Higher order elicitability

Johanna F. Ziegel

University of Bern

joint work with Fernando Fasciati, Tobias Fissler, Tilmann Gneiting, Alexander Jordan, Fabian Krüger and Natalia Nolde

> 2 June 2017 Van Dantzig Seminar

> > イロト イロト イヨト イヨト 三日

1/52

Outline

1. Elicitability

- Definition and a simple example
- Risk measures
- k-Elicitability
- Osband's principle
- 2. Evaluating forecasts of expected shortfall
 - Absolute forecast evaluation
 - Classical comparative forecast evaluation
 - Comparative forecast evaluation with Murphy diagrams

2 / 52

3. Summary

Outline

1. Elicitability

- Definition and a simple example
- Risk measures in banking
- k-Elicitability
- 2. Evaluating forecasts of expected shortfall
 - Absolute forecast evaluation
 - Classical comparative forecast evaluation
 - Comparative forecast evaluation with Murphy diagrams

(日) (圖) (E) (E) (E)

3 / 52

3. Summary

Elicitability

Let \mathcal{P} be a class of probability measures on $\mathsf{O} \subseteq \mathbb{R}^d$. Let

$$T: \mathcal{P} \to \mathsf{A}, \quad F \mapsto T(F)$$

be a functional where $A \subseteq \mathbb{R}$.

Definition

A scoring (or loss) function $S : A \times O \rightarrow \mathbb{R}$ is consistent for T relative to \mathcal{P} , if

$$\mathbb{E}_F S(T(F), Y) \leq \mathbb{E}_F S(x, Y), \quad F \in \mathcal{P}, x \in A.$$

It is strictly consistent if "=" implies x = T(F). The functional T is called *elicitable relative to* P if there exists a scoring function S that is strictly consistent for it. In other words

$$T(F) = \arg\min_{x \in A} \mathbb{E}_F S(x, Y).$$

Let Y be a random variable with distribution function F. Suppose that $\mathbb{E}_FY^2<\infty.$ Then,

$$\mathbb{E}_F Y = \arg\min_{x\in\mathbb{R}} \mathbb{E}_F (Y-x)^2.$$

The mean is elicitable with respect to the class of all probability measures with finite second moment.

A simple example – the mean

Theorem (Savage, 1971)

Let \mathcal{P} be a class of probability measures with finite first moments. Let ϕ be a (strictly) convex function such that $\mathbb{E}_F \phi(Y)$ exists and is finite for all $F \in \mathcal{P}$. Then,

$$S(x,y) = \phi(y) - \phi(x) - \phi'(x)(y-x)$$

is (strictly) consistent for the mean.

- ▶ Under suitable assumptions on *P*, the *Bregman functions* are the only consistent scoring functions for the mean.
- ► Choosing φ(y) = y²/(1 + |y|) shows that the mean is elicitable with respect to the class of all probability measures with finite first moment.

A simple example – the mean

Theorem (Savage, 1971)

Let \mathcal{P} be a class of probability measures with finite first moments. Let ϕ be a (strictly) convex function such that $\mathbb{E}_F \phi(Y)$ exists and is finite for all $F \in \mathcal{P}$. Then,

$$S(x,y) = \phi(y) - \phi(x) - \phi'(x)(y-x)$$

is (strictly) consistent for the mean.

- ► Under suitable assumptions on \mathcal{P} , the *Bregman functions* are the only consistent scoring functions for the mean.
- ► Choosing φ(y) = y²/(1 + |y|) shows that the mean is elicitable with respect to the class of all probability measures with finite first moment.

A simple example – the mean

Theorem (Savage, 1971)

Let \mathcal{P} be a class of probability measures with finite first moments. Let ϕ be a (strictly) convex function such that $\mathbb{E}_F \phi(Y)$ exists and is finite for all $F \in \mathcal{P}$. Then,

$$S(x,y) = \phi(y) - \phi(x) - \phi'(x)(y-x)$$

is (strictly) consistent for the mean.

- ► Under suitable assumptions on \mathcal{P} , the *Bregman functions* are the only consistent scoring functions for the mean.
- ► Choosing φ(y) = y²/(1 + |y|) shows that the mean is elicitable with respect to the class of all probability measures with finite first moment.

Generalized regression/M-estimation

Assume the following model

$$T(\mathcal{L}(Y|Z)) = m(Z,\beta)$$

parametrized by $\beta \in \Theta$ and let S be a strictly consistent scoring function for T. Suppose we have iid observations (z_i, y_i) , i = 1, ..., n from (Z, Y). Then, we can estimate β by

$$\hat{\beta} = \arg\min_{\beta' \in \Theta} \frac{1}{n} \sum_{i=1}^{n} S(y_i, m(z_i, \beta')).$$

- Least squares regression
- Quantile regression
- Logistic regression

Generalized regression/M-estimation

Assume the following model

$$T(\mathcal{L}(Y|Z)) = m(Z,\beta)$$

parametrized by $\beta \in \Theta$ and let S be a strictly consistent scoring function for T. Suppose we have iid observations (z_i, y_i) , i = 1, ..., n from (Z, Y). Then, we can estimate β by

$$\hat{\beta} = \arg\min_{\beta' \in \Theta} \frac{1}{n} \sum_{i=1}^{n} S(y_i, m(z_i, \beta')).$$

- Least squares regression
- Quantile regression
- Logistic regression

Forecast comparison/Model selection

Suppose we have sequences of competing forecasts x_1^A, \ldots, x_n^A , x_1^B, \ldots, x_n^B for T and observations y_1, \ldots, y_n . Let S be a strictly consistent scoring function for T.

Then it is natural to prefer method A over method B if

$$\frac{1}{n}\sum_{i=1}^{n}S(x_{i}^{A},y_{i})<\frac{1}{n}\sum_{i=1}^{n}S(x_{i}^{B},y_{i}).$$

イロト イポト イヨト イヨト 三日

8 / 52

Forecast comparison/Model selection

Suppose we have sequences of competing forecasts x_1^A, \ldots, x_n^A , x_1^B, \ldots, x_n^B for T and observations y_1, \ldots, y_n . Let S be a strictly consistent scoring function for T.

Then it is natural to prefer method A over method B if

$$\frac{1}{n}\sum_{i=1}^{n}S(x_{i}^{A},y_{i})<\frac{1}{n}\sum_{i=1}^{n}S(x_{i}^{B},y_{i}).$$

イロト イロト イヨト イヨト 三日

8 / 52

Risk measures

Let $Y \sim F$ be the single-period return of some financial asset.

► A *risk measure* assigns a real number to Y (interpreted as the *risk* of the asset).

イロト イロト イヨト イヨト 三日

9 / 52

Risk measures are used for

- external regulatory capital calculation
- management, optimization and decision making
- performance analysis
- capital allocation

Risk measures

Let $Y \sim F$ be the single-period return of some financial asset.

► A risk measure assigns a real number to Y (interpreted as the risk of the asset).

(ロ) (部) (主) (主) ()

9 / 52

Risk measures are used for

- external regulatory capital calculation
- management, optimization and decision making
- performance analysis
- capital allocation

Value at Risk and expected shortfall

Let $Y \sim F$, $\alpha \in (0, 1)$. Value at Risk (VaR)

$$\mathsf{VaR}_{\alpha}(Y) = q_{\alpha}(F) = \inf\{x \in \mathbb{R} : \mathbb{P}(Y \le x) \ge \alpha\},\$$

Expected shortfall (ES)

$$\mathsf{ES}_{\alpha}(Y) = \frac{1}{\alpha} \int_0^{\alpha} \mathsf{VaR}_u(Y) \, \mathrm{d}u.$$

- Profits are positive.
- We consider α close to zero ($\alpha = 0.01$, $\alpha = 0.025$).
- Risky positions yield large negative values of VaR_{α} and ES_{α} .

Criticism of VaR as a risk measure

Lack of super-additivity

- Usually there are several Y⁽¹⁾, Y⁽²⁾,... to be considered with limited knowledge of their dependence.
- Goal: Bound on risk of the total $\sum_{i} Y^{(i)}$.
- ▶ VaR is not super-additive: There are $Y^{(1)}, Y^{(2)}$ such that

$$\mathsf{VaR}_{\alpha}(Y^{(1)}+Y^{(2)}) < \mathsf{VaR}_{\alpha}(Y^{(1)}) + \mathsf{VaR}_{\alpha}(Y^{(2)}).$$

- Problematic for risk aggregation.
- Counterintuitive to diversification.
- lt is just a quantile...
 - VaR_α does not take sizes of losses beyond the threshold α into account.

Criticism of VaR as a risk measure

Lack of super-additivity

- Usually there are several Y⁽¹⁾, Y⁽²⁾,... to be considered with limited knowledge of their dependence.
- Goal: Bound on risk of the total $\sum_{i} Y^{(i)}$.
- ▶ VaR is not super-additive: There are $Y^{(1)}, Y^{(2)}$ such that

$$\mathsf{VaR}_lpha(Y^{(1)}+Y^{(2)})<\mathsf{VaR}_lpha(Y^{(1)})+\mathsf{VaR}_lpha(Y^{(2)}).$$

- Problematic for risk aggregation.
- Counterintuitive to diversification.

It is just a quantile...

► VaR_α does not take sizes of losses beyond the threshold α into account. For continuous distributions, we have

$$\mathsf{ES}_{\alpha}(Y) = \mathbb{E}(Y \mid Y \leq \mathsf{VaR}_{\alpha}(Y)).$$

- ES_{α} is a coherent risk measure, so in particular super-additive.
- It takes the entire tail of the distribution into account.
- Largest coherent risk measure is dominated by VaR_α.
- It has a natural interpretation.

Elicitable and non-elicitable functionals

Elicitable

- Mean, moments
- Median, quantiles/VaR
- Expectiles (Newey and Powell, 1987)

Not elicitable

- Variance
- Expected Shortfall (Weber, 2006, Gneiting, 2011)

Elicitable...

- coherent risk measures: Expectiles
- convex risk measures: Shortfall risk measures
- distortion risk measures: VaR and mean

(Weber, 2006, Z 2014, Bellini and Bignozzi, 2014, Delbaen et al. 2015, Kou and Peng 2014, Wang and Z 2015)

k-Elicitability

Let \mathcal{P} be a class of probability measures on $O \subseteq \mathbb{R}^d$. Let

$$T: \mathcal{P} \to \mathsf{A}, \quad F \mapsto T(F)$$

be a functional where $A \subseteq \mathbb{R}^{k}$.

Definition

A scoring (or loss) function $S : A \times O \rightarrow \mathbb{R}$ is \mathcal{P} -consistent for T, if

$$\mathbb{E}_F S(T(F), Y) \leq \mathbb{E}_F S(x, Y), \quad F \in \mathcal{P}, x \in A.$$

It is strictly \mathcal{P} -consistent if "=" implies x = T(F). The functional T is called *k*-elicitable relative to \mathcal{P} if there exists a scoring function S that is strictly consistent for it.

In other words

$$T(F) = \arg\min_{x \in A} \mathbb{E}_F S(x, Y).$$

Elicitable functionals

1-Elicitable

- Mean, moments
- Median, quantiles/VaR
- Expectiles (Newey and Powell, 1987)

2-Elicitable

- Mean and variance
- Second moment and variance
- VaR and expected shortfall (Acerbi and Szekely, 2014, Fissler and Z, 2016)

k-Elicitable

 Some spectral risk measures together with several VaRs at certain levels (Fissler and Z, 2016)

$T = (\mathsf{VaR}_{\alpha}, \mathsf{ES}_{\alpha})$

Theorem (Fissler and Z, 2016)

Let $\alpha \in (0, 1)$, and $A_0 := \{x \in \mathbb{R}^2 : x_1 \ge x_2\}$. Let \mathcal{P} be a class of probability measures on \mathbb{R} with finite first moments and unique α -quantiles. Any scoring function $S : A_0 \times \mathbb{R} \to \mathbb{R}$ of the form

$$S(x_1, x_2, y) = (\mathbb{1}\{y \le x_1\} - \alpha) G_1(x_1) - \mathbb{1}\{y \le x_1\} G_1(y) + G_2(x_2) \left(x_2 - x_1 + \frac{1}{\alpha} \mathbb{1}\{y \le x_1\}(x_1 - y)\right) - \mathcal{G}_2(x_2)$$

with $\mathcal{G}'_2 = G_2$, is \mathcal{P} -consistent for $T = (VaR_\alpha, ES_\alpha)$ if $\mathbb{1}_{(-\infty, x_1]}G_1$ is \mathcal{P} -integrable and

► G₁ is increasing and G₂ is increasing and convex. It is strictly *P*-consistent if, additionally,

• G_2 is strictly increasing and strictly convex.

 $T = (VaR_{\alpha}, ES_{\alpha})$

Theorem (Fissler and Z, 2016, Part 2)

If $T(\mathcal{P}) = A_0$, the class \mathcal{P} is rich enough and S fulfils some smoothness conditions, all strictly \mathcal{P} -consistent scoring functions for T are of the above form (up to equivalence).

Corollary

If the elements of \mathcal{P} have finite first moment and unique α -quantiles, then the pair $T = (VaR_{\alpha}, ES_{\alpha}): \mathcal{P} \to A_0$ is 2-elicitable.

 $T = (VaR_{\alpha}, ES_{\alpha})$

Theorem (Fissler and Z, 2016, Part 2)

If $T(\mathcal{P}) = A_0$, the class \mathcal{P} is rich enough and S fulfils some smoothness conditions, all strictly \mathcal{P} -consistent scoring functions for T are of the above form (up to equivalence).

Corollary

If the elements of \mathcal{P} have finite first moment and unique α -quantiles, then the pair $T = (VaR_{\alpha}, ES_{\alpha}) \colon \mathcal{P} \to A_0$ is 2-elicitable.

- Osband's principle originates from Osband (1985) and gives necessary condition for strictly consistent scoring functions.
- It gives a connection of partial derivatives of the expected score and an expected identification function.

Definition

An \mathcal{P} -identification function for a functional T is a function $V : A \times \mathbb{R} \to \mathbb{R}^k$ such that

$$\mathbb{E}_F V(x,Y) = 0 \quad \Longleftrightarrow \quad x = T(F)$$

for all $F \in \mathcal{P}$ and for all $x \in A$.

Examples:

• Mean:
$$V(x, y) = x - y$$

• α -quantile: $V(x, y) = \mathbb{1}\{y \le x\} - \alpha$.

- Osband's principle originates from Osband (1985) and gives necessary condition for strictly consistent scoring functions.
- It gives a connection of partial derivatives of the expected score and an expected identification function.

Definition

An \mathcal{P} -identification function for a functional T is a function $V \colon A \times \mathbb{R} \to \mathbb{R}^k$ such that

$$\mathbb{E}_F V(x,Y) = 0 \quad \Longleftrightarrow \quad x = T(F)$$

for all $F \in \mathcal{P}$ and for all $x \in A$.

Examples:

• Mean:
$$V(x, y) = x - y$$

• α -quantile: $V(x, y) = \mathbb{1}\{y \le x\} - \alpha$.

Theorem (Osband's Principle; Fissler and Z (2016)) Let $T: \mathcal{P} \to A \subseteq \mathbb{R}^k$ be a surjective, elicitable and identifiable functional with \mathcal{P} -identification function $V: A \times \mathbb{R} \to \mathbb{R}^k$ and a strictly \mathcal{P} -consistent scoring function $S: A \times \mathbb{R} \to \mathbb{R}$. Under some assumptions, there exists a matrix-valued function $h: int(A) \to \mathbb{R}^{k \times k}$ such that

$$\nabla_{x} \mathbb{E}_{F} S(x, Y) = h(x) \mathbb{E}_{F} V(x, Y)$$

for all $x \in int(A)$ and $F \in \mathcal{P}$.

Key idea: Exploit the first order condition of the minimization problem:

 $\sim \nabla_x \mathbb{E}_F S(x, Y) = 0$ for x = T(F) for all $F \in \mathcal{P}$.

"The gradient ∇S is an identification function."

Theorem (Osband's Principle; Fissler and Z (2016)) Let $T: \mathcal{P} \to A \subseteq \mathbb{R}^k$ be a surjective, elicitable and identifiable functional with \mathcal{P} -identification function $V: A \times \mathbb{R} \to \mathbb{R}^k$ and a strictly \mathcal{P} -consistent scoring function $S: A \times \mathbb{R} \to \mathbb{R}$. Under some assumptions, there exists a matrix-valued function $h: int(A) \to \mathbb{R}^{k \times k}$ such that

$$\nabla_{x} \mathbb{E}_{F} S(x, Y) = h(x) \mathbb{E}_{F} V(x, Y)$$

for all $x \in int(A)$ and $F \in \mathcal{P}$.

Key idea: Exploit the first order condition of the minimization problem:

$$ightarrow
abla_x \mathbb{E}_F S(x,Y) = 0$$
 for $x = T(F)$ for all $F \in \mathcal{P}$.

"The gradient ∇S is an identification function."

(Under some smoothness conditions)

Second order conditions for the minimization problem: The Hessian

 $abla_x^2 [\mathbb{E}_F S(x, Y)] \in \mathbb{R}^{k \times k}$

must be symmetric for all $x \in A, F \in \mathcal{P}$, and positive semi-definite at x = T(F).

- ▶ For k = 1 the necessary conditions of Osband's principle directly lead to sufficient conditions: For an oriented identification function, choose some h > 0 and integrate.
- Harder for k > 1:
 - Symmetry/positive semi-definiteness of the Hessian imposes (complicated) restrictions on the function *h*.
 - Even if x → E_FS(x, Y) has only one critical point and the Hessian is positive definite there, we can only guarantee a local minimum!
- ► ~→ Generally, we must verify sufficient conditions on a case by case basis.

(Under some smoothness conditions)

Second order conditions for the minimization problem: The Hessian

 $\nabla_x^2 [\mathbb{E}_F S(x, Y)] \in \mathbb{R}^{k \times k}$

must be symmetric for all $x \in A, F \in \mathcal{P}$, and positive semi-definite at x = T(F).

- ► For k = 1 the necessary conditions of Osband's principle directly lead to sufficient conditions: For an oriented identification function, choose some h > 0 and integrate.
- Harder for k > 1:
 - Symmetry/positive semi-definiteness of the Hessian imposes (complicated) restrictions on the function *h*.
 - Even if x → E_FS(x, Y) has only one critical point and the Hessian is positive definite there, we can only guarantee a local minimum!
- ► ~> Generally, we must verify sufficient conditions on a case by case basis.

(Under some smoothness conditions)

Second order conditions for the minimization problem: The Hessian

 $\nabla_x^2 [\mathbb{E}_F S(x, Y)] \in \mathbb{R}^{k \times k}$

must be symmetric for all $x \in A, F \in \mathcal{P}$, and positive semi-definite at x = T(F).

- ► For k = 1 the necessary conditions of Osband's principle directly lead to sufficient conditions: For an oriented identification function, choose some h > 0 and integrate.
- Harder for k > 1:
 - Symmetry/positive semi-definiteness of the Hessian imposes (complicated) restrictions on the function *h*.
 - ► Even if x → E_FS(x, Y) has only one critical point and the Hessian is positive definite there, we can only guarantee a local minimum!
- ► ~→ Generally, we must verify sufficient conditions on a case by case basis.

Application examples

In Fissler and Z (2016), we considered:

- Functionals with elicitable components (vectors of quantiles, expectiles, ratios of expectations,...)
- Spectral risk measures with finitely supported spectral measure
- In particular: $(VaR_{\alpha}, ES_{\alpha})$

Functionals with elicitable components - two examples

Vectors of quantiles

- Let $T(F) = (q_{\alpha_1}(F), \ldots, q_{\alpha_k}(F))$ with pairwise different $\alpha_1, \ldots, \alpha_k$.
- Strictly consistent scoring functions are of the form

$$S(x_1,\ldots,x_k,y)=\sum_{m=1}^k S_m(x_m,y).$$

Vectors of expectations

- Let $T(F) = \mathbb{E}_F(p(Y))$ for some $p : \mathbb{R}^d \to \mathbb{R}^k$.
- Strictly consistent scoring functions are of the form

$$S(x,y) = \phi(y) - \phi(x) - \langle \nabla \phi(x), p(y) - x \rangle.$$

where ϕ is strictly convex.

Functionals with elicitable components - two examples

Vectors of quantiles

- Let $T(F) = (q_{\alpha_1}(F), \ldots, q_{\alpha_k}(F))$ with pairwise different $\alpha_1, \ldots, \alpha_k$.
- Strictly consistent scoring functions are of the form

$$S(x_1,\ldots,x_k,y)=\sum_{m=1}^k S_m(x_m,y).$$

Vectors of expectations

- Let $T(F) = \mathbb{E}_F(p(Y))$ for some $p : \mathbb{R}^d \to \mathbb{R}^k$.
- Strictly consistent scoring functions are of the form

$$S(x,y) = \phi(y) - \phi(x) - \langle \nabla \phi(x), p(y) - x \rangle.$$

where ϕ is strictly convex.

Outline

1. Elicitability

- Definition and a simple example
- Risk measures in banking
- k-Elicitability
- 2. Evaluating forecasts of expected shortfall
 - Absolute forecast evaluation
 - Classical comparative forecast evaluation
 - Comparative forecast evaluation with Murphy diagrams

3. Summary

Evaluating forecasts of expected shortfall

Filtration $\mathcal{F} = \{\mathcal{F}_t\}_{t \in \mathbb{N}}$

Prediction-observation triples

 $(Q_t, E_t, Y_t)_{t \in \mathbb{N}}$

 Q_t : VaR_{α} prediction for time point t, \mathcal{F}_{t-1} -measurable E_t : ES_{α} prediction for time point t, \mathcal{F}_{t-1} -measurable Y_t : Realization at time point t, \mathcal{F}_t -measurable
Absolute evaluation: Model verification

Let V be an identification function for $(VaR_{\alpha}, ES_{\alpha})$, that is

$$\mathbb{E}(V(q,v,Y)) = 0 \quad \Leftrightarrow \quad (q,v) = (\mathsf{VaR}_{\alpha}(Y),\mathsf{ES}_{\alpha}(Y)).$$

Definition (Calibration)

The sequence of predictions $\{(Q_t, E_t)\}_{t \in \mathbb{N}}$ is conditionally calibrated for $(VaR_{\alpha}, ES_{\alpha})$ if

$$\mathbb{E}(V(Q_t, E_t, Y_t)|\mathcal{F}_{t-1}) = 0$$
 for all $t \in \mathbb{N}$.

Compare Davis (2016).

Traditional backtesting

H_0^C : The sequence of predictions $\{(Q_t, E_t)\}_{t\in\mathbb{N}}$ is conditionally calibrated.

- Backtesting decision: If we do not reject H^C₀, the risk measure estimates are adequate.
- Most existing backtests can be described as a test for conditional calibration. (McNeil and Frey, 2000, Acerbi and Szekely 2014)
- Elicitability is not relevant.
- Does not give guidance for decision between methods.
- Does not respect increasing information sets.

Traditional backtesting

 H_0^C : The sequence of predictions $\{(Q_t, E_t)\}_{t\in\mathbb{N}}$ is conditionally calibrated.

- Backtesting decision: If we do not reject H^C₀, the risk measure estimates are adequate.
- Most existing backtests can be described as a test for conditional calibration. (McNeil and Frey, 2000, Acerbi and Szekely 2014)
- Elicitability is not relevant.
- Does not give guidance for decision between methods.
- Does not respect increasing information sets.

Comparative evaluation: Model selection

Filtrations $\mathcal{F}=\{\mathcal{F}_t\}_{t\in\mathbb{N}}$ and $\mathcal{F}^*=\{\mathcal{F}_t^*\}_{t\in\mathbb{N}}$

 Q_t , Q_t^* : VaR_{α} predictions for time point t E_t , E_t^* : ES_{α} predictions for time point t

 Q_t , E_t : internal model, \mathcal{F}_{t-1} -measurable Q_t^* , E_t^* : standard model, \mathcal{F}_{t-1}^* -measurable

 Y_t : Realization at time point t, \mathcal{F}_t -measurable and \mathcal{F}_t^* -measurable

Comparative evaluation: Model selection

Filtrations $\mathcal{F} = \{\mathcal{F}_t\}_{t\in\mathbb{N}}$ and $\mathcal{F}^* = \{\mathcal{F}^*_t\}_{t\in\mathbb{N}}$

 Q_t , Q_t^* : VaR_{α} predictions for time point t E_t , E_t^* : ES_{α} predictions for time point t

- Q_t , E_t : internal model, \mathcal{F}_{t-1} -measurable
- Q_t^* , E_t^* : standard model, \mathcal{F}_{t-1}^* -measurable

 Y_t : Realization at time point t, \mathcal{F}_t -measurable and \mathcal{F}_t^* -measurable

Comparative evaluation: Model selection

Filtrations $\mathcal{F} = \{\mathcal{F}_t\}_{t\in\mathbb{N}}$ and $\mathcal{F}^* = \{\mathcal{F}^*_t\}_{t\in\mathbb{N}}$

 Q_t , Q_t^* : VaR_{α} predictions for time point t E_t , E_t^* : ES_{α} predictions for time point t

- Q_t , E_t : internal model, \mathcal{F}_{t-1} -measurable
- Q_t^* , E_t^* : standard model, \mathcal{F}_{t-1}^* -measurable
- Y_t : Realization at time point t, \mathcal{F}_t -measurable and \mathcal{F}_t^* -measurable

Let S be a consistent scoring function for $(VaR_{\alpha}, ES_{\alpha})$.

Definition (S-Dominance)

The sequence of predictions $\{(Q_t, E_t)\}_{t\in\mathbb{N}}$ S-dominates $\{(Q_t^*, E_t^*)\}_{t\in\mathbb{N}}$ if

 $\mathbb{E}(S(Q_t,E_t,Y_t)-S(Q_t^*,E_t^*,Y_t))\leq 0,\quad\text{for all }t\in\mathbb{N}.$

$$\lambda^* := \limsup_{n \to \infty} \frac{1}{n} \sum_{t=1}^n \mathbb{E}(S(Q_t, E_t, X_t) - S(Q_t^*, E_t^*, X_t)),$$
$$\lambda_* := \liminf_{n \to \infty} \frac{1}{n} \sum_{t=1}^n \mathbb{E}(S(Q_t, E_t, t) - S(Q_t^*, E_t^*, X_t)).$$

- S-dominance implies $\lambda_* \leq \lambda^* \leq 0$.
- ▶ λ* ≤ 0: Internal model is at least as good as the standard model.
- A_{*} ≥ 0: Internal model predicts at most as well as the standard model.

$$H_0^-: \ \lambda^* \leq 0, \qquad H_0^+: \ \lambda_* \geq 0.$$

•
$$\Delta_n \bar{S} := \frac{1}{n} \sum_{t=1}^n (S(Q_t, E_t, Y_t) - S(Q_t^*, E_t^*, Y_t^*)).$$

 Under suitable assumptions on the process of score differences: Asymptotically normal test statistic

$$T_2 = \frac{\Delta_n \bar{S}}{\hat{\sigma_n}/\sqrt{n}}$$

where $\hat{\sigma}_n^2$ is an HAC estimator of $\sigma_n^2 = \operatorname{var}(\sqrt{n}\Delta_n \bar{S})$.

• Reject H_0^- if T_2 is "too much" ≥ 0 .

▶ Reject H₀⁺ if T₂ is "too much" ≤ 0.
 (Diebold and Mariano, 1995, Giacomini and White, 2006)

- ► Backtesting decision using H₀⁻: If we do not reject H₀⁻, the risk measure estimates are acceptable (compared to the standard).
- ► Backtesting decision using H₀⁺: If we reject H₀⁺, the risk measure estimates are acceptable (compared to the standard).
- Elicitability is crucial.
- Allows for sensible comparison between methods.
- Necessitates a standard reference model.
- Respects increasing information sets (Holzmann and Eulert, 2014).

- ► Backtesting decision using H₀⁻: If we do not reject H₀⁻, the risk measure estimates are acceptable (compared to the standard).
- ► Backtesting decision using H₀⁺: If we reject H₀⁺, the risk measure estimates are acceptable (compared to the standard).
- Elicitability is crucial.
- Allows for sensible comparison between methods.
- Necessitates a standard reference model.
- Respects increasing information sets (Holzmann and Eulert, 2014).

Three zone approaches

BIS three zone approach for VaR_α

- ► Traditional backtest: One-sided binomial test.
- Backtesting decision:

	Red	Yellow	Green			
<i>p</i> -value	very small	moderately small	sufficiently big			
Generalization of three zone approach for ES_{α} by Costanzino						
and Curran (2015).						

Three zone approaches

BIS three zone approach for VaR_α

- Traditional backtest: One-sided binomial test.
- Backtesting decision:

	Red	Yellow	Green
<i>p</i> -value	very small	moderately small	sufficiently big

 Generalization of three zone approach for ES_α by Costanzino and Curran (2015).

Three zone approach for comparative backtesting

A numerical illustration on nested information sets

 $(\mu_t)_{t=1,...,N}$ iid standard normal,

 $Y_t \sim \mathcal{N}(\mu_t, 1), \quad ext{conditional on } \mu_t.$

Scenario A			
(v_t, e_t)	$= (VaR_{lpha}(\mathcal{N}(\mu_t, 1)), ES_{lpha}(\mathcal{N}(\mu_t, 1)))$		
(v_t^*, e_t^*)	$= (VaR_\alpha(\mathcal{N}(0,2)),ES_\alpha(\mathcal{N}(0,2)))$		

A numerical illustration – cont'd

Scenario A		Green	Yellow	Red
Traditional	$VaR_{0.01}$	89.35	10.65	0.00
Traditional	ES _{0.025}	93.62	6.36	0.02
Comparative	$VaR_{0.01}$	88.23	11.77	0.00
Comparative	ES _{0.025}	87.22	12.78	0.00

Scenario B		Green	Yellow	Red
Traditional	$VaR_{0.01}$	89.33	10.67	0.00
Traditional	ES _{0.025}	93.80	6.18	0.02
Comparative	$VaR_{0.01}$	0.00	11.77	88.23
Comparative	ES _{0.025}	0.00	12.78	87.22

N = 250; 10'000 simulations

Choice of a scoring function

- Fissler and Z (2016): $G_1(x_1) = x_1$, $G_2(x_2) = e^{x_2}$
- ► Fissler, Z and Gneiting (2016): $G_1(x_1) = x_1$, $G_2(x_2) = e^{x_2}/(1 + e^{x_2})$

A scoring function S is called *positively homogeneous of degree b* if

$$S(cx, cy) = c^b S(x, y)$$
, for all $c > 0$.

- Important in regression; see Efron (1991).
- Important in forecast ranking; see Patton (2011).
- Implies "unit consistency"; see Acerbi and Szekely (2014).

Choice of a scoring function

- Fissler and Z (2016): $G_1(x_1) = x_1$, $G_2(x_2) = e^{x_2}$
- ► Fissler, Z and Gneiting (2016): $G_1(x_1) = x_1$, $G_2(x_2) = e^{x_2}/(1 + e^{x_2})$

A scoring function S is called *positively homogeneous of degree b* if

$$S(cx, cy) = c^b S(x, y)$$
, for all $c > 0$.

- Important in regression; see Efron (1991).
- Important in forecast ranking; see Patton (2011).
- Implies "unit consistency"; see Acerbi and Szekely (2014).

Homogeneous scores for $T = (VaR_{\alpha}, ES_{\alpha})$

- For the action domain A = ℝ × (-∞, 0), there are positively homogeneous strictly consistent scoring functions of degree b ∈ (-∞, 1)\{0}.
- There are strictly consistent scoring functions on A = ℝ × (-∞,0) such that the score differences are positively homogeneous of degree b = 0.
- For b ≥ 1 positively homogeneous strictly consistent scoring functions can only be defined on smaller action domains
 A = {Wx₁ < x₂}, compare the proposal by Acerbi and Szekely (2014).

Details can be found in Nolde and Z (2016).

Homogeneous scores for $T = (VaR_{\alpha}, ES_{\alpha})$

- For the action domain A = ℝ × (-∞, 0), there are positively homogeneous strictly consistent scoring functions of degree b ∈ (-∞, 1)\{0}.
- There are strictly consistent scoring functions on A = ℝ × (-∞, 0) such that the score differences are positively homogeneous of degree b = 0.
- For b ≥ 1 positively homogeneous strictly consistent scoring functions can only be defined on smaller action domains A = {Wx₁ < x₂}, compare the proposal by Acerbi and Szekely (2014).

Details can be found in Nolde and Z (2016).

Homogeneous scores for $T = (VaR_{\alpha}, ES_{\alpha})$

- For the action domain A = ℝ × (-∞, 0), there are positively homogeneous strictly consistent scoring functions of degree b ∈ (-∞, 1)\{0}.
- There are strictly consistent scoring functions on A = ℝ × (-∞, 0) such that the score differences are positively homogeneous of degree b = 0.
- For b ≥ 1 positively homogeneous strictly consistent scoring functions can only be defined on smaller action domains A = {Wx₁ < x₂}, compare the proposal by Acerbi and Szekely (2014).

Details can be found in Nolde and Z (2016).

A larger simulation study on comparative backtesting AR(1)-GARCH(1,1)-model:

$$Y_t = \mu_t + \varepsilon_t, \quad \mu_t = -0.05 + 0.3Y_{t-1},$$

$$\varepsilon_t = \sigma_t Z_t, \quad \sigma_t^2 = 0.01 + 0.1 \varepsilon_{t-1}^2 + 0.85 \sigma_{t-1}^2,$$

 (Z_t) iid with skewed t distribution with shape = 5 and skewness = 1.5.

Estimation procedures:

- Fully parametric (n-FP, t-FP, st-FP)
- Filtered historical simulation (n-FHS, t-FHS, st-FHS)
- EVT based semi-parametric estimation (n-EVT, t-EVT, st-EVT)

Moving window of size 500 5000 out-of-sample verifying observations

・ロト ・聞 ト ・ 国 ト ・ 国 ト 三 国

P-values of traditional backtests for (VaR_{α}, ES_{α})

	$\alpha = 0.246$			lpha= 0.025	
	simple	general		simple	general
n-FP	0.000	0.000	n-FP	0.000	0.000
n-FHS	0.881	0.184	n-FHS	0.653	0.231
n-EVT	0.754	0.672	n-EVT	0.886	0.226
t-FP	0.086	0.006	t-FP	0.000	0.000
t-FHS	0.936	0.512	t-FHS	0.697	0.717
t-EVT	0.880	0.475	t-EVT	0.995	0.498
st-FP	0.569	0.824	st-FP	0.695	0.419
st-FHS	0.909	0.796	st-FHS	0.843	0.758
st-EVT	0.935	0.706	st-EVT	0.962	0.564
opt	0.401	0.337	opt	0.131	0.571

v = 0.754

v = 0.754

Can we avoid the choice of a specific scoring function for forecast comparison?

40 / 52

Let S be a consistent scoring function for $(VaR_{\alpha}, ES_{\alpha})$.

Definition (S-Dominance)

The sequence of predictions $\{(Q_t, E_t)\}_{t\in\mathbb{N}}$ S-dominates $\{(Q_t^*, E_t^*)\}_{t\in\mathbb{N}}$ if

 $\mathbb{E}(S(Q_t,E_t,Y_t)-S(Q_t^*,E_t^*,Y_t))\leq 0,\quad\text{for all }t\in\mathbb{N}.$

Definition (Dominance)

The sequence of predictions $\{(Q_t, E_t)\}_{t\in\mathbb{N}}$ dominates $\{(Q_t^*, E_t^*)\}_{t\in\mathbb{N}}$ if

 $\mathbb{E}(S(Q_t,E_t,Y_t)-S(Q_t^*,E_t^*,Y_t))\leq 0,\quad\text{for all }t\in\mathbb{N},$

and for all consistent scoring functions S for $(VaR_{\alpha}, ES_{\alpha})$.

Mixture representation

Proposition
Let
$$\alpha \in (0, 1)$$
. For $v_1, v_2, y \in \mathbb{R}$, $(x_1, x_2) \in A$, we define
 $S_{v_1}(x_1, y) = (\mathbb{1}\{y \le x_1\} - \alpha)(\mathbb{1}\{v_1 \le x_1\} - \mathbb{1}\{v_1 \le y\})$
 $S_{v_2}(x_1, x_2, y) = \mathbb{1}\{v_2 \le x_2\}\left(\frac{1}{\alpha}\mathbb{1}\{y \le x_1\}(x_1 - y) - (x_1 - v_2)\right)$
 $+ \mathbb{1}\{v_2 \le y\}(y - v_2).$

All scoring functions for $(VaR_{\alpha}, ES_{\alpha})$ can be written as

$$S(x_1, x_2, y) = \int S_{v_1}(x_1, y) \, \mathrm{d}H_1(v_1) + \int S_{v_2}(x_1, x_2, y) \, \mathrm{d}H_2(v_2),$$

where H_1 is a locally finite measure and H_2 is a measure that is finite on all intervals of the form $(-\infty, x]$, $x \in \mathbb{R}$.

Assessing forecast dominance

Corollary

The sequence of predictions $\{(Q_t,E_t)\}_{t\in\mathbb{N}}$ dominates $\{(Q_t^*,E_t^*)\}_{t\in\mathbb{N}}$ if

 $\mathbb{E}(S_{v_1}(Q_t,Y_t)-S_{v_1}(Q_t^*,Y_t))\leq 0, \quad \textit{for all } t\in \mathbb{N},$

and

$$\mathbb{E}(S_{\nu_2}(Q_t,E_t,Y_t)-S_{\nu_2}(Q_t^*,E_t^*,Y_t))\leq 0,\quad \text{for all }t\in\mathbb{N},$$

and for all $v_1, v_2 \in \mathbb{R}$.

- Forecast dominance can be assessed by considering a two-parameter family of consistent scoring functions, only.
- ► We are (primarily) interested in the ES forecast. Consider S_{v2} only.

Murphy diagrams

Simplifying assumption

Assume that $(Q_t, E_t, Y_t)_{t \in \mathbb{N}}$, $(Q_t^*, E_t^*, Y_t)_{t \in \mathbb{N}}$ are stationary and ergodic.

Murphy diagram

Plot

$$v_2 \mapsto \frac{1}{n} \sum_{t=1}^n (S_{v_2}(Q_t, E_t, Y_t) - S_{v_2}(Q_t^*, E_t^*, Y_t))$$

as an estimate of

$$v_2 \mapsto \mathbb{E}(S_{v_2}(Q_t, E_t, Y_t) - S_{v_2}(Q_t^*, E_t^*, Y_t))$$

Idea of Murphy diagrams: Ehm et al. (2016, JRSSB).

<ロ > < 部 > < 目 > < 目 > 目 の Q (~ 45 / 52

<ロ > < 部 > < 言 > < 言 > 言 の < や 46 / 52 Influence of the filtering distribution, $\alpha = 0.025$

 Influence of the filtering distribution, $\alpha = 0.246$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・ つへで 48/52

Formal tests for forecast dominance

- Formal tests for forecast dominance are possible.
- We have suggested the following procedure:
 - Diebold-Mariano tests for each grid point v_2 .
 - Adjust p-values for multiple testing by the Westfall-Young procedure.
- Test works well in simulation examples, theoretical properties not fully understood, yet.
Outline

1. Elicitability

- Definition and a simple example
- Risk measures in banking
- ► *k*-Elicitability
- 2. Evaluating forecasts of expected shortfall
 - Absolute forecast evaluation
 - Classical comparative forecast evaluation
 - Comparative forecast evaluation with Murphy diagrams

イロト イヨト イヨト イヨト

3

50 / 52

3. Summary

Summary

- k-Elicitability allows to find scoring functions for functionals that are not elicitable individually.
- A relevant example in banking and insurance is the non-elicitable risk measure ES_α which is 2-elicitable with VaR_α.
- Consistent scoring functions can be used for forecast comparison.
- Characterization results for consistent scoring functions may allow for Murphy diagrams. These can be used for forecast comparison without the choice of a specific scoring function.
- The scoring functions for (VaR_α, ES_α) allow for M-estimation (Zwingmann & Holzmann, 2016), generalized regression (Bayer & Dimitriadis, 2017, Barendse, 2017).

References

(Almost) all mentioned references can be found in:

T. FISSLER AND J. F. ZIEGEL (2016). *Higher order elicitability* and Osband's principle. Annals of Statistics, 44:1680–1707.

T. FISSLER, J. F. ZIEGEL AND T. GNEITING (2016). Expected Shortfall is jointly elicitable with Value at Risk – Implications for backtesting. Risk Magazine, January 2016.

N. NOLDE AND J. F. ZIEGEL (2016). *Elicitability and backtesting*. Annals of Applied Statistics, to appear.

J. F. ZIEGEL, F. KRÜGER, A. JORDAN AND F. FASCIATI (2017). *Murphy Diagrams: Forecast Evaluation of Expected Shortfall*. Preprint, arXiv:1705.04537.

Thank you for your attention!