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Elicitability
Let P be a class of probability measures on O ⊆ Rd . Let

T : P → A, F #→ T (F )

be a functional where A ⊆ R.

Definition
A scoring (or loss) function S : A× O → R is consistent for T
relative to P, if

EFS(T (F ),Y ) ≤ EFS(x ,Y ), F ∈ P, x ∈ A.

It is strictly consistent if “=” implies x = T (F ).
The functional T is called elicitable relative to P if there exists a
scoring function S that is strictly consistent for it.

In other words
T (F ) = argmin

x∈A
EFS(x ,Y ).
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A simple example – the mean

Let Y be a random variable with distribution function F . Suppose
that EFY 2 < ∞. Then,

EFY = argmin
x∈R

EF (Y − x)2.

! The mean is elicitable with respect to the class of all
probability measures with finite second moment.
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A simple example – the mean

Theorem (Savage, 1971)

Let P be a class of probability measures with finite first moments.
Let φ be a (strictly) convex function such that EFφ(Y ) exists and
is finite for all F ∈ P. Then,

S(x , y) = φ(y)− φ(x)− φ′(x)(y − x)

is (strictly) consistent for the mean.

! Under suitable assumptions on P, the Bregman functions are
the only consistent scoring functions for the mean.

! Choosing φ(y) = y2/(1 + |y |) shows that the mean is
elicitable with respect to the class of all probability measures
with finite first moment.
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Why is elicitability interesting?

Generalized regression/M-estimation
Assume the following model

T (L(Y |Z )) = m(Z ,β)

parametrized by β ∈ Θ and let S be a strictly consistent scoring
function for T . Suppose we have iid observations (zi , yi ),
i = 1, . . . , n from (Z ,Y ). Then, we can estimate β by

β̂ = arg min
β′∈Θ

1

n

n
∑

i=1

S(yi ,m(zi ,β
′)).

! Least squares regression

! Quantile regression

! Logistic regression
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Why is elicitability interesting?

Forecast comparison/Model selection
Suppose we have sequences of competing forecasts xA1 , . . . , x

A
n ,

xB1 , . . . , x
B
n for T and observations y1, . . . , yn. Let S be a strictly

consistent scoring function for T .
Then it is natural to prefer method A over method B if

1

n

n
∑

i=1

S(xAi , yi ) <
1

n

n
∑

i=1

S(xBi , yi ).
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Risk measures

Let Y ∼ F be the single-period return of some financial asset.

! A risk measure assigns a real number to Y (interpreted as the
risk of the asset).

Risk measures are used for

! external regulatory capital calculation

! management, optimization and decision making

! performance analysis

! capital allocation
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Value at Risk and expected shortfall

Let Y ∼ F , α ∈ (0, 1).

Value at Risk (VaR)

VaRα(Y ) = qα(F ) = inf{x ∈ R : P(Y ≤ x) ≥ α},

Expected shortfall (ES)

ESα(Y ) =
1

α

∫ α

0
VaRu(Y )du.

! Profits are positive.

! We consider α close to zero (α = 0.01, α = 0.025).

! Risky positions yield large negative values of VaRα and ESα.
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Criticism of VaR as a risk measure

Lack of super-additivity

! Usually there are several Y (1),Y (2), . . . to be considered with
limited knowledge of their dependence.

! Goal: Bound on risk of the total
∑

i
Y (i).

! VaR is not super-additive: There are Y (1),Y (2) such that

VaRα(Y
(1) + Y (2)) < VaRα(Y

(1)) + VaRα(Y
(2)).

! Problematic for risk aggregation.

! Counterintuitive to diversification.

It is just a quantile. . .

! VaRα does not take sizes of losses beyond the threshold α
into account.
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Expected shortfall

For continuous distributions, we have

ESα(Y ) = E(Y | Y ≤ VaRα(Y )).

! ESα is a coherent risk measure, so in particular super-additive.

! It takes the entire tail of the distribution into account.

! Largest coherent risk measure is dominated by VaRα.

! It has a natural interpretation.
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Elicitable and non-elicitable functionals
Elicitable

! Mean, moments

! Median, quantiles/VaR

! Expectiles (Newey and Powell, 1987)

Not elicitable

! Variance

! Expected Shortfall (Weber, 2006, Gneiting, 2011)

Elicitable. . .

! coherent risk measures: Expectiles

! convex risk measures: Shortfall risk measures

! distortion risk measures: VaR and mean

(Weber, 2006, Z 2014, Bellini and Bignozzi, 2014, Delbaen et
al. 2015, Kou and Peng 2014, Wang and Z 2015)
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k-Elicitability

Let P be a class of probability measures on O ⊆ Rd . Let

T : P → A, F #→ T (F )

be a functional where A ⊆ Rk .

Definition
A scoring (or loss) function S : A×O → R is P-consistent for T , if

EFS(T (F ),Y ) ≤ EFS(x ,Y ), F ∈ P, x ∈ A.

It is strictly P-consistent if “=” implies x = T (F ).
The functional T is called k-elicitable relative to P if there exists a
scoring function S that is strictly consistent for it.

In other words
T (F ) = argmin

x∈A
EFS(x ,Y ).
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Elicitable functionals
1-Elicitable

! Mean, moments

! Median, quantiles/VaR

! Expectiles (Newey and Powell, 1987)

2-Elicitable

! Mean and variance

! Second moment and variance

! VaR and expected shortfall
(Acerbi and Szekely, 2014, Fissler and Z, 2016)

k-Elicitable

! Some spectral risk measures together with several VaRs at
certain levels
(Fissler and Z, 2016)
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T = (VaRα,ESα)

Theorem (Fissler and Z, 2016)

Let α ∈ (0, 1), and A0 := {x ∈ R2 : x1 ≥ x2}. Let P be a class of
probability measures on R with finite first moments and unique
α-quantiles. Any scoring function S : A0 × R → R of the form

S(x1, x2, y) =
(

{y ≤ x1}− α
)

G1(x1)− {y ≤ x1}G1(y)

+ G2(x2)

(

x2 − x1 +
1

α
{y ≤ x1}(x1 − y)

)

− G2(x2)

with G′

2 = G2, is P-consistent for T = (VaRα,ESα) if (−∞,x1]G1

is P-integrable and

! G1 is increasing and G2 is increasing and convex.

It is strictly P-consistent if, additionally,

! G2 is strictly increasing and strictly convex.
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T = (VaRα,ESα)

Theorem (Fissler and Z, 2016, Part 2)

If T (P) = A0, the class P is rich enough and S fulfils some
smoothness conditions, all strictly P-consistent scoring functions
for T are of the above form (up to equivalence).

Corollary
If the elements of P have finite first moment and unique
α-quantiles, then the pair T = (VaRα,ESα) : P → A0 is
2-elicitable.
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Osband’s Principle

! Osband’s principle originates from Osband (1985) and gives
necessary condition for strictly consistent scoring functions.

! It gives a connection of partial derivatives of the expected
score and an expected identification function.

Definition
An P-identification function for a functional T is a function
V : A× R → Rk such that

EFV (x ,Y ) = 0 ⇐⇒ x = T (F )

for all F ∈ P and for all x ∈ A.

Examples:

! Mean: V (x , y) = x − y

! α-quantile: V (x , y) = {y ≤ x}− α.

18 / 52



Osband’s Principle

! Osband’s principle originates from Osband (1985) and gives
necessary condition for strictly consistent scoring functions.

! It gives a connection of partial derivatives of the expected
score and an expected identification function.

Definition
An P-identification function for a functional T is a function
V : A× R → Rk such that

EFV (x ,Y ) = 0 ⇐⇒ x = T (F )

for all F ∈ P and for all x ∈ A.

Examples:

! Mean: V (x , y) = x − y

! α-quantile: V (x , y) = {y ≤ x}− α.

18 / 52



Osband’s Principle

Theorem (Osband’s Principle; Fissler and Z (2016))

Let T : P → A ⊆ Rk be a surjective, elicitable and identifiable
functional with P-identification function V : A× R → Rk and a
strictly P-consistent scoring function S : A× R → R. Under some
assumptions, there exists a matrix-valued function
h : int(A) → Rk×k such that

∇x EFS(x ,Y ) = h(x)EFV (x ,Y )

for all x ∈ int(A) and F ∈ P.

Key idea: Exploit the first order condition of the minimization
problem:

! ∇x EFS(x ,Y ) = 0 for x = T (F ) for all F ∈ P.

“The gradient ∇S is an identification function.”
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Osband’s Principle
(Under some smoothness conditions)
Second order conditions for the minimization problem: The Hessian

∇2
x [EFS(x ,Y )] ∈ R

k×k

must be symmetric for all x ∈ A,F ∈ P, and positive semi-definite
at x = T (F ).

! For k = 1 the necessary conditions of Osband’s principle
directly lead to sufficient conditions: For an oriented
identification function, choose some h > 0 and integrate.

! Harder for k > 1:
! Symmetry/positive semi-definiteness of the Hessian imposes

(complicated) restrictions on the function h.
! Even if x #→ EFS(x ,Y ) has only one critical point and the

Hessian is positive definite there, we can only guarantee a local
minimum!

! ! Generally, we must verify sufficient conditions on a case by
case basis.

20 / 52



Osband’s Principle
(Under some smoothness conditions)
Second order conditions for the minimization problem: The Hessian

∇2
x [EFS(x ,Y )] ∈ R

k×k

must be symmetric for all x ∈ A,F ∈ P, and positive semi-definite
at x = T (F ).

! For k = 1 the necessary conditions of Osband’s principle
directly lead to sufficient conditions: For an oriented
identification function, choose some h > 0 and integrate.

! Harder for k > 1:
! Symmetry/positive semi-definiteness of the Hessian imposes

(complicated) restrictions on the function h.
! Even if x #→ EFS(x ,Y ) has only one critical point and the

Hessian is positive definite there, we can only guarantee a local
minimum!

! ! Generally, we must verify sufficient conditions on a case by
case basis.

20 / 52



Osband’s Principle
(Under some smoothness conditions)
Second order conditions for the minimization problem: The Hessian

∇2
x [EFS(x ,Y )] ∈ R

k×k

must be symmetric for all x ∈ A,F ∈ P, and positive semi-definite
at x = T (F ).

! For k = 1 the necessary conditions of Osband’s principle
directly lead to sufficient conditions: For an oriented
identification function, choose some h > 0 and integrate.

! Harder for k > 1:
! Symmetry/positive semi-definiteness of the Hessian imposes

(complicated) restrictions on the function h.
! Even if x #→ EFS(x ,Y ) has only one critical point and the

Hessian is positive definite there, we can only guarantee a local
minimum!

! ! Generally, we must verify sufficient conditions on a case by
case basis.

20 / 52



Application examples

In Fissler and Z (2016), we considered:

! Functionals with elicitable components (vectors of quantiles,
expectiles, ratios of expectations,. . . )

! Spectral risk measures with finitely supported spectral measure

! In particular: (VaRα,ESα)
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Functionals with elicitable components – two examples

Vectors of quantiles

! Let T (F ) = (qα1(F ), . . . , qαk
(F )) with pairwise different

α1, . . . ,αk .

! Strictly consistent scoring functions are of the form

S(x1, . . . , xk , y) =
k

∑

m=1

Sm(xm, y).

Vectors of expectations

! Let T (F ) = EF (p(Y )) for some p : Rd → Rk .

! Strictly consistent scoring functions are of the form

S(x , y) = φ(y)− φ(x) − ⟨∇φ(x), p(y)− x⟩.

where φ is strictly convex.
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Evaluating forecasts of expected shortfall

Filtration F = {Ft}t∈N

Prediction-observation triples

(Qt ,Et ,Yt)t∈N

Qt : VaRα prediction for time point t, Ft−1-measurable
Et : ESα prediction for time point t, Ft−1-measurable
Yt : Realization at time point t, Ft-measurable
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Absolute evaluation: Model verification

Let V be an identification function for (VaRα,ESα), that is

E(V (q, v ,Y )) = 0 ⇔ (q, v) = (VaRα(Y ),ESα(Y )).

Definition (Calibration)

The sequence of predictions {(Qt ,Et)}t∈N is conditionally
calibrated for (VaRα,ESα) if

E(V (Qt ,Et ,Yt)|Ft−1) = 0 for all t ∈ N.

Compare Davis (2016).
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Traditional backtesting

HC
0 : The sequence of predictions {(Qt ,Et)}t∈N is conditionally

calibrated.

! Backtesting decision: If we do not reject HC
0 , the risk measure

estimates are adequate.

! Most existing backtests can be described as a test for
conditional calibration. (McNeil and Frey, 2000, Acerbi and
Szekely 2014)

! Elicitability is not relevant.

! Does not give guidance for decision between methods.

! Does not respect increasing information sets.
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Comparative evaluation: Model selection

Filtrations F = {Ft}t∈N and F∗ = {F∗
t }t∈N

Qt , Q∗
t : VaRα predictions for time point t

Et , E ∗
t : ESα predictions for time point t

Qt , Et : internal model, Ft−1-measurable
Q∗

t , E
∗
t : standard model, F∗

t−1-measurable

Yt : Realization at time point t, Ft-measurable and F∗
t -measurable
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Forecast dominance

Let S be a consistent scoring function for (VaRα,ESα).

Definition (S-Dominance)

The sequence of predictions {(Qt ,Et)}t∈N S-dominates
{(Q∗

t ,E
∗
t )}t∈N if

E(S(Qt ,Et ,Yt)− S(Q∗

t ,E
∗

t ,Yt)) ≤ 0, for all t ∈ N.
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Comparative backtesting

λ∗ := lim sup
n→∞

1

n

n
∑

t=1

E(S(Qt ,Et ,Xt)− S(Q∗

t ,E
∗

t ,Xt)),

λ∗ := lim inf
n→∞

1

n

n
∑

t=1

E(S(Qt ,Et ,t )− S(Q∗

t ,E
∗

t ,Xt)).

! S-dominance implies λ∗ ≤ λ∗ ≤ 0.

! λ∗ ≤ 0: Internal model is at least as good as the standard
model.

! λ∗ ≥ 0: Internal model predicts at most as well as the
standard model.
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Comparative backtesting

H−

0 : λ∗ ≤ 0, H+
0 : λ∗ ≥ 0.

! ∆nS̄ := 1
n

∑

n

t=1(S(Qt ,Et ,Yt)− S(Q∗
t ,E

∗
t ,Y

∗
t )).

! Under suitable assumptions on the process of score
differences: Asymptotically normal test statistic

T2 =
∆nS̄

σ̂n/
√
n
,

where σ̂n
2 is an HAC estimator of σ2

n = var(
√
n∆nS̄).

! Reject H−

0 if T2 is “too much” ≥ 0.

! Reject H+
0 if T2 is “too much” ≤ 0.

(Diebold and Mariano, 1995, Giacomini and White, 2006)
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Comparative backtesting

! Backtesting decision using H−

0 : If we do not reject H−

0 , the
risk measure estimates are acceptable (compared to the
standard).

! Backtesting decision using H+
0 : If we reject H+

0 , the risk
measure estimates are acceptable (compared to the standard).

! Elicitability is crucial.

! Allows for sensible comparison between methods.

! Necessitates a standard reference model.

! Respects increasing information sets (Holzmann and Eulert,
2014).
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Three zone approaches

BIS three zone approach for VaRα

! Traditional backtest: One-sided binomial test.

! Backtesting decision:
Red Yellow Green

p-value very small moderately small sufficiently big

! Generalization of three zone approach for ESα by Costanzino
and Curran (2015).
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Three zone approach for comparative backtesting

S̄∗1.64ΣN 1.64ΣN S̄

H−

0 pass fail

H+
0 pass fail
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A numerical illustration on nested information sets

(µt)t=1,...,N iid standard normal,

Yt ∼ N (µt , 1), conditional on µt .

Scenario A
(vt , et) = (VaRα(N (µt , 1)),ESα(N (µt , 1)))
(v∗t , e

∗
t ) = (VaRα(N (0, 2)),ESα(N (0, 2)))

Scenario B
(vt , et) = (VaRα(N (0, 2)),ESα(N (0, 2)))
(v∗t , e

∗
t ) = (VaRα(N (µt , 1)),ESα(N (µt , 1)))
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A numerical illustration – cont’d

Scenario A Green Yellow Red
Traditional VaR0.01 89.35 10.65 0.00
Traditional ES0.025 93.62 6.36 0.02
Comparative VaR0.01 88.23 11.77 0.00
Comparative ES0.025 87.22 12.78 0.00

Scenario B Green Yellow Red
Traditional VaR0.01 89.33 10.67 0.00
Traditional ES0.025 93.80 6.18 0.02
Comparative VaR0.01 0.00 11.77 88.23
Comparative ES0.025 0.00 12.78 87.22

N = 250; 10’000 simulations
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Choice of a scoring function

! Fissler and Z (2016): G1(x1) = x1, G2(x2) = ex2

! Fissler, Z and Gneiting (2016): G1(x1) = x1,
G2(x2) = ex2/(1 + ex2)

A scoring function S is called positively homogeneous of degree b if

S(cx , cy) = cbS(x , y), for all c > 0.

! Important in regression; see Efron (1991).

! Important in forecast ranking; see Patton (2011).

! Implies “unit consistency”; see Acerbi and Szekely (2014).
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! Important in forecast ranking; see Patton (2011).

! Implies “unit consistency”; see Acerbi and Szekely (2014).
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Homogeneous scores for T = (VaRα,ESα)

! For the action domain A = R× (−∞, 0), there are positively
homogeneous strictly consistent scoring functions of degree
b ∈ (−∞, 1)\{0}.

! There are strictly consistent scoring functions on
A = R× (−∞, 0) such that the score differences are positively
homogeneous of degree b = 0.

! For b ≥ 1 positively homogeneous strictly consistent scoring
functions can only be defined on smaller action domains
A = {Wx1 < x2}, compare the proposal by Acerbi and Szekely
(2014).

Details can be found in Nolde and Z (2016).
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A larger simulation study on comparative backtesting

AR(1)-GARCH(1,1)-model:

Yt = µt + εt , µt = −0.05 + 0.3Yt−1,

εt = σtZt , σ2
t = 0.01 + 0.1ε2t−1 + 0.85σ2

t−1,

(Zt) iid with skewed t distribution with shape = 5 and skewness
= 1.5.

Estimation procedures:

! Fully parametric (n-FP, t-FP, st-FP)

! Filtered historical simulation (n-FHS, t-FHS, st-FHS)

! EVT based semi-parametric estimation (n-EVT, t-EVT,
st-EVT)

Moving window of size 500
5000 out-of-sample verifying observations
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P-values of traditional backtests for (VaRα,ESα)

α = 0.246
simple general

n-FP 0.000 0.000
n-FHS 0.881 0.184
n-EVT 0.754 0.672
t-FP 0.086 0.006
t-FHS 0.936 0.512
t-EVT 0.880 0.475
st-FP 0.569 0.824
st-FHS 0.909 0.796
st-EVT 0.935 0.706
opt 0.401 0.337

α = 0.025
simple general

n-FP 0.000 0.000
n-FHS 0.653 0.231
n-EVT 0.886 0.226
t-FP 0.000 0.000
t-FHS 0.697 0.717
t-EVT 0.995 0.498
st-FP 0.695 0.419
st-FHS 0.843 0.758
st-EVT 0.962 0.564
opt 0.131 0.571
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Can we avoid the choice of a specific scoring
function for forecast comparison?
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Forecast dominance

Let S be a consistent scoring function for (VaRα,ESα).

Definition (S-Dominance)

The sequence of predictions {(Qt ,Et)}t∈N S-dominates
{(Q∗

t ,E
∗
t )}t∈N if

E(S(Qt ,Et ,Yt)− S(Q∗

t ,E
∗

t ,Yt)) ≤ 0, for all t ∈ N.
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Forecast dominance

Definition (Dominance)

The sequence of predictions {(Qt ,Et)}t∈N dominates
{(Q∗

t ,E
∗
t )}t∈N if

E(S(Qt ,Et ,Yt)− S(Q∗

t ,E
∗

t ,Yt)) ≤ 0, for all t ∈ N,

and for all consistent scoring functions S for (VaRα,ESα).
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Mixture representation

Proposition
Let α ∈ (0, 1). For v1, v2, y ∈ R, (x1, x2) ∈ A, we define

Sv1(x1, y) = ( {y ≤ x1}− α)
(

{v1 ≤ x1}− {v1 ≤ y}
)

Sv2(x1, x2, y) = {v2 ≤ x2}
(

1

α
{y ≤ x1}(x1 − y)− (x1 − v2)

)

+ {v2 ≤ y}(y − v2).

All scoring functions for (VaRα,ESα) can be written as

S(x1, x2, y) =

∫

Sv1(x1, y)dH1(v1) +

∫

Sv2(x1, x2, y)dH2(v2),

where H1 is a locally finite measure and H2 is a measure that is
finite on all intervals of the form (−∞, x ], x ∈ R.
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Assessing forecast dominance

Corollary
The sequence of predictions {(Qt ,Et)}t∈N dominates
{(Q∗

t ,E
∗
t )}t∈N if

E(Sv1(Qt ,Yt)− Sv1(Q
∗

t ,Yt)) ≤ 0, for all t ∈ N,

and

E(Sv2(Qt ,Et ,Yt)− Sv2(Q
∗

t ,E
∗

t ,Yt)) ≤ 0, for all t ∈ N,

and for all v1, v2 ∈ R.

! Forecast dominance can be assessed by considering a
two-parameter family of consistent scoring functions, only.

! We are (primarily) interested in the ES forecast. Consider Sv2
only.
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Murphy diagrams

Simplifying assumption
Assume that (Qt ,Et ,Yt)t∈N, (Q∗

t ,E
∗
t ,Yt)t∈N are stationary and

ergodic.

Murphy diagram
Plot

v2 #→
1

n

n
∑

t=1

(Sv2(Qt ,Et ,Yt)− Sv2(Q
∗

t ,E
∗

t ,Yt))

as an estimate of

v2 #→ E(Sv2(Qt ,Et ,Yt)− Sv2(Q
∗

t ,E
∗

t ,Yt))

Idea of Murphy diagrams: Ehm et al. (2016, JRSSB).
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Comparison of parametric models, α = 0.025
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Comparison of parametric models, α = 0.246
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Comparison of parametric models, α = 0.246
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Influence of the filtering distribution, α = 0.025
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Influence of the filtering distribution, α = 0.246
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Formal tests for forecast dominance

! Formal tests for forecast dominance are possible.
! We have suggested the following procedure:

! Diebold-Mariano tests for each grid point v2.
! Adjust p-values for multiple testing by the Westfall-Young

procedure.

! Test works well in simulation examples, theoretical properties
not fully understood, yet.
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Outline

1. Elicitability
! Definition and a simple example
! Risk measures in banking
! k-Elicitability

2. Evaluating forecasts of expected shortfall
! Absolute forecast evaluation
! Classical comparative forecast evaluation
! Comparative forecast evaluation with Murphy diagrams

3. Summary
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Summary

! k-Elicitability allows to find scoring functions for functionals
that are not elicitable individually.

! A relevant example in banking and insurance is the
non-elicitable risk measure ESα which is 2-elicitable with
VaRα.

! Consistent scoring functions can be used for forecast
comparison.

! Characterization results for consistent scoring functions may
allow for Murphy diagrams. These can be used for forecast
comparison without the choice of a specific scoring function.

! The scoring functions for (VaRα,ESα) allow for M-estimation
(Zwingmann & Holzmann, 2016), generalized regression
(Bayer & Dimitriadis, 2017, Barendse, 2017).
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