Inference and Optimalities in Estimation of Gaussian Graphical Model

Harrison H. Zhou
Department of Statistics
Yale University

Jointly with Zhao Ren, Tingni Sun and Cun-Hui Zhang

Outline

- Introduction
- Main Results
- Asymptotic Efficiency
- Rate-optimal Estimation of Each Entry
- Applications
- Adaptive Support Recovery
- Estimation Under the Spectral Norm
- Latent Variable Graphical Model
- Summary

Introduction

Gaussian Graphical Model:

Let $G=(V, E)$ be a graph. $V=\left\{Z_{1}, \ldots, Z_{p}\right\}$ is the vertex set and E is the edge set representing conditional dependence relations between the variables.

Consider

$$
Z=\left(Z_{1}, Z_{2}, \ldots, Z_{p}\right)^{T} \sim \mathcal{N}\left(0, \Omega^{-1}\right),
$$

where $\Omega=\left(\omega_{i j}\right)_{1 \leq i, j \leq p}$.

Question:

Are Z_{i} and Z_{j} conditionally independent given $Z_{\{i, j\}}$?

Conditional Independence

Property:

The conditional distribution of Z_{A} given $Z_{A^{c}}$ is

$$
Z_{A} \mid Z_{A^{c}}=\mathcal{N}\left(-\Omega_{A, A}^{-1} \Omega_{A, A^{c}} Z_{A^{c}}, \Omega_{A, A}^{-1}\right),
$$

where $A \subset\{1,2, \ldots, p\}$.
Example:
Let $A=\{1,2\}$. The precision matrix of $\left(Z_{1}, Z_{2}\right)^{T}$ given $Z_{\{1,2\}^{c}}$ is

$$
\Omega_{A, A}=\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right) .
$$

Hence

$$
Z_{1} \perp Z_{2} \mid Z_{\{1,2\}^{c}} \Longleftrightarrow \omega_{12}=0 .
$$

An Old Example

Whittaker (1990): Examination marks of 88 students in 5 different mathematical subjects, Analysis, Statistics, Mechanics, Vectors, Algebra.

Remark \{Analysis, Stats\} \perp \{Mech, Vectors $\} \mid$ Algebra.

What to do when p is very large?

Assumptions

Consider a class of sparse precision matrices $\mathcal{G}_{0}\left(M, k_{n, p}\right)$:

- For $\Omega=\left(\omega_{i j}\right)_{1 \leq i, j \leq p}$,

$$
\max _{1 \leq j \leq p} \sum_{i \neq j} 1\left\{\omega_{i j} \neq 0\right\} \leq k_{n, p},
$$

where $1\{\cdot\}$ is the indicator function.

- In addition, we assume $1 / M \leq \lambda_{\min }(\Omega) \leq \lambda_{\max }(\Omega) \leq M$, for some constant $M>1$.

GLASSO

Penalized Estimation:

$$
\hat{\Omega}_{\mathrm{Glasso}}:=\underset{\Omega \succ 0}{\arg \min }\left\{\left\langle\Omega, \Sigma_{n}\right\rangle-\log \operatorname{det}(\Omega)+\lambda_{n}|\Omega|_{1, \text { off }}\right\}
$$

where Σ_{n} is the sample covariance of sample size n, and $|\Omega|_{1, \text { off }}=\sum_{i \neq j}\left|\omega_{i j}\right|$ is the vector ℓ_{1} norm of off-diagonal elements.

GLASSO

Ravikumar, Wainwright, Raskutti and Yu (2011).

Assumptions:

- Irrepresentable Condition: There exists some $\alpha \in(0,1]$ such that

$$
\left\|\Gamma_{S^{c} S}\left(\Gamma_{S S}\right)^{-1}\right\|_{\infty} \leq 1-\alpha
$$

where $\Gamma=\Omega_{0}^{-1} \otimes \Omega_{0}^{-1}$ and $S=\operatorname{supp}\left(\Omega_{0}\right) .\|A\|_{\infty}$ is the maximum row absolute sum of A.

- For support recovery, the nonzero entry needs to be at least at an order of

$$
\left\|\left(\Gamma_{S S}\right)^{-1}\right\|_{\infty}\left(\frac{\log p}{n}\right)^{1 / 2}
$$

under the assumption that $k_{n, p}=o(\sqrt{n} / \log p)$.

Remarks:

- Meinshausen and Buhlmann (2006).
- Cai, Liu and Luo (2010) and Cai, Liu and Z. (2012, sumitted).

Main Results

Basic Property:

Let $A=\{1,2\}$. The conditional distribution of Z_{A} given $Z_{A^{c}}$ is

$$
Z_{A} \mid Z_{A^{c}}=\mathcal{N}\left(-\Omega_{A, A}^{-1} \Omega_{A, A^{c}} Z_{A^{c}}, \Omega_{A, A}^{-1}\right),
$$

where

$$
\Omega_{A, A}=\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right)
$$

and $\Omega_{A, A^{c}}$ is the first two rows of the precision matrix Ω.

Remark:

More generally we may consider $A=\{i, j\}$ or a finite subset.

Methodology

Let $X \stackrel{(i) \stackrel{\text { i.i.d. }}{\sim}}{\sim} N_{p}(0, \Sigma), i=1,2, \ldots, n$.
Let \mathbf{X} be the data matrix of size n by p.
Let \mathbf{X}_{A} be the columns indexed by $A=\{1,2\}$ of size n by 2 .

Regression

$$
\mathbf{X}_{A}=\mathbf{X}_{A^{c}} \beta+\epsilon_{A}
$$

where $\beta^{\mathbf{T}}=-\Omega_{A, A}^{-1} \Omega_{A, A^{c}}$, and ϵ_{A} is an n by 2 matrix.

Methodology

Since

$$
Z_{A} \mid Z_{A^{c}}=\mathcal{N}\left(-\Omega_{A, A}^{-1} \Omega_{A, A^{c}} Z_{A^{c}}, \Omega_{A, A}^{-1}\right),
$$

we have

$$
\mathbb{E} \epsilon_{A}^{T} \epsilon_{A} / n=\Omega_{A, A}^{-1} .
$$

Efficiency

If you know β, an asymptotically efficient estimator is

$$
\hat{\Omega}_{A, A}=\left(\epsilon_{A}^{T} \epsilon_{A} / n\right)^{-1} .
$$

Methodology

Penalized Estimation

$$
\left\{\hat{\beta}_{m}, \hat{\theta}_{m m}^{1 / 2}\right\}=\arg \min _{b \in \mathbb{R}^{p-2}, \sigma \in \mathbb{R}}\left\{\frac{\left\|\mathbf{X}_{m}-\mathbf{X}_{A^{c}} b\right\|^{2}}{2 n \sigma}+\frac{\sigma}{2}+\lambda \sum_{k \in A^{c}} \frac{\left\|\mathbf{X}_{k}\right\|}{\sqrt{n}}\left|b_{k}\right|\right\},
$$

where $\lambda=\sqrt{\frac{2 \log g}{n}}$.
Residuals

$$
\hat{\epsilon}_{A}=\mathbf{X}_{A}-\mathbf{X}_{A^{c}} \hat{\beta} .
$$

Estimation

$$
\hat{\Omega}_{A, A}=\left(\hat{\epsilon}_{A}^{T} \hat{\epsilon}_{A} / n\right)^{-1} .
$$

Assumptions

Consider a class of sparse precision matrices $\mathcal{G}_{0}\left(M, k_{n, p}\right)$:

- For $\Omega=\left(\omega_{i j}\right)_{1 \leq i, j \leq p}$,

$$
\max _{1 \leq j \leq p} \sum_{i \neq j} 1\left\{\omega_{i j} \neq 0\right\} \leq k_{n, p}
$$

where $1\{\cdot\}$ is the indicator function.

- In addition, we assume $1 / M \leq \lambda_{\min }(\Omega) \leq \lambda_{\max }(\Omega) \leq M$, for some constant $M>1$.

Remark

We actually consider a slightly more general definition of sparseness

$$
\max _{j} \Sigma_{i \neq j} \min \left\{1,\left|\omega_{i j}\right| / \sqrt{\frac{2 \log p}{n}}\right\} \leq k_{n, p}
$$

Asymptotic Efficiency

Theorem

Under the assumption that $k_{n, p}=o(\sqrt{n} / \log p)$ we have

$$
\sqrt{n F_{i j}}\left(\hat{\omega}_{i j}-\omega_{i j}\right) \xrightarrow{D} \mathcal{N}(0,1),
$$

where $F_{i j}^{-1}=\omega_{i i} \omega_{j j}+\omega_{i j}^{2}$.

Remark
We have a moderate deviation tail bound for $\hat{\omega}_{i j}$.

Optimality

Theorem

Under the assumption that $k_{n, p}=O(n / \log p)$ we have

$$
\inf _{\hat{\omega}_{i j}} \sup _{\mathcal{G}_{0}\left(M, k_{n, p}\right)} \mathbb{E}\left|\hat{\omega}_{i j}-\omega_{i j}\right| \asymp \max \left\{k_{n, p} \frac{\log p}{n}, \sqrt{\frac{1}{n}}\right\},
$$

under the assumption that $p \geq k_{n, p}^{\nu}$ with some $\nu>2$.

Remark

- The upper bound is attained by our procedure.
- A necessary condition for estimating $\omega_{i j}$ consistently is $k_{n, p}=o(n / \log p)$.
- A necessary condition to obtain a parametric rate is, $k_{n, p} \frac{\log p}{n}=O(\sqrt{1 / n})$, i.e., $k_{n, p}=O(\sqrt{n} / \log p)$.

Applications

Adaptive Support Recovery

Procedure
Let $\hat{\Omega}_{t h r}=\left(\hat{\omega}_{i j}^{t h r}\right)_{p \times p}$ with

$$
\hat{\omega}_{i j}^{t h r}=\hat{\omega}_{i j} 1\left\{\left|\hat{\omega}_{i j}\right| \geq \delta \sqrt{\frac{\left(\hat{\omega}_{i i} \hat{\omega}_{j j}+\hat{\omega}_{i j}^{2}\right) \log p}{n}}\right\}, \delta>2
$$

Assumption

$$
\left|\omega_{i j}\right| \geq 2 \delta \sqrt{\frac{\left(\omega_{i i} \omega_{j j}+\omega_{i j}^{2}\right) \log p}{n}}, \delta>2, \text { for } \omega_{i j} \neq 0
$$

Theorem

Let $\mathcal{S}(\boldsymbol{\Omega})=\left\{\operatorname{sgn}\left(\omega_{i j}\right), \quad 1 \leq i, j \leq p\right\}$. We have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\mathcal{S}\left(\hat{\Omega}_{t h r}\right)=\mathcal{S}(\Omega)\right)=1
$$

provided that $k_{n, p}=o(\sqrt{n} / \log p)$.

Estimation Under the Spectral Norm

Procedure

Let $\hat{\Omega}_{t h r}=\left(\hat{\omega}_{i j}^{t h r}\right)_{p \times p}$ with

$$
\hat{\omega}_{i j}^{t h r}=\hat{\omega}_{i j} 1\left\{\left|\hat{\omega}_{i j}\right| \geq \delta \sqrt{\frac{\left(\hat{\omega}_{i i} \hat{\omega}_{j j}+\hat{\omega}_{i j}^{2}\right) \log p}{n}}\right\}, \delta>2 .
$$

Theorem

The estimator $\hat{\Omega}_{t h r}$ satisfied

$$
\left\|\hat{\Omega}_{t h r}-\Omega\right\|_{\text {spectral }}^{2}=O_{P}\left(k_{n, p}^{2} \frac{\log p}{n}\right),
$$

uniformly over $\Omega \in \mathcal{G}_{0}\left(M, k_{n, p}\right)$, provided that $k_{n, p}=o(\sqrt{n} / \log p)$.
Remark
Cai, Liu and Z. (2012) showed the rate is optimal.

Latent Variable Graphical Model

- Let $G=(V, E)$ be a graph. $V=\left\{Z_{1}, \ldots, Z_{p+r}\right\}$ is the vertex set and E is the edge set. Assume that the graph is sparse.
- But we only observe $\mathbf{X}=\left(Z_{1}, \ldots, Z_{p}\right)$ is multivariate normal with a precision matrix Ω.
- It can be shown that Ω can be decomposed as the sum of a sparse matrix and a rank r matrix by the Schur complement.

Question:

How to estimate Ω based on $\left\{X_{i}\right\}$, when $\Omega=\left(\omega_{i j}\right)$ can be decomposed as the sum of a sparse matrix S and a rank r matrix L, i.e., $\Omega=S+L$?

Sparse + Low Rank

- Sparse

$$
\mathcal{G}\left(k_{n, p}\right)=\left\{S=\left(s_{i j}\right): S \succ 0, \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left\{s_{i j} \neq 0\right\} \leq k_{n, p}\right\}
$$

- Low Rank

$$
L=\sum_{i=1}^{r} \lambda_{i} u_{i} u_{i}^{T},
$$

where there exists a universal constant c_{0} such that $\left\|u_{i}\right\|_{\infty} \leq \sqrt{\frac{c_{0}}{p}}$ for all i, and λ_{i} is bounded for all i by M. See Candès, Li, Ma, and Wright (2009).

- In addition, we assume $1 / M \leq \lambda_{\min }(\Omega) \leq \lambda_{\max }(\Omega) \leq M$, for some constant $M>1$.

Penalized Maximum Likelihood

Chandrasekaran, Parrilo and Willsky (2012, AoS)
Algorithm:

$$
\hat{\Omega}_{\text {Glasso }}:=\underset{\Omega \succ 0}{\arg \min }\left\{\left\langle\Omega, \Sigma_{n}\right\rangle-\log \operatorname{det}(\Omega)+\lambda_{n}|S|_{1}+\gamma_{n}\|L\|_{\text {nuclear }}\right\}
$$

Notations:
Minimum magnitude of nonzero entries of S by θ, i.e., $\theta=\min _{i, j}\left|s_{i j}\right| \mathbb{1}\left\{s_{i j} \neq 0\right\}$.

Minimum nonzero singular values of L by σ, i.e., $\sigma=\min _{1 \leq i \leq r} \lambda_{i}$.

Chandrasekaran, Parrilo and Willsky (2012, AoS)

To estimate the support and rank consistently, assuming that the authors can pick the tuning parameters "wisely" (as they wish), they still require:

- $\theta \gtrsim \sqrt{p / n}$
- $\sigma \gtrsim k_{n, p}^{3} \sqrt{p / n}$
in addition to the strong irrepresentability condition and assumptions on the Fisher information matrix, and possibly other assumptions....

Remark

Ren and Z. (2012) showed conditions can be significantly improved.

Optimality

Theorem

Assume that $p \geq \sqrt{n}$. We have

$$
|\hat{\Omega}-\Omega|_{\infty}=O_{P}\left(\sqrt{\frac{\log p}{n}}\right)
$$

provided that $k_{n, p}=o(\sqrt{n / \log p})$.

Remark

- We can do adaptive support recovery similar to the sparse case. Improve the order of θ from $\sqrt{p / n}$ to $\sqrt{\log (p) / n}$ (optimal).
- To estimate the rank consistently we improve the order of σ from $k_{n, p}^{3} \sqrt{p / n}$ to $\sqrt{p / n}$ (optimal).

Summary

- A methodology to do inference.
- A necessary sparseness condition for inference.
- Applications to adaptive support recovery, optimal estimation under the spectral norm and latent variable graphical model.

