generalized Tikhonov regularization for ODEs
Van Dantzig seminar, March 6, 2014 18 /

47



1. Background on regularization
theory.
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Ivan Vujačić (VU) Generalized Tikhonov regularization for ODEs
Van Dantzig seminar, March 6, 2014 20 /

47



Well-posedness in the sense of Hadamard

Let F : X→ Y where X,Y are linear normed spaces and consider the equation

F(x) = y, (2)

x ∈ X, y ∈ Y.
The problem (2) is well-posed in the sense of Hadamard on (X,Y) if:

1 The solution of (2) exists.
2 It is unique.
3 It is continuous with respect to y.

The problem (2) is ill-posed on (X,Y) if it is not well-posed.
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Objective functional

Equation
F(x) = y, (3)

can be solved on a set S⊂ X by minimizing objective functional

J(x) = ‖F(x)− y‖2,

on S.
Quasisolution of equation (3) on S⊂ X is any minimizer of J on S.
It is also called pseudo solution or least squares solution.

Remark:
This idea dates back to the beginning of the 19th century (Gauss, Legendre).
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Stabilizing functional and Tikhonov regularization

Ω - stabilizing functional

Ω incorporates a priori information on the smoothness of the solution x.

Ω is usually given by a norm or a semi-norm on X.

Tikhonov regularization involves minimization of the Tikhonov functional

Tα(x) = J(x)+αΩ(x− x0),

where

x0 is trial solution

α ≥ 0 is regularization parameter
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Similarity functional and generalized Tikhonov
regularization

Similarity functional S incorporates a priori information on values of x.

S measures the closeness of the solution to this a priori information.

Generalized Tikhonov regularization involves minimization of

Tα,γ(x) = J(x)+αΩ(x− x0)+ γS(x),

where γ ≥ 0 is the penalty parameter.

We will call Tα,γ generalized Tikhonov functional.

We will call any minimizer of Tα,γ generalized Tikhonov regularizer.
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Finite-dimensional approximation

Numerical minimization - on some finite-dimensional subspace Xm ⊂ X.
Minimal assumptions:

1 X1 ⊂ X2 ⊂ ...

2 ∪∞
m=1Xm is dense in X.

Remarks:

In statistics literature Xms are called sieves.

Finite-dimensional approximation is a form of regularization.

It is called self regularization or regularization by projection.
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Summary

Generalized Tikhonov functional

Tα,γ(x) = J(x)+αΩ(x− x0)+ γS(x).

1 Objective functional J.
2 Stabilizing functional Ω.
3 Similarity functional S.
4 Finite-dimensional approximation.
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2. Applying the regularization
theory to ODE problem.
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Is the problem{
x′(t) = f (x(t), t;θ), t ∈ [0,T],
x(0) = ξ ,

ill-posed?

NO.
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Is the problem

x′(t) = f (x(t), t;θ), t ∈ [0,T],

ill-posed?

YES.

Even if the initial conditions are known, non-uniqueness can still be
introduced through finite dimensional approximation.
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Finite-dimensional approximation

The construction is for fixed θ .

We suppress dependence on θ for notational simplicity.

Solution of the system belongs to (C1[0,T])d.

Xm ⊂ C1[0,T] linear subspace of dimension m with basis {h1, . . . ,hm}.
Each component of x is approximated by an element of Xm.

xi(t) =
m

∑
k=1

βikhk(t) = β
>
i h(t),

where

βi = (βi1, . . . ,βim)
>

h(t) = (h1(t), . . . ,hm(t))>
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J - objective functional

Consider
x′(t) = f (x(t), t;θ), t ∈ [0,T],

for fixed θ .

Define F(x(·)) = x′(·)− f (x(·), ·,θ),
ODE system is equivalent to the equation F(x) = 0d.

The corresponding objective functional is

J(x) = ‖x′− f (x, ·,θ)‖2
2,w.

where

w = (w1, . . . ,wd), wi > 0 for i = 1, . . . ,d,

‖x‖2,w =
√

∑
d
i=1 wi

∫ T
0 x2

i (t)dt.
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Ω - stabilizing functional

Here we list two options common in the literature.
Norm in (L2[0,T])d

Ω(x) = ‖x‖2
2,w =

d

∑
i=1

wi

∫ T

0
x2

i (t)dt.

Norm in Sobolev space (H2[0,T])d

Ω(x) =
d

∑
i=1

vi

∫ T

0
{x′′i (t)}2dt.
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S - similarity functional

The observations Y represent:

the data for the problem of the estimation of θ0.

a priori information for the problem of finding the solution x(t;θ0,ξ0).

We have:

The true distribution of the data g.

Postulated, a priori distribution of the solution p(·|x(·;θ ,ξ )).

”Distance” between g and p(·|x(·;θ ,ξ )) should be small.

Taking KL divergence yields:

S(x) = KL(g(·);p(·|x))≈−
d1

∑
i=1

n

∑
j=1

logp(yi(tj)|xi(tj)).
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Tα,γ - generalized Tikhonov functional

For fixed θ the generalized Tikhonov functional is

Tα,γ(x(β )) = J(x(β ))+αΩ(x(β )− x0)+ γS(x(β )), (4)

where the functionals J, Ω and S are defined in previous slides.
The regularized solution is found by optimizing (4) over Xd

m.
This can be achieved by optimizing (4) with respect to β over Rdm:

β̂ = argminβ∈RdmTα,γ(x(β )),

and applying basis expansion x̂i(t) = ∑
m
k=1 β̂ikhk(t) = β̂>i h(t).
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Artificial example:smooth and match estimators fit into the
proposed framework

Tα,γ(x) = J(x)+αΩ(x− x0)+ γS(x).

Take trial solution x0 to be some smoother of the data.

x̂ = argminx∈Xd
m
T∞,0(x) = x0.

Mn(θ) =
∫ T

0
‖x̂′(t)− f (x̂(t),θ)‖qw(t)dt,

Remark:
Similarly, taking trial solution x0 to be numerical solution yields NLS.
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3. Asymptotics
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The estimator

1. x̂(θ) = argminx∈Xd
m
Tα,γ(x|θ),

2. θ̂n = argminθ∈ΘMn(θ |̂x(θ),Y).

We consider log-likelihood criterion Mn and

Ω(x) =
d

∑
i=1

vi

∫ T

0
{x′′i (t)}2dt.

Result for
Ω(x) = ‖x‖2

2,w

carries over without any modification.
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Union of sieves is dense in (C1[0,T])d

An(θ ,ξ ) = ‖xo(θ ,ξ , ·)−w‖∞∨
∥∥∥∥dxo

dt
(θ ,ξ , ·)− dw

dt

∥∥∥∥
∞

∨
∥∥∥∥d2xo

dt2
(θ ,ξ , ·)− d2w

dt2

∥∥∥∥
∞

Bn(θ ,ξ ) = ‖xu(θ ,ξ , ·)− v‖∞∨
∥∥∥∥dxu

dt
(θ ,ξ , ·)− dv

dt

∥∥∥∥
∞

∨
∥∥∥∥d2xu

dt2
(θ ,ξ , ·)− d2v

dt2

∥∥∥∥
∞

.

Lemma

Under Assumption 2 of [Qi and Zhao, 2010], there exist a sequence of finite-dimensional
subspaces Xn of C1[0,T] such that for any compact subset Θ0 of Θ and any compact subset Ξ0
of Ξ, it holds

lim
n→∞

rn = 0,

where

rn = max
{

sup
(θ ,ξ )∈Θ0×Ξ0

inf
w∈Xn,w(0)=ξ o

0

An(θ ,ξ ), sup
(θ ,ξ )∈Θ0×Ξ0

inf
v∈Xn,v(0)=ξ u

0

Bn(θ ,ξ )
}
.
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Consistency and asymptotic efficiency

Theorem (Consistency)
Let Assumptions 1-5 from [Qi and Zhao, 2010] hold. If as n→ ∞

1 rn→ 0
2 αn→ 0
3 γn→ 0

then θ̂n−θ0 = oP(1).

Tα,γ(x) = J(x)+αΩ(x− x0)+ γS(x).

Theorem (Asymptotic efficiency)

Let Assumptions 1-6 from [Qi and Zhao, 2010] hold. If rn = o(n−1),
αn = o(n−2) and γn = o(n−2) as n→ ∞ then θ̂n is asymptotically normal with
the same asymptotic covariance matrix as that of the maximum likelihood
estimation.
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4. Conceptual comparison with
the generalized profiling

procedure.
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Generalized profiling fits into the proposed framework

Inner criterion of the generalized profiling procedure

J(x) =−
d1

∑
i=1

n

∑
j=1

logp(yi(tj)|xi(tj;θ))+λ

d

∑
i=1

wi

∫ T

0
{x′i(t)− fi(x(t), t,θ)}2dt

can be written as

J(x) = λ

{
1
λ
S(x)+J(x)

}
= λT0,1/λ (x).

Thus, model based smoother x̂ is

x̂ = argminx∈Xd
m
T0,1/λ (x).
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Smoothing VS Generalized Tikhonov regularization

”For solutions to the dynamic systems, however, the roles of goodness of fit
and ’roughness penalty’ seems more likely reversed, with fidelity to the ODE
the major concern and the ’error distribution’ of the data an afterthought
(Chong Gu - in the discussion section of [Ramsay et al.(2007)]).

In the generalized profiling:

Fidelity to the ODE term is the penalty.

λ must approach ∞: leads to ill conditioning in the optimization.

In the regularization formulation

Fidelity to the ODE term is the main term— objective functional.

γ must approach 0: no ill conditioning in the optimization.
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Generalized Tikhonov regularizer and its special cases

Parameters Tα,γ(x) x̂ = argminx∈Xd
m
Tα,γ(x)

α > 0, γ > 0 J(x)+αΩ(x− x0)+ γS(x) Gen. Tikhonov’s regularizer
α = 0, γ = 0 J(x) Ivanov’s quasi solution
α > 0, γ = 0 J(x)+αΩ(x− x0) Tikhonov’s regularizer
α = 0, γ > 0 J(x)+ γS(x) model based smoother
α = ∞, γ = 0 J(x0)/δ (x− x0) trial solution x0

Table: The last row should be interpreted as Tα,0(x)→ J(x0)/δ (x− x0) as α →+∞,
where δ is the Dirac’s delta function.
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Conclusion

Regularization provides a coherent and principled framework for
defining an approximation of the solution of ODE.

ODE system is solved in the least square sense.
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Ivan Vujačić (VU) Generalized Tikhonov regularization for ODEs
Van Dantzig seminar, March 6, 2014 46 /

47



Questions, comments,...
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