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Introduction

Gaussian Graphical Model:

Let G = (V,E) be a graph. V = {Z1, . . . , Zp} is the vertex set and E is the

edge set representing conditional dependence relations between the variables.

Consider

Z = (Z1, Z2, . . . , Zp)
T ∼ N

(
0,Ω−1

)
,

where Ω = (ωij)1≤i,j≤p.

Question:

Are Zi and Zj conditionally independent given Z{i,j}c?
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Conditional Independence

Property:

The conditional distribution of ZA given ZAc is

ZA|ZAc = N
(
−Ω−1

A,AΩA,AcZAc ,Ω−1
A,A

)
,

where A ⊂ {1, 2, . . . , p}.

Example:

Let A = {1, 2}. The precision matrix of (Z1, Z2)
T given Z{1,2}c is

ΩA,A =

 ω11 ω12

ω21 ω22

 .

Hence

Z1 ⊥ Z2|Z{1,2}c ⇐⇒ ω12 = 0.
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An Old Example

Whittaker (1990): Examination marks of 88 students in 5 different

mathematical subjects, Analysis, Statistics, Mechanics, Vectors, Algebra.
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What to do when p is very large?
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Assumptions

Consider a class of sparse precision matrices G0(M,kn,p):

• For Ω = (ωij)1≤i,j≤p,

max
1≤j≤p

∑
i̸=j

1 {ωij ̸= 0} ≤ kn,p,

where 1 {·} is the indicator function.

• In addition, we assume 1/M ≤ λmin (Ω) ≤ λmax (Ω) ≤ M , for some

constant M > 1.
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GLASSO

Penalized Estimation:

Ω̂Glasso := argmin
Ω≻0

{⟨Ω,Σn⟩ − log det(Ω) + λn|Ω|1,off}

where Σn is the sample covariance of sample size n, and |Ω|1,off =
∑

i ̸=j |ωij| is
the vector ℓ1 norm of off-diagonal elements.
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GLASSO

Ravikumar, Wainwright, Raskutti and Yu (2011).

Assumptions:

• Irrepresentable Condition: There exists some α ∈ (0, 1] such that

∥ΓScS(ΓSS)
−1∥∞ ≤ 1− α,

where Γ = Ω−1
0 ⊗ Ω−1

0 and S = supp(Ω0). ∥A∥∞ is the maximum row

absolute sum of A.

• For support recovery, the nonzero entry needs to be at least at an order

of

∥(ΓSS)
−1∥∞

( log p
n

)1/2
,

under the assumption that kn,p = o (
√
n/ log p).
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Remarks:

• Meinshausen and Buhlmann (2006).

• Cai, Liu and Luo (2010) and Cai, Liu and Z. (2012, sumitted).
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Main Results
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Basic Property:

Let A = {1, 2}. The conditional distribution of ZA given ZAc is

ZA|ZAc = N
(
−Ω−1

A,AΩA,AcZAc ,Ω−1
A,A

)
,

where

ΩA,A =

 ω11 ω12

ω21 ω22

 ,

and ΩA,Ac is the first two rows of the precision matrix Ω.

Remark:

More generally we may consider A = {i, j} or a finite subset.
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Methodology

Let X(i)i.i.d.∼ Np(0,Σ), i = 1, 2, . . . , n.

Let X be the data matrix of size n by p.

Let XA be the columns indexed by A = {1, 2} of size n by 2.

Regression

XA = XAcβ + ϵA,

where βT = −Ω−1
A,AΩA,Ac , and ϵA is an n by 2 matrix.
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Methodology

Since

ZA|ZAc = N
(
−Ω−1

A,AΩA,AcZAc ,Ω−1
A,A

)
,

we have

EϵTAϵA/n = Ω−1
A,A.

Efficiency

If you know β, an asymptotically efficient estimator is

Ω̂A,A =
(
ϵTAϵA/n

)−1
.
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Methodology

Penalized Estimation{
β̂m, θ̂

1/2
mm

}
= arg min

b∈Rp−2,σ∈R

{
∥Xm −XAcb∥2

2nσ
+

σ

2
+ λ

∑
k∈Ac

∥Xk∥√
n

|bk|

}
,

where λ =
√

2 log p
n

.

Residuals

ϵ̂A = XA −XAcβ̂.

Estimation

Ω̂A,A =
(
ϵ̂TAϵ̂A/n

)−1
.
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Assumptions

Consider a class of sparse precision matrices G0(M,kn,p):

• For Ω = (ωij)1≤i,j≤p,

max
1≤j≤p

∑
i̸=j

1 {ωij ̸= 0} ≤ kn,p,

where 1 {·} is the indicator function.

• In addition, we assume 1/M ≤ λmin (Ω) ≤ λmax (Ω) ≤ M , for some

constant M > 1.

Remark

We actually consider a slightly more general definition of sparseness

max
j

Σi ̸=j min

{
1, |ωij| /

√
2 log p

n

}
≤ kn,p.
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Asymptotic Efficiency

Theorem

Under the assumption that kn,p = o (
√
n/ log p) we have√

nFij (ω̂ij − ωij)
D→ N (0, 1) ,

where F−1
ij = ωiiωjj + ω2

ij.

Remark

We have a moderate deviation tail bound for ω̂ij.
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Optimality

Theorem

Under the assumption that kn,p = O (n/ log p) we have

inf
ω̂ij

sup
G0(M,kn,p)

E |ω̂ij − ωij| ≍ max

{
kn,p

log p

n
,

√
1

n

}
,

under the assumption that p ≥ kν
n,p with some ν > 2.

Remark

• The upper bound is attained by our procedure.

• A necessary condition for estimating ωij consistently is kn,p = o (n/ log p).

• A necessary condition to obtain a parametric rate is, kn,p
log p
n

= O(
√
1/n),

i.e., kn,p = O (
√
n/ log p).
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Applications

19



Adaptive Support Recovery

Procedure

Let Ω̂thr = (ω̂thr
ij )p×p with

ω̂thr
ij = ω̂ij1

|ω̂ij| ≥ δ

√(
ω̂iiω̂jj + ω̂2

ij

)
log p

n

 , δ > 2

Assumption

|ωij| ≥ 2δ

√(
ωiiωjj + ω2

ij

)
log p

n
, δ > 2, for ωij ̸= 0

Theorem

Let S(Ω) = {sgn(ωij), 1 ≤ i, j ≤ p}. We have

lim
n→∞

P
(
S(Ω̂thr) = S(Ω)

)
= 1,

provided that kn,p = o (
√
n/ log p).
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Estimation Under the Spectral Norm

Procedure

Let Ω̂thr = (ω̂thr
ij )p×p with

ω̂thr
ij = ω̂ij1

|ω̂ij| ≥ δ

√(
ω̂iiω̂jj + ω̂2

ij

)
log p

n

 , δ > 2.

Theorem

The estimator Ω̂thr satisfied∥∥∥Ω̂thr − Ω
∥∥∥2
spectral

= OP

(
k2
n,p

log p

n

)
,

uniformly over Ω ∈ G0(M,kn,p), provided that kn,p = o (
√
n/ log p).

Remark

Cai, Liu and Z. (2012) showed the rate is optimal.
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Latent Variable Graphical Model

• Let G = (V,E) be a graph. V = {Z1, . . . , Zp+r} is the vertex set and E is

the edge set. Assume that the graph is sparse.

• But we only observe X = (Z1, . . . , Zp) is multivariate normal with a

precision matrix Ω.

• It can be shown that Ω can be decomposed as the sum of a sparse matrix

and a rank r matrix by the Schur complement.

Question:

How to estimate Ω based on {Xi}, when Ω = (ωij) can be decomposed as the

sum of a sparse matrix S and a rank r matrix L, i.e., Ω = S + L?
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Sparse + Low Rank

• Sparse

G(kn,p) =

{
S = (sij) : S ≻ 0, max

1≤i≤p

p∑
j=1

1 {sij ̸= 0} ≤ kn,p

}

• Low Rank

L =
r∑

i=1

λiuiu
T
i ,

where there exists a universal constant c0 such that ∥ui∥∞ ≤
√

c0
p
for all i,

and λi is bounded for all i by M . See Candès, Li, Ma, and Wright (2009).

• In addition, we assume 1/M ≤ λmin (Ω) ≤ λmax (Ω) ≤ M , for some

constant M > 1.
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Penalized Maximum Likelihood

Chandrasekaran, Parrilo and Willsky (2012, AoS)

Algorithm:

Ω̂Glasso := argmin
Ω≻0

{⟨Ω,Σn⟩ − log det(Ω) + λn|S|1 + γn∥L∥nuclear}

Notations:

Minimum magnitude of nonzero entries of S by θ, i.e.,

θ = mini,j |sij|1 {sij ̸= 0}.

Minimum nonzero singular values of L by σ, i.e., σ = min1≤i≤r λi.
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Chandrasekaran, Parrilo and Willsky (2012, AoS)

To estimate the support and rank consistently, assuming that the authors

can pick the tuning parameters “wisely” (as they wish), they still require:

• θ &
√

p/n

• σ & k3
n,p

√
p/n

in addition to the strong irrepresentability condition and assumptions on the

Fisher information matrix, and possibly other assumptions . . . .

Remark

Ren and Z. (2012) showed conditions can be significantly improved.
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Optimality

Theorem

Assume that p ≥
√
n. We have

|Ω̂− Ω|∞ = OP

(√
log p

n

)
,

provided that kn,p = o(
√
n/log p).

Remark

• We can do adaptive support recovery similar to the sparse case. Improve

the order of θ from
√

p/n to
√

log(p)/n (optimal).

• To estimate the rank consistently we improve the order of σ from

k3
n,p

√
p/n to

√
p/n (optimal).
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Summary

• A methodology to do inference.

• A necessary sparseness condition for inference.

• Applications to adaptive support recovery, optimal estimation under the

spectral norm and latent variable graphical model.

27


