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recommender systems (Amazon, Netflix etc.)

Statistical considerations interact with:

1 Computational constraints: (low-order) polynomial-time is essential!

2 Communication/storage constraints: distributed implementations are
often needed

3 Privacy constraints: tension between hiding/sharing data
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1902–1950

Classical questions about minimax risk:

how fast does it decay as a function of sample size n?

dependence on dimensionality, smoothness etc.?

characterization of optimal estimators?
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....to Constrained Minimax Risk

Classical framework imposes no constraints on the choice of estimators θ̂n.

Unbounded memory and computational power.

Provided centralized access to all n samples.

Data is fully revealed: no privacy-preserving properties.

On-going research: statistical minimax with constraints

Computationally-constrained estimators
(e.g., Rigollet & Berthet, 2013; Ma & Wu, 2014; Zhang, W. & Jordan, 2014)

Communication constraints
(e.g., Zhang et al., 2013; Ma et al. 2014; Braverman et al., 2015)

Privacy constraints (e.g., Dwork, 2006; Hardt & Rothblum, 2010; Hall et al., 2011;

Duchi, W. & Jordan, 2013)
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Many sources of data have both statistical utility and privacy concerns.

(a) Personal genome project (b) Privacy breach
Scientific American, August 2013

Question

How to obtain principled tradeoffs between these competing criteria?



Basic model of local privacy

Zn
1

Q(Zn
1 | Xn

1 )X1
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X3

Xn

θ̂

each individual i ∈ {1, 2, . . . , n} has personal data Xi ∼ Pθ∗

conditional distribution Q between private data Xn
1 and public data Zn

1

estimator Zn
1 7→ θ̂ of unknown parameter θ∗.



Local privacy at level α
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Conditional distribution Q is locally α-differentially private if

e−α ≤ sup
z

Q(z | xn
1 )

Q(z | x̄n
1 )

≤ eα for all xn
1 and x̄n

1 such that dHAM(x
n
1 , x̄

n
1 ) = 1.

(Dwork et al., 2006)
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x x

Add α-Laplacian noise (Dwork et al., 2006)

Z = x+W, where W has density ∝ e−α |w|

For all x, x′ ∈ [−1/2, 1/2]:

sup
z∈R

∣∣∣ log Q(z | x)
Q(z | x)

∣∣∣ = α
∣∣∣ sup
z∈R

|z − x| − |z − x|
∣∣∣ ≤ α.
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Choices from past work:

randomized response in survey questions (Warner, 1965)

Laplacian noise (Dwork et al., 2006)

exponential mechanism (McSherry & Talwar, 2007)

Some past work on privacy and estimation:

local differential privacy and PAC learning (Kasiviswanathan et al., 2008)

linear queries over discrete-valued data sets (Hardt & Rothblum, 2010)

global differential privacy and histogram estimators (Hall et al., 2011)

lower bounds for certain 1-D statistics (Chaudhuri & Hsu, 2012)

Questions:

Can we provide a general characterization of trade-offs between α-privacy
and statistical utility?

Can we identify optimal “mechanisms” for privacy?
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Minimax risk with α-privacy

Estimators now depend on privatized samples Zn
1

Mn(α;F) := inf
Q∈Qα︸ ︷︷ ︸

Best α-private channel

inf
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P∈F
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Consider estimation of mean functional θ(P) = E[X] over family

Fk :=
{
distributions P such that E[X] ∈ [−1, 1] and E[|X|k|] ≤ 1

}

For k ≥ 2 and non-private setting, sample mean θ̂ = 1
n

∑n
i=1 Xi achieves rate

1/n.

Theorem

For all k ≥ 2 and α ∈ (0, 1/4], the α-private minimax risk scales as

Mn(α;Fk) ≍ min
{
1,

( 1

α2n

) k−1
k

}
.

Examples:

For two moments k = 2, rate is reduced from parametric 1/n to 1/(α
√
n).

As k → ∞ (roughly bounded random variables), private rate converges to
the parametric one (with a pre-factor of 1/α2).
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1

n

{
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Symmetrized KL divergence

}
- (eα − 1)2 ‖P1 − P0‖2TV︸ ︷︷ ︸

Total variation

Note that
(
eα − 1

)2
- α2 for α ∈ (0, 1/4].
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Ordinary minimax rates depend on number of derivatives β > 1/2 of density f :

Mn

(
F(β)

)
≍

( 1

n

) 2β
2β+1

.

(Ibragimov & Hasminskii, 1978; Stone, 1980)
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Optimal rates for α-private density estimation

Consider density estimation based on α-private views (Z1, . . . , Zn) of original
samples (X1, . . . , Xn).

Theorem (Duchi, W. & Jordan, 2013)

For all privacy levels α ∈ (0, 1/4] and smoothness levels β > 1/2:

Mn

(
α;F(β)

)
≍

( 1

α2n

) 2β
2β+2

can give a simple/explicit scheme that achieves this optimal rate.

contrast with classical rate (1/n)
2β

2β+1 : Penalty for privacy can be
significant!

Example: How many samples N(ǫ) to achieve error ǫ = 0.01 for Lipschitz densities
(β = 1)?

Classical case N ≈ 1, 000 versus Private case N ≈ 10, 000.
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How to achieve a matching upper bound?

Naive approach: Add Laplacian noise directly to samples

Zi = Xi +Wi, with Wi ∼ α
2 e

−α|w|

Transforms problem into non-parametric deconvolution.

Lower bound for this mechanism

For any estimator f̂ based on (Z1, . . . , Zn):

sup
f∗∈F(β)

E[‖f̂ − f∗‖22] %
( 1
n

) 2β
2β+5

Follows from known lower bounds for deconvolution (Carroll & Hall, 1988)
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An optimal mechanism
1 For a given orthonormal basis {φj}∞j=1 of L2[0, 1], individual i computes

ΦD
1 (Xi) := {φ1(Xi), φ2(Xi), . . . , φD(Xi)} for dimension D to be chosen

2 Privatized D-dimensional vector:

Hypercube sampling scheme with E[Zi | Xi] = ΦD
1 (Xi)

3 Statistician can compute noisy versions of D basis expansion coefficients

B̂j =
1

n

n∑

i=1

Zij , and f̂ =
D∑

j=1

B̂jφj

Upper bound

For any D ≥ 1, the privatized density estimate satisfies

E
[
‖f̂ − f∗‖22

]
-

D2

nα2
+

1

D2β



Hypercube sampling: Optimal privacy mechanism

V

1
1+eα

eα

1+eα

Given V = ΦD
1 (X) with ‖V ‖∞ ≤ C,

form D-dimensional random vector

Ṽj =

{
+C with prob. 1

2 +
Vj

2C

−C with prob. 1
2 − Vj

2C .

Draw T ∼ Ber
(

eα

1+eα

)
and set

Z ∼
{
Uni

(
{−C,+C}D | 〈Z, Ṽ 〉 > 0

)
if T = 1

Uni
(
{−C,+C}D | 〈Z, Ṽ 〉 ≤ 0

)
if T = 0
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f1

f2 f3

f4

fM

2δ

Andrey Kolmogorov
1903–1987

Packing number

Given a metric ρ and function class F , a δ-packing is a collection
{f1, . . . , fM} contained in F such that

ρ(f j , fk) > 2δ for all j 6= k.
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From metric entropy to hypothesis testing

f1

f2 f3

f4

fM

2δ

Two-person game:

Nature chooses a random
index J ∈ {1, . . . ,M}
Statistician estimates
density based on n i.i.d.
samples from fJ

Reduction to hypothesis testing

Any estimator f̂ for which ρ(f̂ , fJ ) < δ with high probability can be used to
decode the index J .
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A quantitative data processing inequality

J X Z
Q

packing index J ∈ {1, 2, . . . ,M}
non-private variables (X | J = j) ∼ Pj

mixture distribution P = 1
M

∑M
j=1 Pj .

Theorem (Duchi, W. & Jordan, 2013)

For any non-interactive α-private channel Q, we have

I(Z1, . . . , Zn; J)

n
≤ (eα − 1)2 sup

‖γ‖∞≤1

{ 1

M

M∑

j=1

[ ∫

X

γ(x)
(
dPj(x)− dP(x)

)]2}

︸ ︷︷ ︸
dimension-dependent contraction
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Some papers:

Duchi, W. & Jordan (2013). Local privacy and statistical minimax rates.
http://arxiv.org/abs/1302.3203, February 2013.

W. (2015). Constrained forms of statistical minimax: Computation,
communication, and privacy. Proceedings of the International Congress of

Mathematicians.
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