Beyond Gaussian Approximation:
 Bootstrap in Large Scale Simultaneous Inference

Cun-Hui Zhang, Rutgers University

January 27, 2017
Van Dantzig Seminar, University of Amsterdam
Thanks for the invitation!

Hang Deng

The problem

- Let $X_{i}=\left(X_{i, 1}, \ldots, X_{i, p}\right)^{T}$ be independent vectors in \mathbb{R}^{p},

$$
T_{n}=\max _{j \leq p} \sum_{i=1}^{n}\left(X_{i, j}-\mathbb{E} X_{i, j}\right) / \sqrt{n}
$$

- Let X_{i}^{*} be bootstrapped X_{i},

$$
\begin{gathered}
T_{n}^{*}=\max _{j \leq p} \sum_{i=1}^{n}\left(X_{i, j}^{*}-\mathbb{E}^{*} X_{i, j}^{*}\right) / \sqrt{n}, \\
t_{\alpha}^{*}: \mathbb{P}^{*}\left\{T_{n}^{*} \geq t_{\alpha}^{*}\right\}=\alpha
\end{gathered}
$$

The problem

- Let $X_{i}=\left(X_{i, 1}, \ldots, X_{i, p}\right)^{T}$ be independent vectors in \mathbb{R}^{p},

$$
T_{n}=\max _{j \leq p} \sum_{i=1}^{n}\left(X_{i, j}-\mathbb{E} X_{i, j}\right) / \sqrt{n}
$$

- Let X_{i}^{*} be bootstrapped X_{i},

$$
\begin{gathered}
T_{n}^{*}=\max _{j \leq p} \sum_{i=1}^{n}\left(X_{i, j}^{*}-\mathbb{E}^{*} X_{i, j}^{*}\right) / \sqrt{n}, \\
t_{\alpha}^{*}: \mathbb{P}^{*}\left\{T_{n}^{*} \geq t_{\alpha}^{*}\right\}=\alpha
\end{gathered}
$$

- Under what conditions is the bootstrap consistent,

$$
\left|\mathbb{P}\left\{T_{n} \geq t_{\alpha}^{*}\right\}-\alpha\right|=o_{P}(1) ?
$$

- This consistency in confidence level is a consequence of

$$
\sup _{t}\left|\mathbb{P}\left\{T_{n} \leq t\right\}-\mathbb{P}^{*}\left\{T_{n}^{*} \leq t\right\}\right|=o_{P}(1),
$$

i.e. consistency in the Kolmogorov-Smirnov distance

Motivation, some examples

- The non-Gaussian many means problem, $\mu_{j}=\mathbb{E} \sum_{i=1}^{n} X_{i, j} / n$,

$$
\mathbb{P}\left\{\max _{1 \leq j \leq p}\left|\widehat{\mu}_{j}-\mu_{j}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha
$$

Motivation, some examples

- The non-Gaussian many means problem, $\mu_{j}=\mathbb{E} \sum_{i=1}^{n} X_{i, j} / n$,

$$
\mathbb{P}\left\{\max _{1 \leq j \leq p}\left|\widehat{\mu}_{j}-\mu_{j}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha
$$

- Sure screening in regression (Fan \& Lv, 08)

$$
\begin{gathered}
\mathbb{P}\left\{\max _{1 \leq j \leq p}\left|\widehat{\theta}_{j}-\theta_{j}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha \\
\theta_{j}=\mathbb{E}\left[\boldsymbol{x}_{j}^{T} \boldsymbol{y} / n \mid \boldsymbol{X}\right] \text { or } \theta_{j}=\mathbb{E} \boldsymbol{x}_{j}^{T} \boldsymbol{y} / n
\end{gathered}
$$

Motivation, some examples

- The non-Gaussian many means problem, $\mu_{j}=\mathbb{E} \sum_{i=1}^{n} X_{i, j} / n$,

$$
\mathbb{P}\left\{\max _{1 \leq j \leq p}\left|\widehat{\mu}_{j}-\mu_{j}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha
$$

- Sure screening in regression (Fan \& Lv, 08)

$$
\begin{gathered}
\mathbb{P}\left\{\max _{1 \leq j \leq p}\left|\widehat{\theta}_{j}-\theta_{j}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha \\
\theta_{j}=\mathbb{E}\left[\boldsymbol{x}_{j}^{T} \boldsymbol{y} / n \mid \boldsymbol{X}\right] \text { or } \theta_{j}=\mathbb{E} \boldsymbol{x}_{j}^{T} \boldsymbol{y} / n
\end{gathered}
$$

- Testing the equality of two matrices (Cai et al 13 , Chang et al, 15)

$$
\begin{gathered}
\mathbb{P}\left\{\max _{1 \leq j, k \leq p}\left|\widehat{\theta}_{j, k}-\theta_{j, k}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha \\
\theta_{j, k}=\mathbb{E} \boldsymbol{x}_{j}^{T} \boldsymbol{x}_{k} / n-\mathbb{E} \boldsymbol{y}_{j}^{T} \boldsymbol{y}_{k} / n
\end{gathered}
$$

Motivation, some examples

- The non-Gaussian many means problem, $\mu_{j}=\mathbb{E} \sum_{i=1}^{n} X_{i, j} / n$,

$$
\mathbb{P}\left\{\max _{1 \leq j \leq p}\left|\widehat{\mu}_{j}-\mu_{j}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha
$$

- Sure screening in regression (Fan \& Lv, 08)

$$
\begin{gathered}
\mathbb{P}\left\{\max _{1 \leq j \leq p}\left|\widehat{\theta}_{j}-\theta_{j}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha \\
\theta_{j}=\mathbb{E}\left[\boldsymbol{x}_{j}^{T} \boldsymbol{y} / n \mid \boldsymbol{X}\right] \text { or } \theta_{j}=\mathbb{E} \boldsymbol{x}_{j}^{T} \boldsymbol{y} / n
\end{gathered}
$$

- Testing the equality of two matrices (Cai et al 13, Chang et al, 15)

$$
\begin{gathered}
\mathbb{P}\left\{\max _{1 \leq j, k \leq p}\left|\widehat{\theta}_{j, k}-\theta_{j, k}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha \\
\theta_{j, k}=\mathbb{E} \boldsymbol{x}_{j}^{T} \boldsymbol{x}_{k} / n-\mathbb{E} \boldsymbol{y}_{j}^{T} \boldsymbol{y}_{k} / n
\end{gathered}
$$

- Ridges and density level sets (Chen et al, 15, 16)

Motivation, some examples

- The non-Gaussian many means problem, $\mu_{j}=\mathbb{E} \sum_{i=1}^{n} X_{i, j} / n$,

$$
\mathbb{P}\left\{\max _{1 \leq j \leq p}\left|\widehat{\mu}_{j}-\mu_{j}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha
$$

- Sure screening in regression (Fan \& Lv, 08)

$$
\begin{gathered}
\mathbb{P}\left\{\max _{1 \leq j \leq p}\left|\widehat{\theta}_{j}-\theta_{j}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha \\
\theta_{j}=\mathbb{E}\left[\boldsymbol{x}_{j}^{T} \boldsymbol{y} / n \mid \boldsymbol{X}\right] \text { or } \theta_{j}=\mathbb{E} \boldsymbol{x}_{j}^{T} \boldsymbol{y} / n
\end{gathered}
$$

- Testing the equality of two matrices (Cai et al 13, Chang et al, 15)

$$
\begin{gathered}
\mathbb{P}\left\{\max _{1 \leq j, k \leq p}\left|\widehat{\theta}_{j, k}-\theta_{j, k}\right| \leq t_{\alpha}^{*} / \sqrt{n}\right\} \approx 1-\alpha \\
\theta_{j, k}=\mathbb{E} \boldsymbol{x}_{j}^{T} \boldsymbol{x}_{k} / n-\mathbb{E} \boldsymbol{y}_{j}^{T} \boldsymbol{y}_{k} / n
\end{gathered}
$$

- Ridges and density level sets (Chen et al, 15, 16)
- Simultaneous inference about many regression coefficients via de-biasing the Lasso or PLSE (Z-Zhang, 14; Belloni et al, 14, 15; Cheng-Zhang, 16, Dezeure et al, 16)

Bootstrap methods

- Efron's (79) empirical bootstrap,

$$
\mathbb{P}^{*}\left\{X_{i}^{*} \leftarrow X_{k}-\bar{X}\right\}=\frac{1}{n}, k=1, \ldots, n, i=1, \ldots, n
$$

- Multiplier/wild bootstrap (Wu, 86; Liu, 88; Liu-Singh, 92; Mammen, 93),

$$
X_{i}^{*}=W_{i}\left(X_{i}-\bar{X}\right), \mathbb{E} W_{i}=0, \mathbb{E} W_{i}^{2}=1
$$

- Residual bootstrap in regression (Efron, 79)

Consistency of bootstrap in high-dimension

- Donsker classes: Giné and Zinn (90)

Consistency of bootstrap in high-dimension

- Donsker classes: Giné and Zinn (90)
- $n \gg p^{7 / 2}$ for all convex sets: Nagaev (76), Senatov (80), Sazonov (81), Götze $(91,93)$, Bentkus $(86,03)$

Consistency of bootstrap in high-dimension

- Donsker classes: Giné and Zinn (90)
- $n \gg p^{7 / 2}$ for all convex sets: Nagaev (76), Senatov (80), Sazonov (81), Götze $(91,93)$, Bentkus $(86,03)$
- $n \gg(\log p)^{7}$ for maxima: Chernozhukov et al $(13,14)$

Consistency of bootstrap in high-dimension

- Donsker classes: Giné and Zinn (90)
- $n \gg p^{7 / 2}$ for all convex sets: Nagaev (76), Senatov (80), Sazonov (81), Götze (91, 93), Bentkus $(86,03)$
- $n \gg(\log p)^{7}$ for maxima: Chernozhukov et al $(13,14)$
- Gaussian approximation/second moment match
- Stein $(72,81)$
- Lindeberg (22)

The Stein method: Assume $\mathbb{E} X_{i}=0$. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a smooth function of the sum $x_{1}+\cdots+x_{n}$ and $Y_{i} \sim N\left(0, \mathbb{E} X_{i}^{\otimes 2}\right)$.

- Slepian's (62) smart interpolation: $Z_{i}(t)=\cos (t) X_{i}+\sin (t) Y_{i}$

$$
\mathbb{E} f(\boldsymbol{Y})-\mathbb{E} f(\boldsymbol{X})=\int_{0}^{\pi / 2} \sum_{i=1}^{n} \mathbb{E}\left\langle f^{(1)}(\boldsymbol{Z}(t)), \dot{Z}_{i}(t)\right\rangle d t
$$

The Stein method: Assume $\mathbb{E} X_{i}=0$. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a smooth function of the sum $x_{1}+\cdots+x_{n}$ and $Y_{i} \sim N\left(0, \mathbb{E} X_{i}^{\otimes 2}\right)$.

- Slepian's (62) smart interpolation: $Z_{i}(t)=\cos (t) X_{i}+\sin (t) Y_{i}$

$$
\mathbb{E} f(\boldsymbol{Y})-\mathbb{E} f(\boldsymbol{X})=\int_{0}^{\pi / 2} \sum_{i=1}^{n} \mathbb{E}\left\langle f^{(1)}(\boldsymbol{Z}(t)), \dot{Z}_{i}(t)\right\rangle d t
$$

- Stein's (81) leave-one-out method:

$$
\mathbb{E}\left\langle f^{(1)}(\boldsymbol{Z}(t)), \dot{Z}_{i}(t)\right\rangle=\int_{0}^{1} \mathbb{E}\left\langle f^{(3)}\left(\boldsymbol{Z}_{-i}(t), u Z_{i}(t)\right), Z_{i}^{\otimes 2}(t) \otimes \dot{Z}_{i}(t)\right\rangle d u
$$

$$
\text { due to } \mathbb{E} Z_{i}(t) \otimes \dot{Z}_{i}(t)=\sin (t) \cos (t) \mathbb{E} X_{i}^{\otimes 2}-\sin (t) \cos (t) \mathbb{E} Y_{i}^{\otimes 2}=0
$$

The Stein method: Assume $\mathbb{E} X_{i}=0$. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a smooth function of the sum $x_{1}+\cdots+x_{n}$ and $Y_{i} \sim N\left(0, \mathbb{E} X_{i}^{\otimes 2}\right)$.

- Slepian's (62) smart interpolation: $Z_{i}(t)=\cos (t) X_{i}+\sin (t) Y_{i}$

$$
\mathbb{E} f(\boldsymbol{Y})-\mathbb{E} f(\boldsymbol{X})=\int_{0}^{\pi / 2} \sum_{i=1}^{n} \mathbb{E}\left\langle f^{(1)}(\boldsymbol{Z}(t)), \dot{Z}_{i}(t)\right\rangle d t
$$

- Stein's (81) leave-one-out method:

$$
\mathbb{E}\left\langle f^{(1)}(\boldsymbol{Z}(t)), \dot{Z}_{i}(t)\right\rangle=\int_{0}^{1} \mathbb{E}\left\langle f^{(3)}\left(\boldsymbol{Z}_{-i}(t), u Z_{i}(t)\right), Z_{i}^{\otimes 2}(t) \otimes \dot{Z}_{i}(t)\right\rangle d u
$$

$$
\text { due to } \mathbb{E} Z_{i}(t) \otimes \dot{Z}_{i}(t)=\sin (t) \cos (t) \mathbb{E} X_{i}^{\otimes 2}-\sin (t) \cos (t) \mathbb{E} Y_{i}^{\otimes 2}=0
$$

- However,

$$
\mathbb{E} Z_{i}^{\otimes 2}(t) \otimes \dot{Z}_{i}(t)=\sin (t) \cos ^{2}(t) \mathbb{E} X_{i}^{\otimes 3}-\sin ^{2}(t) \cos (t) \mathbb{E} Y_{i}^{\otimes 3} \neq 0
$$

even when $\mathbb{E} X_{i}^{\otimes 3}=\mathbb{E} Y_{i}^{\otimes 3} \neq 0$

The benefit of third moment match in bootstrap

- Fixed p: Singh (81), Bickel and Freedman (81), Hall (88), Liu (88), Manmen (93)

The benefit of third moment match in bootstrap

- Fixed p: Singh (81), Bickel and Freedman (81), Hall (88), Liu (88), Manmen (93)
- Comparison in the Edgeworth expansion, a refinement of the CLT

The benefit of third moment match in bootstrap

- Fixed p: Singh (81), Bickel and Freedman (81), Hall (88), Liu (88), Manmen (93)
- Comparison in the Edgeworth expansion, a refinement of the CLT
- Large p : We are interested in taking advantage of the third moment match in regimes where the existing theory of Gaussian approximation does not apply

The benefit of third moment match in bootstrap

- Fixed p: Singh (81), Bickel and Freedman (81), Hall (88), Liu (88), Manmen (93)
- Comparison in the Edgeworth expansion, a refinement of the CLT
- Large p : We are interested in taking advantage of the third moment match in regimes where the existing theory of Gaussian approximation does not apply
- The consistency of the bootstrap may depend on the 3rd moment property of X_{i}

The benefit of third moment match in bootstrap

- Fixed p: Singh (81), Bickel and Freedman (81), Hall (88), Liu (88), Manmen (93)
- Comparison in the Edgeworth expansion, a refinement of the CLT
- Large p : We are interested in taking advantage of the third moment match in regimes where the existing theory of Gaussian approximation does not apply
- The consistency of the bootstrap may depend on the 3rd moment property of X_{i}

Consistency and second moment properties in the low-dimensional case

- Athreya (1986), Giné and Zinn (1989): For iid $X_{i} \in \mathbb{R}$, the empirical bootstrap for the mean is consistent if and only if X_{1} is in the domain of attraction of the normal law.

Some simulation results: Coverage probability

Some simulation results: Kolmogorov-Smirnov distance

Some simulation results: the bias

Some more simulation results: Coverage probability

Experiment 2. $(\rho=0.2 \alpha=3.95 \%)$

Experiment 2. $(\rho=0.8 \alpha=3,95 \%)$

Experiment 2. $(\rho=0.2 \alpha=1,95 \%)$

Experiment 2. $(\rho=0.8 \alpha=3,95 \%)$

Some more simulation results: Kolmogorov-Smirnov distance

Lindeberg's approach

- Interpolation: $\boldsymbol{V}_{i}=\left(X_{1}, \ldots, X_{i}, Y_{i+1}, \ldots, Y_{n}\right)$
- Expansion:

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{i=1}^{n} \mathbb{E}\left\{f\left(\boldsymbol{V}_{i}\right)-f\left(\boldsymbol{V}_{i-1}\right)\right\}
$$

Lindeberg's approach

- Interpolation: $\boldsymbol{V}_{i}=\left(X_{1}, \ldots, X_{i}, Y_{i+1}, \ldots, Y_{n}\right)$
- Expansion:

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{i=1}^{n} \mathbb{E}\left\{f\left(\boldsymbol{V}_{i}\right)-f\left(\boldsymbol{V}_{i-1}\right)\right\}
$$

- Leave-one-out: $\boldsymbol{U}_{i}=\left(X_{1}, \ldots, X_{i-1}, 0, Y_{i+1}, \ldots, Y_{n}\right)$
- Taylor expansion

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{m=2}^{m^{*}-1} \frac{1}{m!} \sum_{i=1}^{n}\left\langle\mathbb{E} f^{(m)}\left(\boldsymbol{U}_{i}\right), \mathbb{E} \boldsymbol{X}_{i}^{\otimes m}-\mathbb{E} \boldsymbol{Y}^{\otimes m}\right\rangle+\operatorname{Rem}
$$

Lindeberg's approach

- Interpolation: $\boldsymbol{V}_{i}=\left(X_{1}, \ldots, X_{i}, Y_{i+1}, \ldots, Y_{n}\right)$
- Expansion:

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{i=1}^{n} \mathbb{E}\left\{f\left(\boldsymbol{V}_{i}\right)-f\left(\boldsymbol{V}_{i-1}\right)\right\}
$$

- Leave-one-out: $\boldsymbol{U}_{i}=\left(X_{1}, \ldots, X_{i-1}, 0, Y_{i+1}, \ldots, Y_{n}\right)$
- Taylor expansion
$\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{m=2}^{m^{*}-1} \frac{1}{m!} \sum_{i=1}^{n}\left\langle\mathbb{E} f^{(m)}\left(\boldsymbol{U}_{i}\right), \mathbb{E} X_{i}^{\otimes m}-\mathbb{E} \boldsymbol{Y}^{\otimes m}\right\rangle+\operatorname{Rem}$
- This automatically allows comparison of higher moments, with $m^{*}>3$

Lindeberg's approach

- Interpolation: $\boldsymbol{V}_{i}=\left(X_{1}, \ldots, X_{i}, Y_{i+1}, \ldots, Y_{n}\right)$
- Expansion:

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{i=1}^{n} \mathbb{E}\left\{f\left(\boldsymbol{V}_{i}\right)-f\left(\boldsymbol{V}_{i-1}\right)\right\}
$$

- Leave-one-out: $\boldsymbol{U}_{i}=\left(X_{1}, \ldots, X_{i-1}, 0, Y_{i+1}, \ldots, Y_{n}\right)$
- Taylor expansion

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{m=2}^{m^{*}-1} \frac{1}{m!} \sum_{i=1}^{n}\left\langle\mathbb{E} f^{(m)}\left(\boldsymbol{U}_{i}\right), \mathbb{E} \boldsymbol{X}_{i}^{\otimes m}-\mathbb{E} \boldsymbol{Y}^{\otimes m}\right\rangle+\operatorname{Rem}
$$

- This automatically allows comparison of higher moments, with $m^{*}>3$
- Gaussian approximation (Chatterjee, 06): $m^{*}=3$

Lindeberg's approach

- Interpolation: $\boldsymbol{V}_{i}=\left(X_{1}, \ldots, X_{i}, Y_{i+1}, \ldots, Y_{n}\right)$
- Expansion:

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{i=1}^{n} \mathbb{E}\left\{f\left(\boldsymbol{V}_{i}\right)-f\left(\boldsymbol{V}_{i-1}\right)\right\}
$$

- Leave-one-out: $\boldsymbol{U}_{i}=\left(X_{1}, \ldots, X_{i-1}, 0, Y_{i+1}, \ldots, Y_{n}\right)$
- Taylor expansion

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{m=2}^{m^{*}-1} \frac{1}{m!} \sum_{i=1}^{n}\left\langle\mathbb{E} f^{(m)}\left(\boldsymbol{U}_{i}\right), \mathbb{E} \boldsymbol{X}_{i}^{\otimes m}-\mathbb{E} \boldsymbol{Y}^{\otimes m}\right\rangle+\operatorname{Rem}
$$

- This automatically allows comparison of higher moments, with $m^{*}>3$
- Gaussian approximation (Chatterjee, 06): $m^{*}=3$
- A problem is the dependence of $\mathbb{E} f^{(m)}\left(\boldsymbol{U}_{i}\right)$ on i

Consistency of the multiplier/wild bootstrap: Suppose that $X_{i} \in \mathbb{R}^{p}$ are independent, W_{i} are iid, and $\left\{W_{i}\right\}$ is independent of $\left\{X_{i}\right\}$. Suppose

$$
\mathbb{E} W_{i}=0, \quad \mathbb{E} W_{i}^{2}=\mathbb{E} W_{i}^{3}=1
$$

Let $X_{i}^{*}=W_{i}\left(X_{i}-\bar{X}\right)$. Define

$$
T_{n}=\max _{j \leq p} \sum_{i=1}^{n} \frac{X_{i}-\mathbb{E} X_{i}}{n^{1 / 2}}, \quad T_{n}^{*}=\max _{j \leq p} \sum_{i=1}^{n} \frac{X_{i}^{*}}{n^{1 / 2}}
$$

Then, under 4th moment and certain tail probability conditions,

$$
\left|\mathbb{P}\left\{T_{n} \leq t_{\alpha}^{*}\right\}-\alpha\right| \lesssim\left(\frac{(\log p)^{4} \log \left(1 / \epsilon_{0}\right)}{n}\right)^{1 / 6}+\epsilon_{0}+\left(\frac{\log ^{5} p}{n}\right)^{1 / 5}
$$

and

$$
n \gg \log ^{5} p \Rightarrow \sup _{t}\left|\mathbb{P}\left\{T_{n} \leq t\right\}-\mathbb{P}^{*}\left\{T_{n}^{*} \leq t\right\}\right|=o_{P}(1)
$$

Consistency of bootstrap

- Wild bootstrap with $\mathbb{E} W_{i}^{3}=1$ or $\mathbb{E} X_{i}^{\otimes 3}=0$: Under 4th moment and tail probability conditions,

$$
\left|\mathbb{P}\left\{T_{n} \leq t_{\alpha}^{*}\right\}-\alpha\right| \lesssim\left(\frac{(\log p)^{4} \log \left(1 / \epsilon_{0}\right)}{n}\right)^{1 / 6}+\epsilon_{0}+\left(\frac{\log ^{5} p}{n}\right)^{1 / 5}
$$

Consistency of bootstrap

- Wild bootstrap with $\mathbb{E} W_{i}^{3}=1$ or $\mathbb{E} X_{i}^{\otimes 3}=0$: Under 4th moment and tail probability conditions,

$$
\left|\mathbb{P}\left\{T_{n} \leq t_{\alpha}^{*}\right\}-\alpha\right| \lesssim\left(\frac{(\log p)^{4} \log \left(1 / \epsilon_{0}\right)}{n}\right)^{1 / 6}+\epsilon_{0}+\left(\frac{\log ^{5} p}{n}\right)^{1 / 5}
$$

- Empirical bootstrap: Under 4th moment and tail probability conditions,

$$
n \gg \log ^{5} p \Rightarrow \sup _{t}\left|\mathbb{P}\left\{T_{n} \leq t\right\}-\mathbb{P}^{*}\left\{T_{n}^{*} \leq t\right\}\right|=o_{P}(1)
$$

Consistency of bootstrap

- Wild bootstrap with $\mathbb{E} W_{i}^{3}=1$ or $\mathbb{E} X_{i}^{\otimes 3}=0$: Under 4th moment and tail probability conditions,

$$
\left|\mathbb{P}\left\{T_{n} \leq t_{\alpha}^{*}\right\}-\alpha\right| \lesssim\left(\frac{(\log p)^{4} \log \left(1 / \epsilon_{0}\right)}{n}\right)^{1 / 6}+\epsilon_{0}+\left(\frac{\log ^{5} p}{n}\right)^{1 / 5}
$$

- Empirical bootstrap: Under 4th moment and tail probability conditions,

$$
n \gg \log ^{5} p \Rightarrow \sup _{t}\left|\mathbb{P}\left\{T_{n} \leq t\right\}-\mathbb{P}^{*}\left\{T_{n}^{*} \leq t\right\}\right|=o_{P}(1)
$$

- Gaussian wild bootstrap: Under 3rd moment and tail probability conditions,

$$
\sup _{t}\left|\mathbb{P}\left\{T_{n} \leq t\right\}-\mathbb{P}^{*}\left\{T_{n}^{*} \leq t\right\}\right| \lesssim\left(\frac{\log ^{7} p}{n}\right)^{1 / 6}
$$

A general comparison theorem: Let

$$
\mu^{(m)}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} X_{i}^{\otimes m}, \quad \nu^{(m)}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} Y_{i}^{\otimes m}
$$

Under certain smoothness and permutation invariance conditions on f,

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{m=2}^{m^{*}-1} \frac{n}{m!}\left\langle F^{(m)}, \mu^{(m)}-\nu^{(m)}\right\rangle+\operatorname{Rem}
$$

with $m^{*} \geq 2$

$$
|\operatorname{Rem}| \leq C\left\langle F_{\max }^{\left(m^{*}\right)}, \mu_{\max }^{\left(m^{*}\right)}+\nu_{\max }^{\left(m^{*}\right)}\right\rangle
$$

where $F^{(m)}$ and $F_{\max }^{(m)}$ are respectively weighted averages of $\mathbb{E} f^{(m)}\left(Z_{1}, \ldots, Z_{n}\right)$ and $\mathbb{E}\left|f^{(m)}\left(Z_{1}, \ldots, Z_{n}\right)\right|$ with $Z_{i}=X_{i}$ or Y_{i}, and for certain $\|\cdot\|$ and u_{n}

$$
\mu_{\max }^{(m)}=\frac{\mathbb{E} \exp \left(\left\|X_{i}\right\| / u_{n}\right)\left|X_{i, j}\right|^{\otimes m}}{\mathbb{E} \exp \left(-\left\|X_{i}\right\| / u_{n}\right)}, \quad \nu_{\max }^{(m)}=\cdots
$$

Lindeberg's approach

- Interpolation: $\boldsymbol{V}_{i}=\left(X_{1}, \ldots, X_{i}, Y_{i+1}, \ldots, Y_{n}\right)$
- Expansion:

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{i=1}^{n} \mathbb{E}\left\{f\left(\boldsymbol{V}_{i}\right)-f\left(\boldsymbol{V}_{i-1}\right)\right\}
$$

- Leave-one-out: $\boldsymbol{U}_{i}=\left(X_{1}, \ldots, X_{i-1}, 0, Y_{i+1}, \ldots, Y_{n}\right)$
- Taylor expansion:

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{m=2}^{m^{*}-1} \frac{1}{m!} \sum_{i=1}^{n}\left\langle\mathbb{E} f^{(m)}\left(\boldsymbol{U}_{i}\right), \mathbb{E} \boldsymbol{X}_{i}^{\otimes m}-\mathbb{E} \boldsymbol{Y}^{\otimes m}\right\rangle+\operatorname{Rem}
$$

- Comparison theory:

$$
\mathbb{E} f(\boldsymbol{X})-\mathbb{E} f(\boldsymbol{Y})=\sum_{m=2}^{m^{*}-1} \frac{n}{m!}\left\langle F^{(m)}, \mu^{(m)}-\nu^{(m)}\right\rangle+\operatorname{Rem}
$$

A comparison theorem for maxima of sums

- With $F_{\beta}(x)=\beta^{-1} \log \left(\sum_{j=1}^{p} e^{\beta x_{j}}\right)$ being a "smooth max function",

$$
\|x\|_{\infty} \leq F_{\beta}(x) \leq\|x\|_{\infty}+\frac{\log p}{\beta}, \quad\left\|F_{\beta}^{(m)}\right\|_{1} \leq C_{m} \beta^{m-1}
$$

- For all smooth functions h and constants $b_{n}>0$ and $\beta_{n} \geq b_{n} \log p$,

$$
\begin{aligned}
& \left|\mathbb{E} h\left(b_{n} F_{\beta_{n}}\left(\sum_{i=1}^{n} X_{i} / \sqrt{n}\right)\right)-\mathbb{E} h\left(b_{n} F_{\beta_{n}}\left(\sum_{i=1}^{n} Y_{i} / \sqrt{n}\right)\right)\right| \\
\lesssim & \sum_{m=2}^{m^{*}-1} \frac{b_{n} \beta_{n}^{m-1}}{n^{m / 2-1}}\left\|\mu^{(m)}-\nu^{(m)}\right\|_{\infty}+\frac{b_{n} \beta_{n}^{m^{*}-1}}{n^{m^{*} / 2-1}}\left\|\mu_{\max }^{\left(m^{*}\right)}+\nu_{\max }^{\left(m^{*}\right)}\right\|_{\infty}
\end{aligned}
$$

where $m^{*} \geq 2$ and

$$
\mu_{\max }^{(m)}=\frac{\mathbb{E} \exp \left(\left\|X_{i}\right\|_{\infty} \beta_{n} / n^{1 / 2}\right)\left|X_{i, j}\right|^{\otimes m}}{\mathbb{E} \exp \left(-\left\|X_{i}\right\|_{\infty} \beta_{n} / n^{1 / 2}\right)}, \quad \nu_{\max }^{(m)}=\cdots
$$

A comparison theorem for maxima of sums

- With $F_{\beta}(x)=\beta^{-1} \log \left(\sum_{j=1}^{p} e^{\beta x_{j}}\right)$ being a "smooth max function",

$$
\|x\|_{\infty} \leq F_{\beta}(x) \leq\|x\|_{\infty}+\frac{\log p}{\beta}, \quad\left\|F_{\beta}^{(m)}\right\|_{1} \leq C_{m} \beta^{m-1}
$$

- For all smooth functions h and constants $b_{n}>0$ and $\beta_{n} \geq b_{n} \log p$,

$$
\begin{aligned}
& \left|\mathbb{E} h\left(b_{n} F_{\beta_{n}}\left(\sum_{i=1}^{n} X_{i} / \sqrt{n}\right)\right)-\mathbb{E} h\left(b_{n} F_{\beta_{n}}\left(\sum_{i=1}^{n} Y_{i} / \sqrt{n}\right)\right)\right| \\
\lesssim & \sum_{m=2}^{m^{*}-1} \frac{b_{n} \beta_{n}^{m-1}}{n^{m / 2-1}}\left\|\mu^{(m)}-\nu^{(m)}\right\|_{\infty}+\frac{b_{n} \beta_{n}^{m^{*}-1}}{n^{m^{*} / 2-1}}\left\|\mu_{\max }^{\left(m^{*}\right)}+\nu_{\max }^{\left(m^{*}\right)}\right\|_{\infty}
\end{aligned}
$$

where $m^{*} \geq 2$ and

$$
\mu_{\max }^{(m)}=\frac{\mathbb{E} \exp \left(\left\|X_{i}\right\|_{\infty} \beta_{n} / n^{1 / 2}\right)\left|X_{i, j}\right|^{\otimes m}}{\mathbb{E} \exp \left(-\left\|X_{i}\right\|_{\infty} \beta_{n} / n^{1 / 2}\right)}, \quad \nu_{\max }^{(m)}=\cdots
$$

- What is the effect of the approximation by F_{β} on tail probability? $b_{n}=$?

An anti-concentration theorem:

- Recall that

$$
T_{n}=\max _{j \leq p} \sum_{i=1}^{n} X_{i, j} / \sqrt{n}
$$

- Under certain moment and tail probability conditions,

$$
\max _{t} \mathbb{P}\left\{t \leq T_{n} \leq t+\eta\right\} \lesssim \eta \mathbb{E} T_{n}+\left(\mathbb{E} T_{n}\right)^{4}(\log p)^{3} / n
$$

An anti-concentration theorem:

- Recall that

$$
T_{n}=\max _{j \leq p} \sum_{i=1}^{n} X_{i, j} / \sqrt{n}
$$

- Under certain moment and tail probability conditions,

$$
\max _{t} \mathbb{P}\left\{t \leq T_{n} \leq t+\eta\right\} \lesssim \eta \mathbb{E} T_{n}+\left(\mathbb{E} T_{n}\right)^{4}(\log p)^{3} / n
$$

- A bound for the modulus of continuity of the distribution function of T_{n}

An anti-concentration theorem:

- Recall that

$$
T_{n}=\max _{j \leq p} \sum_{i=1}^{n} X_{i, j} / \sqrt{n}
$$

- Under certain moment and tail probability conditions,

$$
\max _{t} \mathbb{P}\left\{t \leq T_{n} \leq t+\eta\right\} \lesssim \eta \mathbb{E} T_{n}+\left(\mathbb{E} T_{n}\right)^{4}(\log p)^{3} / n
$$

- A bound for the modulus of continuity of the distribution function of T_{n}
- Chernozhukov et al (13): anti-concentration for Gaussian \boldsymbol{X}

Ruben Dezeure

Peter Bühlmann

De-biasing regularized estimators (Dezeure-Bühlmann-Z, 16)

- Linear model:

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

- De-biasing/LDPE (Z14): e.g. $\widehat{\boldsymbol{\beta}}^{(\text {init })}=\widehat{\boldsymbol{\beta}}^{(\text {lasso })}$:

$$
\widehat{\beta}_{j}=\widehat{\beta}_{j}^{\text {(nit) }}+\left(\boldsymbol{Z}_{j}^{\top} \boldsymbol{X}_{j}\right)^{-1} \boldsymbol{Z}_{j}^{\top}\left(\boldsymbol{Y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}^{\text {(init) }}\right)
$$

De-biasing regularized estimators (Dezeure-Bühlmann-Z, 16)

- Linear model:

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

- De-biasing/LDPE (Z14): e.g. $\widehat{\boldsymbol{\beta}}^{\text {(init) }}=\widehat{\boldsymbol{\beta}}^{(\text {lasso) }}$:

$$
\widehat{\beta}_{j}=\widehat{\beta}_{j}^{(\text {init })}+\left(\boldsymbol{Z}_{j}^{\top} \boldsymbol{X}_{j}\right)^{-1} \boldsymbol{Z}_{j}^{\top}\left(\boldsymbol{Y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}^{(\text {init })}\right)
$$

- Asymptotic theory:

$$
\begin{aligned}
& \widehat{\beta}_{j}-\beta_{j}=\left(\boldsymbol{Z}_{j}^{\top} \boldsymbol{X}_{j}\right)^{-1}\left\{\boldsymbol{Z}_{j}^{\top} \boldsymbol{\varepsilon}-\sum_{k \neq j} \boldsymbol{Z}_{j}^{\top} \boldsymbol{X}_{k}\left(\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right)_{k}\right\} \approx N\left(0, \frac{\sigma^{2}}{\left\|\boldsymbol{Z}_{j}\right\|_{2}^{2}}\right) \\
& \text { - } \widehat{\varepsilon}=\boldsymbol{Y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}^{(\text {init })}, \widehat{\boldsymbol{\varepsilon}}_{\text {cent }}=(\widehat{\boldsymbol{\varepsilon}})_{\text {cent }} \\
& \text { - } \widehat{\text { s.e. }} \boldsymbol{j}=\left(\boldsymbol{Z}_{j}^{\top} \boldsymbol{X}_{j}\right)^{-1}\left\|\boldsymbol{Z}_{j}\right\|_{2}\left\|\widehat{\varepsilon}_{\text {cent }}\right\|_{2} / \sqrt{n} \\
& \text { - } T_{j}=\left(\widehat{\beta}_{j}-\beta_{j}\right) / \widehat{\text { s.e. }} . j \\
& \text { - } \widehat{\text { s.e. }} \text { j,robust }=\left(\boldsymbol{Z}_{j}^{\top} \boldsymbol{X}_{j}\right)^{-1}\left\|\left(\boldsymbol{Z}_{j} \circ \widehat{\boldsymbol{\varepsilon}}\right)_{\text {cent }}\right\|_{2} \text { for heteroscedastic } \boldsymbol{\varepsilon} \\
& \text { - } T_{j, \text { robust }}=\left(\widehat{\beta}_{j}-\beta_{j}\right) / \widehat{\text { s.e. }} . j, \text { robust }
\end{aligned}
$$

Bootstrap methods, a summary

- Residual bootstrap
- ε^{*} iid from elements of $\widehat{\boldsymbol{\varepsilon}}_{\text {cent }}=\left(\boldsymbol{Y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}^{(\text {init })}\right)_{\text {cent }}$
- $\boldsymbol{Y}^{*}=\boldsymbol{X} \widehat{\boldsymbol{\beta}}^{(\text {init })}+\boldsymbol{\varepsilon}^{*}$
- The plug-in estimates of T_{j}^{*} and $T_{j, \text { robust }}^{*}$ based on $\left(\boldsymbol{X}, \boldsymbol{Y}^{*}, \boldsymbol{Z}_{j}\right)$
- Wild bootstrap
- Draw iid W_{i} with $\mathbb{E} W_{i}=0$ and $\mathbb{E} W_{i}^{2}=\mathbb{E} W_{i}^{3}=1$
- $\boldsymbol{Y}^{*}=\boldsymbol{X} \widehat{\boldsymbol{\beta}}^{(\text {init })}+\boldsymbol{W} \circ \widehat{\boldsymbol{\varepsilon}}_{\text {cent }}$
- The plug-in estimates of \boldsymbol{T}_{j}^{*} and $T_{j, \text { robust }}^{*}$ based on $\left(\boldsymbol{X}, \boldsymbol{Y}^{*}, \boldsymbol{Z}_{j}\right)$
- The xyz-paired bootstrap
- $\widehat{\boldsymbol{X}} \perp \widehat{\varepsilon}_{\text {cent }}, \widehat{\boldsymbol{Y}}=\widehat{\boldsymbol{X}} \widehat{\boldsymbol{\beta}}^{(\text {init })}+\widehat{\boldsymbol{\varepsilon}}_{\text {cent }}, \widehat{\boldsymbol{Z}} \perp \widehat{\boldsymbol{\varepsilon}}_{\text {cent }}$
- $\left(\boldsymbol{X}^{*}, \boldsymbol{Y}^{*}, \boldsymbol{Z}^{*}\right)$: iid sample of rows of $(\widehat{\boldsymbol{X}}, \widehat{\boldsymbol{Y}}, \widehat{\boldsymbol{Z}})$
- The plug-in estimates of T_{j}^{*} and $T_{j, \text { robust }}^{*}$ based on $\left(\boldsymbol{X}^{*}, \boldsymbol{Y}^{*}, \boldsymbol{Z}_{j}^{*}\right)$
- No re-computation of \boldsymbol{Z}^{*} in bootstrap replications

Application of the new bootstrap theory to de-biased PLSE

 Theoretical assumptions for simultaneous inference of $\beta_{j}, j \in G$:- (A1) $\|\boldsymbol{X}\|_{\max } \leq C$
- (A2): ε_{i} independent, $\mathbb{E} \varepsilon_{i}=0, \mathbb{E} \varepsilon_{i}^{2}=\sigma_{i}^{2} \geq L, \mathbb{E}\left|\varepsilon_{i}\right|^{2+\delta} \leq C$
- (A3): $\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1}=O_{P}(1) / \sqrt{(\log p) \log (1+|G|)}$
- (A4) $\left\|\widehat{\boldsymbol{\beta}}^{* \text { (init) }}-\widehat{\boldsymbol{\beta}}^{(\text {init })}\right\|_{1}=o_{P^{*}}(1) / \sqrt{(\log p) \log (1+|G|)}$ in probability
- (A5): $\left\|\boldsymbol{Z}_{G}^{\top} \boldsymbol{X}_{-j} / n\right\|_{\max } \lesssim \sqrt{(\log p) / n},\left\|\boldsymbol{Z}_{j}\right\|_{2}^{2} / n \geq L_{z},\left\|\boldsymbol{Z}_{j}\right\|_{2+\delta}^{2+\delta} \ll\left\|\boldsymbol{Z}_{j}\right\|_{2}^{2+\delta}$
- (A6) $\left\|\boldsymbol{Z}_{G}\right\|_{\max } \leq K, \delta=2, \log (|G|)=o\left(n^{1 / 5}\right)$

Application of the new bootstrap theory to de-biased PLSE

Theoretical assumptions for simultaneous inference of $\beta_{j}, j \in G$:

- (A1) $\|\boldsymbol{X}\|_{\max } \leq C$
- (A2): ε_{i} independent, $\mathbb{E} \varepsilon_{i}=0, \mathbb{E} \varepsilon_{i}^{2}=\sigma_{i}^{2} \geq L, \mathbb{E}\left|\varepsilon_{i}\right|^{2+\delta} \leq C$
- (A3): $\left\|\widehat{\boldsymbol{\beta}}^{(\text {init })}-\boldsymbol{\beta}\right\|_{1}=O_{P}(1) / \sqrt{(\log p) \log (1+|G|)}$
- (A4) $\left\|\widehat{\boldsymbol{\beta}}^{* \text { (init) }}-\widehat{\boldsymbol{\beta}}^{(\text {init })}\right\|_{1}=o_{P^{*}}(1) / \sqrt{(\log p) \log (1+|G|)}$ in probability
- (A5): $\left\|\boldsymbol{Z}_{G}^{\top} \boldsymbol{X}_{-j} / n\right\|_{\max } \lesssim \sqrt{(\log p) / n},\left\|\boldsymbol{Z}_{j}\right\|_{2}^{2} / n \geq L_{z},\left\|\boldsymbol{Z}_{j}\right\|_{2+\delta}^{2+\delta} \ll\left\|\boldsymbol{Z}_{j}\right\|_{2}^{2+\delta}$
- (A6) $\left\|\boldsymbol{Z}_{G}\right\|_{\max } \leq K, \delta=2, \log (|G|)=o\left(n^{1 / 5}\right)$

For proper PLSE as $\widehat{\boldsymbol{\beta}}^{(\text {init })}$ and under regularity conditions on \boldsymbol{X} (RE or weaker)

- (A1) and (A2) imply $\left\|\boldsymbol{X}^{T} \varepsilon / n\right\|_{\infty}=O_{P}(1) \sqrt{(\log p) / n}$
- (A3) and (A4) hold when $n \gg(s \log p)^{2} \log (1+|G|)$
- (A5) and (A6,1st) hold if \boldsymbol{X} has iid rows with $\max _{j \in G}\left\|\left(\boldsymbol{\Sigma}^{-1}\right)_{j, *}\right\|_{1}=O(1)$

Consistency of the residual bootstrap

- Homoscedastic case: $\mathbb{E} \varepsilon_{i}^{2}=\sigma^{2}$ for all $i \leq n$
- Suppose conditions (A1)-(A5) holds. If $|G|=O(1)$, then

$$
\sup _{t_{j}, j \in G}\left|\mathbb{P}^{*}\left\{T_{j}^{*} \leq t_{j}, j \in G\right\}-\mathbb{P}\left\{T_{j} \leq t_{j}, j \in G\right\}\right|=o_{P}(1)
$$

with $T_{j} \rightarrow N(0,1)$ for each $j \in G$

- If in addition (A6) holds, then

$$
\sup _{t}\left|\mathbb{P}^{*}\left\{\max _{j \in G} h\left(T_{j}^{*}\right) \leq t\right\}-\mathbb{P}\left\{\max _{j \in G} h\left(T_{j}\right) \leq t\right\}\right|=o_{P}(1)
$$

for $h(t)=t, h(t)=-t$ or $h(t)=|t|$

- Heteroscedastic case: Suppose (A1)-(A5). Then,

$$
\sup _{t}\left|\mathbb{P}^{*}\left\{T_{j, \text { robust }}^{*} \leq t\right\}-\mathbb{P}\left\{T_{j, \text { robust }} \leq t\right\}\right|=o_{P}(1)
$$

with $T_{j, \text { robust }} \rightarrow N(0,1)$ for each $j \in G$. However,

$$
\operatorname{Cov}^{*}\left(\boldsymbol{Z}_{j}^{T} \varepsilon^{*}, \boldsymbol{Z}_{k}^{T} \varepsilon^{*}\right) \not \approx \operatorname{Cov}\left(\boldsymbol{Z}_{j}^{T} \varepsilon, \boldsymbol{Z}_{k}^{T} \varepsilon\right)
$$

Consistency of the wild bootstrap and xyz-paired bootstrap

- Suppose conditions (A1)-(A5) holds. If $|G|=O(1)$, then

$$
\begin{aligned}
& \sup _{t_{j}, j \in G}\left|\mathbb{P}^{*}\left\{T_{j, \text { robust }}^{*} \leq t_{j}, j \in G\right\}-\mathbb{P}\left\{T_{j, \text { robust }} \leq t_{j}, j \in G\right\}\right|=o_{P}(1) \\
& \text { with } T_{j, \text { robust }} \rightarrow N(0,1) \text { for each } j \in G
\end{aligned}
$$

- If in addition (A6) holds and $\log p \ll n^{1 / 2}$, then

$$
\begin{aligned}
& \sup _{t}\left|\mathbb{P}^{*}\left\{\max _{j \in G} h\left(T_{j, \text { robust }}^{*}\right) \leq t\right\}-\mathbb{P}\left\{\max _{j \in G} h\left(T_{j, \text { robust }}\right) \leq t\right\}\right|=o_{P}(1) \\
& \text { for } h(t)=t, h(t)=-t \text { or } h(t)=|t|
\end{aligned}
$$

Consistency of the wild bootstrap and xyz-paired bootstrap

- Suppose conditions (A1)-(A5) holds. If $|G|=O(1)$, then

$$
\begin{aligned}
& \sup _{t_{j}, j \in G}\left|\mathbb{P}^{*}\left\{T_{j, \text { robust }}^{*} \leq t_{j}, j \in G\right\}-\mathbb{P}\left\{T_{j, \text { robust }} \leq t_{j}, j \in G\right\}\right|=o_{P}(1) \\
& \text { with } T_{j, \text { robust }} \rightarrow N(0,1) \text { for each } j \in G
\end{aligned}
$$

- If in addition (A6) holds and $\log p \ll n^{1 / 2}$, then

$$
\begin{aligned}
& \sup _{t}\left|\mathbb{P}^{*}\left\{\max _{j \in G} h\left(T_{j, \text { robust }}^{*}\right) \leq t\right\}-\mathbb{P}\left\{\max _{j \in G} h\left(T_{j, \text { robust }}\right) \leq t\right\}\right|=o_{P}(1) \\
& \text { for } h(t)=t, h(t)=-t \text { or } h(t)=|t|
\end{aligned}
$$

Remark: The theorem is applicable in the heteroscedastic case

$$
\operatorname{Cov}^{*}\left(\boldsymbol{Z}_{j}^{T} \varepsilon^{*}, \boldsymbol{Z}_{k}^{T} \varepsilon^{*}\right) \approx \operatorname{Cov}\left(\boldsymbol{Z}_{j}^{T} \varepsilon, \boldsymbol{Z}_{k}^{T} \varepsilon\right)
$$

Some simulation results

Perfect Method

Figure: Histogram of the coverage probabilities of two sided 95\% confidence intervals for 500 parameters. It illustrates how the results look like for a perfectly correct method for creating confidence intervals and one uses only 100 realizations to compute the probabilities.

De-sparsified Lasso

Figure: Histograms of the coverage probabilities of two-sided 95% confidence intervals for all 500 parameters in a linear model ($n=100, p=500$), computed from 100 independent replications. Perfect performance would look like Figure 1. The fixed design matrix is of Toeplitz type, the single coefficient vector of type $U(-2,2)$ and homoscedastic Gaussian errors. The original estimator has more over-coverage and under-coverage than the bootstrapped estimator. The RLDPE estimator has little under-coverage, like the bootstrapped estimator, but it has too high coverage probabilities overall. The ZC approach to bootstrapping, which only bootstraps the linearized part of the estimator, doesn't show any improvements over the original de-sparsified Lasso.

de-sparsified Lasso

Figure: Boxplot of the familywise error rate and the power for multiple testing for the de-sparsified Lasso. The target is controlling the FWER at level 0.05 , highlighted by a red-dotted horizontal line. Two different approaches for multiple testing correction are compared, Westfall-Young (WY) and Bonferroni-Holm (BH). For Bonferroni-Holm, we make the distinction between the original method and the RLDPE approach. 300 linear models are investigated in total, where 50 Toeplitz design matrices are combined with 50 coefficient vectors for each of the 6 types $U(0,2), U(0,4), U(-2,2)$, fixed 1 , fixed 2 , fixed 10 . The variables belonging to the active set are chosen randomly. The errors in the linear model were chosen to be homoscedastic Gaussian. Each of the models has a data point for the error rate and the power in the boxplot. The error rate and power probabilities were calculated by averaging over 100 realizations.

De-sparsified Lasso

Original

Figure: The same plot as Figure 2 but for heteroscedastic non-Gaussian errors and without signal. The robust standard error estimation clearly outperforms the non-robust version. There seems to be hardly any difference between the bootstrap and the original estimator after choosing the standard error estimation.

Thanks!

