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The duality principle in option pricing aims at simplifying valuation
problems that depend on several variables by associating them to the cor-
responding dual option pricing problem. Here, we analyze the duality prin-
ciple for options that depend on several assets. The asset price processes are
driven by general semimartingales, and the dual measures are constructed via
an Esscher transformation. As an application, we can relate swap and quanto
options to standard call and put options. Explicit calculations for jump mod-
els are also provided.

1. Introduction. In this work, we continue our study of the duality principle
in option pricing for general semimartingales, initiated in Eberlein, Papapantoleon
and Shiryaev (2008) (henceforth, EPS). Here, we consider options that depend on
several assets; the valuation of such options requires the knowledge of the joint
distribution or characteristic function, and a high-dimensional integration. We aim
to simplify this valuation problem by relating it to its dual option pricing problem.

In one-dimensional semimartingale models, we operate in EPS with a single
dual measure and the density process is the asset price itself. In the multidimen-
sional case though, we cannot work with a single measure; indeed, the density of
the corresponding dual measure will be dictated by the problem at hand. It turns
out that the Esscher change of measure [cf. Kallsen and Shiryaev (2002)] is the
appropriate concept to describe the density between the original and the dual mea-
sure. Therefore, our main result describes the triplet of predictable characteristics
of one-dimensional semimartingales—defined as the inner product of a vector with
the driving multidimensional semimartingale—under the dual measure.

As an application of our results, we relate swap options and quanto options
to standard European call or put options, for general semimartingale models. For
semimartingales with independent increments, we can derive a duality relationship
between an option depending on three assets and a standard call or put option. This
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yields a significant reduction in the computational complexity of these valuation
problems.

The model we employ to describe the evolution of asset price processes is
an exponential semimartingale model. Semimartingales are the most natural and
general processes we can consider from the point of view of arbitrage theory;
they also contain, as subclasses, most of the models used in mathematical fi-
nance, such as Brownian motion and general diffusions, Lévy processes, affine
processes, time-changed Lévy models and stochastic volatility models. We iden-
tify the driving semimartingale process by its triplet of predictable characteristics
[cf. Jacod (1979)].

Duality results in the univariate case have been extensively studied in the lit-
erature for several subclasses of semimartingales, see the introduction of EPS
for a (nonexhaustive) list of references. However, there seems to be consider-
ably less work in the multivariate case; we mention here the articles of Margrabe
(1978), Geman, El Karoui and Rochet (1995) and Gerber and Shiu (1996) for
the Black–Scholes model, while Eberlein and Papapantoleon (2005) work with
time-inhomogeneous Lévy processes; Fajardo and Mordecki (2006) consider Lévy
processes, and also handle American style options. Molchanov and Schmutz
(2008) derive analogous results using techniques from convex geometry. Schroder
(1999) studied the problem in a semimartingale framework, but did not derive a
general representation, for example, the characteristics, under the dual measure.

The paper is organized as follows. In Section 2, we review some results on
multidimensional semimartingales, their triplet of predictable characteristics, the
Laplace cumulant process and linear transformations of multidimensional semi-
martingales. In Section 3, we describe the asset price model; Section 4 contains
the main result of this work, describing one-dimensional semimartingales under
the dual measures. Finally, in Section 5, we describe several applications of the du-
ality principle and present some explicit examples, especially for jump processes.

2. Semimartingales and their characteristics. 1. Let Rd denote the d-
dimensional Euclidean space. The Euclidean scalar product between two vectors
u, v ∈ Rd is denoted by 〈u, v〉 or u�v, where u� denotes the transpose of the vec-
tor (or matrix) u. The Euclidean norm is denoted by | · |, and ei denotes the unit
vector, where the ith entry is 1 and all others zero, that is, ei = (0, . . . ,1, . . . ,0)�.

The inner product is extended from real to complex numbers as follows: for
u = (uk)1≤k≤d and v = (vk)1≤k≤d in Cd , set 〈u, v〉 := ∑d

k=1 ukvk ; therefore, we
do not use the Hermitian inner product

∑d
k=1 ukvk . Moreover, we denote by iv :=

(ivk)1≤k≤d .
Let Md(R) denote the space of real d ×d matrices, and let ‖ · ‖ denote the norm

on the space of d × d matrices induced by the Euclidean norm on Rd . In addition,
let Mnd(R) denote the space of real n × d matrices, and similarly ‖ · ‖ denotes
the induced norm on this space. Note that we could equally well work with any
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vector norm on Rd and the norms induced by, or consistent with, it on Md(R) and
Mnd(R).

Define the set D := {x ∈ Rd : |x| > 1}, hence, Dc denotes the closed unit ball
in Rd . The function h = h(x) denotes a truncation function, that is, a bounded
function with compact support that behaves as h(x) = x around the origin; the
canonical choice is h(x) = x1{|x|≤1} = x1Dc(x). We assume that h satisfies the
antisymmetry property h(−x) = −h(x).

REMARK 2.1. The truncation function on Rn, n �= d , will also be denoted by
h(x), for x ∈ Rn; that is, the argument will determine the dimension.

In general, we follow the notation of Jacod and Shiryaev (2003) (henceforth,
JS); any unexplained notation is typically used as in JS.

2. Consider a stochastic basis B = (�, F ,F,P ) in the sense of JS I.1.2, where
F = FT , F = (Ft )0≤t≤T and T is a finite time horizon. Let H = (Ht)0≤t≤T be a
d-dimensional general semimartingale, that is, H = (H 1, . . . ,Hd)� with H0 = 0.
Every semimartingale has the canonical representation (cf. JS II.2.34)

H = H0 + B + Hc + h(x) ∗ (μ − ν) + (
x − h(x)

) ∗ μ(2.1)

or, in detail

Ht = H0 + Bt + Hc
t +

∫ t

0

∫
Rd

h(x) d(μ − ν) +
∫ t

0

∫
Rd

(
x − h(x)

)
dμ,(2.2)

where:

(a) B = (Bt )0≤t≤T is an Rd -valued predictable process of bounded variation;
(b) Hc = (Hc

t )0≤t≤T is the continuous martingale part of H ; Hc has the pre-
dictable quadratic characteristic 〈Hc〉 = C, which is a predictable Rd×d -
valued process of bounded variation, whose values are nonnegative symmetric
matrices;

(c) ν = ν(ω;dt, dx) is a predictable random measure on [0, T ] × Rd ; it is the
compensator of the random measure of jumps μ = μ(ω;dt, dx) of H .

Here, W ∗ μ denotes the integral process, and W ∗ (μ − ν) denotes the stochastic
integral with respect to the compensated random measure μ−ν; cf. JS, Chapter II.

The processes B , C and the measure ν are called the triplet of predictable char-
acteristics of the semimartingale H with respect to the probability measure P , and
will be denoted by

T(H |P) = (B,C, ν).

The characteristics are uniquely defined, up to indistinguishability of course.
In addition, there exists an increasing predictable process A, predictable

processes b, c and a transition kernel F from (� × [0, T ], P) into (Rd, B(Rd))

such that

B = b · A, C = c · A, ν = F ⊗ A,(2.3)
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or, in detail

Bt =
∫ t

0
bs dAs, Ct =

∫ t

0
cs dAs,

(2.4)

ν([0, t] × E) =
∫ t

0

∫
E

Fs(dx) dAs,

where E ∈ B(Rd); cf. JS, Proposition II.2.9.
Every semimartingale H with triplet T(H |P) = (B,C, ν) can be associated to

a Laplace cumulant process denoted by K = (Kt)0≤t≤T , defined via

K(u) = 〈u,B〉 + 1
2〈u,Cu〉 + (

e〈u,x〉 − 1 − 〈u,h(x)〉) ∗ ν.(2.5)

Moreover, we have that K(u) = κ(u) · A, where

κ(u) = 〈u,b〉 + 1

2
〈u, cu〉 +

∫
Rd

(
e〈u,x〉 − 1 − 〈u,h(x)〉)F(dx).(2.6)

The Laplace cumulant process satisfies the following property (cf. Corol-
lary II.2.48 in JS):

ei〈u,H 〉

E (K(iu))
∈ Mloc(P )(2.7)

for all u ∈ Rd , assuming that E (K(iu)) never vanishes; see Remark 2.3 for suf-
ficient conditions. Here, E (·) denotes the stochastic exponential; cf., for exam-
ple, JS I.4.61. Formula (2.7) is also called the martingale version of the Lévy–
Khintchine formula for semimartingales.

Note that given a cumulant process (2.5), satisfying (2.7), we can immediately
conclude that the triplet of characteristics for the semimartingale H is given by
(B,C, ν); cf. Corollary II.2.48 in JS.

REMARK 2.2. If the characteristics (B,C, ν) are absolutely continuous, then
we can choose the process At = t . Then we call the triplet (b, c,F ) the differential
characteristics of H .

REMARK 2.3. The following diagram of statements holds true:

(1) ⇒ (2) ⇔ (3) ⇒ (4),(2.8)

where:

1. T(H |P) = (B,C, ν) is absolutely continuous;
2. H has no fixed times of discontinuity;
3. H is a quasi-left-continuous process;
4. K is a continuous process.

The first statement follows by direct calculations; for the others see I.2.25, II.1.19
and III.7.4 in JS.
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3. We consider linear transformations and projections of general semimartin-
gales. The following result, which seems to be in the literature already, describes
the triplet of predictable characteristics under such a transformation. We provide
a short proof and also study some properties of the resulting process. Analogous
results for Lévy and time-inhomogeneous Lévy processes can be found in Sato
(1999), Proposition 11.10, and Papapantoleon (2007), Proposition 2.10.

Let H be an Rd -valued semimartingale and let U be an n × d-dimensional
real valued matrix; then UH = U × H is an Rn-valued semimartingale and the
following proposition determines the triplet of UH .

PROPOSITION 2.4. Consider an Rd -valued semimartingale H =(Ht)0≤t≤T

with triplet T(H |P) = (B,C, ν) and a real n × d matrix U (U ∈ Mnd(R)). Then
UH = (UHt)0≤t≤T is an Rn-valued semimartingale with triplet of predictable
characteristics T(UH |P) = (BU,CU, νU) of the form

BU = bU · A, CU = cU · A, νU = FU ⊗ A,(2.9)

where

bU
s = Ubs +

∫
Rd

(
h(Ux) − Uh(x)

)
Fs(dx),

cU
s = UcsU

�,(2.10)

FU
s (E) =

∫
Rd

1E(Ux)Fs(dx), E ∈ B(Rn \ {0}).

(Recall that h denotes a generic truncation function; cf. Remark 2.1.)

PROOF. One could prove the statement by directly calculating the charac-
teristics, see analogous results for the stochastic integral process in Kallsen and
Shiryaev (2001), Lemma 3, and EPS (Lemma 3.3). However, using the martingale
version of the Lévy–Khintchine formula for semimartingales, a very simple proof
can be given.

Indeed (cf. Corollary II.2.48 in JS) to prove the assertion it suffices to show that

ei〈z,UH 〉

E (KU(iz))
∈ Mloc(P )(2.11)

for any z ∈ Rn; here KU denotes the cumulant process associated with the triplet
(BU,CU, νU).

Since T(H |P) = (B,C, ν), we immediately have that for any z ∈ Rn holds

ei〈U�z,H 〉

E (K(iU�z))
∈ Mloc(P ),
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where

ei〈U�z,H 〉

E (K(iU�z))

= ei〈U�z,H 〉/
(

E
(〈iU�z,B〉 + 1/2〈iU�z,CiU�z〉
+ (

e〈iU�z,x〉 − 1 − 〈iU�z,h(x)〉) ∗ ν
))

= ei〈z,UH 〉

E (〈iz,UB〉 + 1/2〈iz,UCU�iz〉 + (e〈iz,Ux〉 − 1 − 〈iz,Uh(x)〉) ∗ ν)

= ei〈z,UH 〉

E (〈iz,BU 〉 + 1/2〈iz,UCU�iz〉 + (e〈iz,Ux〉 − 1 − 〈iz, h(Ux)〉) ∗ ν)

= ei〈z,UH 〉

E (KU(iz))
,

where BU = UB + [h(Ux) − Uh(x)] ∗ ν; hence the assertion is proved. �

Next, we derive some results about the properties of the process UH .

LEMMA 2.5. If H is a special semimartingale, then UH is also a special
semimartingale.

PROOF. If suffices to prove that 1{|y|>1}|y| ∗ νU ∈ V ; cf. JS II.2.29. We have

1{|y|>1}|y| ∗ νU = 1{|Ux|>1}|Ux| ∗ ν

≤ 1{|Ux|>1}‖U‖|x| ∗ ν

≤ 1{‖U‖|x|>1}‖U‖|x| ∗ ν(2.12)

≤ 1{|x|>1}‖U‖|x| ∗ ν + 1{1/‖U‖<|x|≤1}‖U‖2|x|2 ∗ ν ∈ V,(2.13)

which follows from the assumption that H is a special semimartingale and the
properties of the compensator (cf. JS II.2.13). Notice that we have implicitly as-
sumed that ‖U‖ ≥ 1; otherwise, we can conclude already from (2.12). �

LEMMA 2.6. If H is a quasi-left-continuous process, then UH is also a quasi-
left-continuous process.

PROOF. Let H be quasi-left-continuous, then ν({t} × Rd) = 0 for all t ∈
[0, T ]. Therefore, for the process UH , we have that

νU({t} × Rn) =
∫

1Rn\{0}(Ux)ν({t} × dx) = 0 ∀t ∈ [0, T ].
Hence, UH is also quasi-left-continuous. �
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3. Exponential semimartingale models. We present some details about the
model we employ, where asset prices are modeled as exponentials of general semi-
martingales. For the sake of completeness, we also derive the martingale condi-
tion in this framework, subject to a mild and natural assumption on the driving
processes.

Let Mloc(P ) be the class of all local martingales on the given stochastic basis
(�, F , (Ft )0≤t≤T ,P ); let V denote the class of processes with bounded variation.
Let H = (H 1, . . . ,Hd)� be the vector of semimartingale driving processes; it has
the triplet of characteristics T(H |P) = (B,C, ν).

ASSUMPTION (ES). Assume that the process 1{|x|>1}exi ∗ ν ∈ V for all i ∈
{1, . . . , d}.

REMARK 3.1. Equivalently, we could assume that the process Hi = e�
i H

is exponentially special, or that the process eHi
is a special semimartingale, for

all i ∈ {1, . . . , d}. Additionally, under (ES) the martingale version of the Lévy–
Khintchine formula (2.7) holds true for real arguments, and in particular for the
unit vectors ei , i ∈ {1, . . . , d}; cf. Proposition II.8.26 and Remark III.7.15 in JS.

The following result further characterizes the set of exponentially special semi-
martingales; it also extends Theorem 25.17(i) in Sato (1999) to general semi-
martingales.

LEMMA 3.2. Let H be an Rd -valued semimartingale with triplet (B,C, ν).
The set U , where

U = {
u ∈ Rd : e〈u,x〉1{|x|>1} ∗ ν ∈ V

}
,

is a convex set and contains the origin.

PROOF. The definition of the compensator ν immediately shows that U con-
tains the origin (cf. JS II.2.13, I.3.9). Now, consider u, v ∈ U and p,q ∈ (0,1) with
q = 1−p; using that F in (2.4) is a kernel and applying Hölder’s inequality twice,
we get (recall that D = {x ∈ Rd : |x| > 1})
e〈pu+qv,x〉1{|x|>1} ∗ ν =

∫ ·
0

∫
D

e〈pu+qv,x〉Fs(dx) dAs

≤
∫ ·

0

(∫
D

e〈u,x〉Fs(dx)

)p(∫
D

e〈v,x〉Fs(dx)

)q

dAs

≤
(∫ ·

0

∫
D

e〈u,x〉Fs(dx) dAs

)p(∫ ·
0

∫
D

e〈v,x〉Fs(dx) dAs

)q

= (
e〈u,x〉1D ∗ ν

)p(
e〈v,x〉1D ∗ ν

)q ∈ V.
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Hence, the set U is convex. �

Let S = (S1, . . . , Sd)� denote the vector of asset price processes. Each compo-
nent Si of S is an exponential semimartingale, that is, a stochastic process with
representation

Si
t = eHi

t , 0 ≤ t ≤ T ,1 ≤ i ≤ d,(3.1)

(shortly, Si = eHi
), where Hi = (H i

t )0≤t≤T is a real-valued semimartingale with
canonical representation

Hi = Hi
0 + Bi + Hi,c + hi(x) ∗ (μ − ν) + (

xi − hi(x)
) ∗ μ,(3.2)

where hi(x) = e�
i h(x). For simplicity, we assume that Si

0 = 1 for all i ∈ {1, . . . , d};
we also assume that the interest rate and dividend yields are zero.

REMARK 3.3. Note that hi(x) can equally well serve as a truncation function
on the real line, instead of h(xi), xi ∈ R. This is a feature specific to the unit vector;
for arbitrary vectors u�h(x) will look quite different from h(u�x).

PROPOSITION 3.4. Subject to Assumption (ES), we have that

Si = eHi ∈ Mloc(P ) ⇔ Bi + 1
2Cii + (

exi − 1 − hi(x)
) ∗ ν = 0.(3.3)

PROOF. We give two proofs, since they reveal an interesting interplay regard-
ing canonical representations and truncation functions.

A. Consider the unit vector e�
i , and apply Proposition 2.4 to this vector and the

semimartingale H . Then we get that Hi = e�
i H is a real-valued semimartingale

with triplet T(H i |P) = (B̄i,Ci, νi), where

b̄i = bi + [h(xi) − hi(x)] ∗ F,

ci = cii,(3.4)

F i(E) = F({x ∈ Rd :xi ∈ E}), E ∈ B(R \ {0}).
Further, Hi = (H i

t )0≤t≤T admits the canonical representation

Hi = Hi
0 + B̄i + Hi,c + h(y) ∗ (μi − νi) + (

y − h(y)
) ∗ μi;(3.5)

compare with the representation (3.2).
Now, applying equivalence (3.5) in EPS to the real-valued process Hi , we get

Si = eHi ∈ Mloc(P ) ⇔ B̄i + 1
2Cii + (

ey − 1 − h(y)
) ∗ νi = 0,(3.6)

which after some calculations using (3.4) yields the asserted result.
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B. We can rewrite equivalence (3.3), using the form of the cumulant process
(2.5), as follows:

Si = eHi ∈ Mloc(P ) ⇔ K(ei ) = 0.(3.7)

Now, the “if” part is rather obvious, using the martingale version of the Lévy–
Khintchine formula (2.7) for the real argument ei .

Conversely, if eHi ∈ Mloc(P ), from the uniqueness of the multiplicative de-
composition of a special semimartingale [cf. Jacod (1979), VI.2a and Theorem
6.19], we get that

E (K(ei )) = 1.(3.8)

Now, we can apply the stochastic logarithm on both sides of (3.8) since
�K(ei ) > −1 [cf. Kallsen and Shiryaev (2002), page 405] which leads to the
required result. �

4. Multidimensional dual measures. The aim of this section is to charac-
terize one-dimensional semimartingales, defined as scalar products of the driving
semimartingale H and d-dimensional vectors u, under a suitable equivalent prob-
ability measure. This measure, termed the dual measure, is defined by an Esscher
transformation; cf. Kallsen and Shiryaev (2002) (henceforth, KS; note that we do
not use the same notation as KS; in particular, K̃ in KS is denoted K here and vice
versa). We point out that the stochastic integral in the Esscher transform pertains
to interest rate modeling.

Let L(H) denote the set of all (predictable) integrable processes ϑ with respect
to the semimartingale H (JS III.6.17); ϑ� · H denotes the stochastic integral of ϑ

w.r.t. H .
Let ϑ ∈ L(H) such that ϑ� · H is exponentially special. Then, the Laplace

cumulant process of the stochastic integral process ϑ� · H is defined by

K(ϑ) = κ(ϑ) · A,

where

κ(ϑ)t = 〈ϑt , bt 〉 + 1

2
〈ϑt , ctϑt 〉 +

∫
Rd

(
e〈ϑt ,x〉 − 1 − 〈ϑt , h(x)〉)Ft(dx).(4.1)

Analogously to (2.7), it satisfies the following martingale property:

eϑ�·H

E (K(ϑ))
∈ Mloc(P );(4.2)

cf. Theorems 2.18 and 2.19 in KS. Moreover, K̃ denotes the logarithmic transform
of the cumulant process K , that is, E (K(ϑ)) = exp(K̃(ϑ)).

THEOREM 4.1. Let H be an Rd -valued semimartingale with characteristic
triplet T(H |P) = (B,C, ν). Let u be a vector in Rd . Consider an Rd -valued pre-
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dictable process ϑ , such that ϑ ∈ L(H) and ϑ� ·H is exponentially special. Define
the measure Pϑ via the Radon–Nikodym derivative

dPϑ

dP
= exp

(
ϑ� · HT − K̃(ϑ)T

)
,

assuming that eϑ�·H−K̃(ϑ) ∈ M(P ).
Then the process Hu with Hu := u�H , is a 1-dimensional semimartingale with

characteristic triplet T(Hu|Pϑ) = (Bu,Cu, νu) of the form

Bu = bu · A, Cu = cu · A, νu = Fu ⊗ A,(4.3)

where

bu = u�b + u�c · ϑ +
(
h(u�x)

eϑ�x

1 + W(ϑ)
− u�h(x)

)
∗ F,

cu = u�cu,(4.4)

Fu(E) = 1E(u�x)
eϑ�x

1 + W(ϑ)
∗ F, E ∈ B(R \ {0}).

Here, W(ϑ)t := ∫
(eϑ�x − 1)ν({t} × dx). (Recall that h denotes a generic trunca-

tion function; cf. Remark 2.1.)

PROOF. We present three proofs of the theorem; the first two proofs reveal
interesting relationships between different triplets, while the third proof is “direct”
and resembles analogous results for (time-inhomogeneous) Lévy processes; it re-
quires to understand the structure of fixed times of discontinuities.

The structure of the proofs can be represented by the following diagram:

T(H |Pϑ)

(b)

(U)

T(H |P)
(E )

(e)

(G)

(a)

(c)

(U)

T(Hu|Pϑ),

T(Hu|P)

(d)

(G)

(4.5)

where
(G)−→ means that we use Girsanov’s theorem to calculate the right side triplet

from the left side one,
(U)−→ means that we use Proposition 2.4 and

(E)−→ means that
we use the martingale version of the Lévy–Khintchine formula (2.7).
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(a) T(H |P)
(G)−→ T(H |Pϑ).

Define the process Z = (Zt )0≤t≤T via

Z := exp
(
ϑ� · H − K̃(ϑ)

)
.

Clearly, Z > 0 a.s., EZT = 1 and Z ∈ M(P ) by assumption; cf. KS for condi-
tions. Therefore, the probability measure Pϑ defined on (�, F , (Ft )0≤t≤T ) by the
Radon–Nikodym derivative dPϑ = ZT dP is equivalent to P (Pϑ ∼ P ) and the
density process is given by

Zt = d(Pϑ |Ft )

d(P |Ft )
= exp

(
ϑ� · Ht − K̃(ϑ)t

)
, 0 ≤ t ≤ T .

Moreover, using Theorem 2.19 in KS, we can express Z as follows:

Z = E
(
ϑ� · Hc + eϑ�x − 1

1 + W(ϑ)
∗ (μ − ν)

)
.(4.6)

Now, an application of Girsanov’s theorem for semimartingales (JS, Theo-
rem III.3.24) yields that T(H |Pϑ) = (B+,C+, ν+) where

B+i = Bi + ci·β+ · A + hi(x)(Y+ − 1) ∗ ν,

C+ = C,(4.7)

ν+ = Y+ · ν,

where, using Lemma 2.20 in KS, we can take the following versions of β+ and Y+:

β+ = ϑ and Y+ = eϑ�x

1 + W(ϑ)
.

(b) T(H |Pϑ)
(U)−→ T(Hu|Pϑ).

Applying Proposition 2.4 to the semimartingale H under the measure Pϑ and
the vector u�, we get that Hu = u�H is also a Pϑ -semimartingale with character-
istics T(Hu|Pϑ) = (Bu,Cu, νu), where

bu = u�b+ + [h(u�x) − u�h(x)] ∗ F+

= u�b + u�c · ϑ + u�h(x)(Y+ − 1) ∗ F

+ [h(u�x) − u�h(x)]Y+ ∗ F,(4.8)

cu = u�cu,

Fu(E) = 1E(u�x) ∗ F+ = 1E(u�x)Y+ ∗ F, E ∈ B(R \ {0}).
Therefore, the statement using steps (a) and (b) is proved.
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(c) T(H |P)
(U)−→ T(Hu|P).

Let us denote the triplet T(Hu|P) = (B−,C−, ν−); then a direct application of
Proposition 2.4 to the process H and the vector u yields that

b− = u�b + [h(u�x) − u�h(x)] ∗ F,

c− = u�cu,(4.9)

F−(E) = 1E(u�x) ∗ F, E ∈ B(R \ {0}).
(d) T(Hu|P)

(G)−→ T(Hu|Pϑ).

In order to calculate the triplet T(Hu|Pϑ) from the triplet T(Hu|P), we
use Girsanov’s theorem for semimartingales (JS, Theorem III.3.24) which states
that

Bu = B− + β−cu · A + h(y)(Y− − 1) ∗ ν−,

Cu = C−,(4.10)

νu = Y− · ν−.

Here, β− = β−
t (ω) and Y− = Y−(ω; t, y) are defined by the following formulas

(JS III.3.28):

〈Zc, (Hu)c〉 = (Z−β−)cu · A(4.11)

and

Y− = MP
μHu

(
Z

Z−

∣∣∣P̃
)
.(4.12)

Note that in (4.12) P̃ = P ⊗ B(R) denotes the σ -field of predictable sets in
� × [0, T ] × R, and MP

μHu = μHu
(ω;dt, dy)P (dω) is the positive measure on

(� × [0, T ] × R, F ⊗ B([0, T ]) ⊗ B(R)) defined by

MP
μHu (W) = E(W ∗ μHu

)T(4.13)

for measurable nonnegative functions W = W(ω; t, y) on � × [0, T ] × R.
The conditional expectation MP

μHu ( Z
Z− |P̃) is, by definition, the MP

μHu -a.s.

unique P̃ -measurable function Y− with the property

MP
μHu

(
Z

Z−
U

)
= MP

μHu (Y−U)(4.14)

for all nonnegative P̃ -measurable functions U = U(ω; t, y); cf. JS III.3.16.
We show that in our case, where Z is given by (4.6), we can take the following

versions of β− and Y−:

β− = ϑ�u

|u|2 and Y− = exp((ϑ�u/|u|2)y)

1 + W(ϑ)
.(4.15)
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Indeed, (4.6) immediately yields that

Zc = Z−ϑ� · Hc,

while we also have that (Hu)c = u�Hc. Therefore, using JS I.4.41, III.6.6, we
calculate

〈Zc, (Hu)c〉 = 〈Z−ϑ� · Hc,u�Hc〉
= Z−ϑ� · 〈Hc,Hc〉 · u
= Z−ϑ�cu · A(4.16)

= Z−ϑ� uu�

|u|2 cu · A

=
(
Z−

ϑ�u

|u|2
)
cu · A,

which yields that we can take β− = ϑ�u
|u|2 . Now, for all test functions U and using

that �K̃(ϑ) = log(1 + W(ϑ)), see Theorem 2.18 in KS, we get that

MP
μHu

(
Z

Z−
U

)

= E

[∫ T

0

∫
R

Zt(ω)

Zt−(ω)
U(ω; t, y)μHu

(ω;dt, dy)

]

= E

[ ∑
0≤t≤T

eϑ��Ht(ω)−�K̃(ϑ)t U(ω; t, u��Ht(ω))1{u��Ht(ω) �=0}
]

(4.17)

= E

[ ∑
0≤t≤T

e(ϑ�u/|u|2)u��Ht(ω)

1 + W(ϑ)t
U(ω; t, u��Ht(ω))1{u��Ht(ω) �=0}

]

= E

[∫ T

0

∫
R

e(ϑ�u/|u|2)y

1 + W(ϑ)t
U(ω; t, y)μHu

(ω;dt, dy)

]

= MP
μHu

(
e(ϑ�u/|u|2)y

1 + W(ϑ)t
U

)
;

therefore, one may take Y− as in (4.15).
Now, replacing β− and Y− from (4.15) to (4.10), and using also (4.9), we get

that Cu = C− = u�Cu,

1E(y) ∗ νu = 1E(y) ∗
(

e(ϑ�u/|u|2)y

1 + W(ϑ)
· ν−

)
(4.18)

= 1E(u�x)
e(ϑ�u/|u|2)u�x

1 + W(ϑ)
∗ ν = 1E(u�x)

eϑ�x

1 + W(ϑ)
∗ ν
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and

Bu = u�B + [h(u�x) − u�h(x)] ∗ ν + ϑ�u

|u|2 u�cu · A

+ h(u�x)

(
e(ϑ�u/|u|2)u�x

1 + W(ϑ)t
− 1

)
∗ ν(4.19)

= u�B + u�cϑ · A +
(
h(u�x)

eϑ�x

1 + W(ϑ)t
− u�h(x)

)
∗ ν.

Therefore, the proof using steps (c) and (d) yields the required results.

(e) T(H |P)
(E)−→ T(Hu|Pϑ).

Using the martingale version of the Lévy–Khintchine formula, it is sufficient to
show that

ezHu

E (Ku(z))
∈ Mloc(Pϑ)(4.20)

for all z ∈ Z , where Z ⊆ R open, such that

1{|y|>1}ezy ∗ νu ∈ V;(4.21)

cf. JS III.7.15. Using Proposition III.3.8 in JS, (4.20) is equivalent to

Z
ezHu

E (Ku(z))
= eϑ�·H

E (K(ϑ))

ezHu

E (Ku(z))
∈ Mloc(P );(4.22)

here Ku denotes the Laplace cumulant process associated to the triplet (Bu,Cu,

νu). Moreover, using (4.4), condition (4.21) translates to

1{|u�x|>1}e(zu+ϑ)�x ∗ ν ∈ V,(4.23)

because W(ϑ) does not depend on x.
Now, the exponent of the numerator in (4.22) is

ϑ� · H + zHu = ϑ� · H + zu�H = (ϑ + zu)� · H,

which has the unique exponential compensator (KS, Lemma 2.15)

K(ϑ + zu)

under the measure P , for the cumulant defined in (2.5); that is,

e(ϑ+zu)�·H

E (K(ϑ + zu))
∈ Mloc(P ).(4.24)

Therefore, to complete the proof using step (e), it suffices to show

E (K(ϑ))E (Ku(z)) = E
(
K(ϑ + zu)

)
.(4.25)
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Now, Yor’s formula [cf. Jacod (1979), Proposition 6.4] yields that

E (K(ϑ))E (Ku(z)) = E
(
K(ϑ) + Ku(z) + [K(ϑ),Ku(z)]).

Hence, (4.25) reduces to showing that

K(ϑ) + Ku(z) + [K(ϑ),Ku(z)] = K(ϑ + zu).(4.26)

On the right-hand side of (4.26), we have

K(ϑ + zu) = (ϑ + zu)�b · A + 1
2(ϑ + zu)�c(ϑ + zu) · A

(4.27)
+ (

e(ϑ+zu)�x − 1 − (ϑ + zu)�h(x)
) ∗ ν.

On the left-hand side of (4.26), we have similarly

K(ϑ) = ϑ�b · A + 1
2ϑ�cϑ · A + (

eϑ�x − 1 − ϑ�h(x)
) ∗ ν;(4.28)

the second term on the left-hand side of (4.26), using (4.4), is

Ku(z) = zBu + 1

2
z2Cu + (

ezy − 1 − zh(y)
) ∗ νu

= zu�B + zu�cϑ · A + z

(
h(u�x)

eϑ�x

1 + W(ϑ)
− u�h(x)

)
∗ ν

+ 1

2
z2u�cu · A + (

ezu�x − 1 − zh(u�x)
) eϑ�x

1 + W(ϑ)
∗ ν(4.29)

= zu�B + zu�cϑ · A + 1

2
z2u�cu · A

+
(

e(zu+ϑ)�x − eϑ�x

1 + W(ϑ)
− zu�h(x)

)
∗ ν.

The last term on the left-hand side of (4.26) is

[K(ϑ),Ku(z)] = ∑
t≤·

�K(ϑ)t�Ku(z)t ,(4.30)

since K , Ku are predictable processes of finite variation; cf. JS I.4.53.
Now, we proceed as follows. First, we show that the drift terms on the left-

and right-hand side of (4.26) are equal. Then we show that the diffusive terms
are equal. Finally, we prove that the jump terms on the left- and right-hand side
of (4.26) are equal.

The drift term and the diffusive term are rather easy to handle; indeed from
(4.28) and (4.29), we have that the drift term of the LHS of (4.26) is

ϑ�b · A + zu�b · A = (ϑ + zu)� · A.(4.31)

Similarly, the diffusive term of the LHS of (4.26) is
1
2(ϑ�cϑ + z2u�cu + zu�cϑ + zϑ�cu) · A = 1

2(ϑ + zu)�c(ϑ + zu) · A,(4.32)
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since the matrix C is symmetric. Hence, both terms agree with the RHS.
The jump terms are more difficult to manipulate due to the presence of the fixed

times of discontinuity for the semimartingale H , which entails that the Laplace cu-
mulant process is discontinuous. Regarding the fixed times of discontinuity, using
Theorem 2.18 in KS, we have

�K(ϑ)t =
∫

(eϑ�x − 1)ν({t} × dx) = W(ϑ)t ,(4.33)

and

�Ku(z)t =
∫

(ezy − 1)νu({t} × dy)

=
∫

(ezu�x − 1)
eϑ�x

1 + W(ϑ)t
ν({t} × dx) (by (4.4))(4.34)

=
∫ (

e(ϑ+zu)�x − eϑ�x) 1

1 + W(ϑ)t
ν({t} × dx).

An important observation here is that W(ϑ) does not depend on the integrating
variable x; hence, we can pull it out of the integration, and get

�Ku(z)t = 1

1 + W(ϑ)t

∫ (
e(ϑ+zu)�x − eϑ�x)

ν({t} × dx).(4.35)

REMARK 4.2. A second important observation is the following: assume for a
moment that ν is a measure of finite variation, that is, (|x| ∧ 1) ∗ ν ∈ V , such that
the integrals make sense; then∑

t≤·
�K(ϑ)t = ∑

t≤·

∫
Rd

(eϑ�x − 1)ν({t} × dx)

=
∫ ·

0

∫
Rd

(eϑ�x − 1)ν(dt, dx)(4.36)

= (eϑ�x − 1) ∗ ν,

since K is a process of finite variation that jumps only at fixed times.

Hence, for the last term in (4.26), we can calculate further using (4.35)

[K(ϑ),Ku(z)] = ∑
t≤·

�K(ϑ)t�Ku(z)t

= ∑
t≤·

W(ϑ)t
1

1 + W(ϑ)t

∫ (
e(ϑ+zu)�x − eϑ�x)

ν({t} × dx)

= ∑
t≤·

(1 + W(ϑ)t − 1)

1 + W(ϑ)t

∫ (
e(ϑ+zu)�x − eϑ�x)

ν({t} × dx)(4.37)
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= ∑
t≤·

(∫ (
e(ϑ+zu)�x − eϑ�x)

ν({t} × dx)

− 1

1 + W(ϑ)t

∫ (
e(ϑ+zu)�x − eϑ�x)

ν({t} × dx)

)
.

Now, using the above observations, we can show that the jump terms on the left-
and right-hand side of (4.26) are equal. Indeed, we can express the integrals w.r.t.
the compensator ν as sums in (4.28) and (4.29) (see Remark 4.2 for the intuition).
Then, we have that the “jump” term on the LHS of (4.26) (denoted by I) is

I = ∑
t≤·

∫ (
eϑ�x − 1 − ϑ�h(x) + e(zu+ϑ)�x − eϑ�x

1 + W(ϑ)t

− zu�h(x) + e(ϑ+zu)�x

− eϑ�x − 1

1 + W(ϑ)t

(
e(ϑ+zu)�x − eϑ�x))

ν({t} × dx)(4.38)

= ∑
t≤·

∫ (
e(ϑ+zu)�x − 1 − (ϑ + zu)�h(x)

)
ν({t} × dx)

= (
e(ϑ+zu)�x − 1 − (ϑ + zu)�h(x)

) ∗ ν,

which equals the corresponding quantity on the RHS of (4.26). This settles the
proof using step (e). �

REMARK 4.3. Naturally, we can recover the results about the dual process
under the dual measure in dimension one (see Theorem 3.4 in EPS) as a special
case of the multidimensional framework. Indeed, assume that H is an R-valued
semimartingale such that

S = eH ∈ M(P ) and
dPϑ

dP
= S = eH ,

hence ϑ = 1; in this case we have immediately that K(1) = K̃(1) = 0 and
W(1) = 0 (cf. Remark 3, page 408 in KS). Moreover, the dual process in the one-
dimensional case is Hu = −H , hence, u = −1.

Then T(H ′|P ′) = T(Hu|Pϑ) = (Bu,Cu, νu), where

Bu = −B − C − h(x)(ex − 1) ∗ ν = B ′,
Cu = C = C′,

1E(x) ∗ νu = 1E(−x)ex ∗ ν = 1E(x) ∗ ν′, E ∈ B(R \ {0}),
where we have used the antisymmetry property of the truncation function, that is,
h(−x) = −h(x).
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COROLLARY 4.4. Let H be a Lévy process, a special and exponentially spe-
cial semimartingale. Consider u ∈ Rd and ϑ ∈ L(H) and define the measure Pϑ

as in Theorem 4.1. Then the process Hu is a 1-dimensional semimartingale with
characteristics T(Hu|Pϑ) = (Bu,Cu, νu) of the form

Bu =
∫ ·

0
bu
s ds, Cu =

∫ ·
0

cu
s ds,

(4.39)
νu([0, ·] × E) =

∫ ·
0

∫
E

Fu
s (dx) ds,

where

bu
s = u�b + u�cϑs +

∫
Rd

u�x(eϑ�
s x − 1)F (dx),

cu
s = u�cu,(4.40)

Fu
s (E) =

∫
Rd

1E(u�x)eϑ�
s xF (dx), E ∈ B(R \ {0}).

Note that H is not necessarily a Lévy process under the measure Pϑ . It remains a
Lévy process (PIIS) if ϑ is deterministic and time-independent; it becomes a time-
inhomogeneous Lévy process (PII) if ϑ is deterministic but time-dependent; it is a
general semimartingale if ϑ is random.

PROOF. Directly from Theorems 4.1 and II.4.15 and Corollary II.4.19
in JS. �

COROLLARY 4.5. Let H be an Rd -valued diffusion process that satisfies the
stochastic differential equation

dHt = b(t,Ht ) dt + σ(t,Ht) dWt, H0 = 0,(4.41)

where b : [0, T ] × Rd → Rd and c := σσ�, such that c : [0, T ] × Rd → Rd×d is
symmetric and nonnegative definite. The characteristics of H are (B,C, ν), where
obviously ν ≡ 0, and

B =
∫ ·

0
b(s,Hs) ds,

(4.42)
C =

∫ ·
0

c(s,Hs) ds =
∫ ·

0
σ(s,Hs)σ (s,Hs)

� ds.

Consider u ∈ Rd and ϑ ∈ Rd (deterministic, for simplicity), and define the mea-
sure Pϑ as in Theorem 4.1. Then the process Hu is a univariate diffusion process
with characteristics T(Hu|Pϑ) = (Bu,Cu, νu) of the form

Bu = u�B + u�Cϑ =
∫ ·

0

(
u�b(s,Hs) + u�c(s,Hs)ϑ

)
ds,

(4.43)
Cu = u�Cu =

∫ ·
0

(u�c(s,Hs)u) ds
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and νu ≡ 0.

PROOF. Directly from Theorem 4.1 and JS III.2.19, III.2.23, III.2.27. �

5. Applications: Models and options. 1. The payoff of a swap option, also
coined a “Margrabe” option or option to exchange one asset for another, is

(S1
T − S2

T )+

and we denote its value by

M(S1, S2) = E[(S1
T − S2

T )+].(5.1)

The payoff of the quanto call and put option, respectively, is

S1
T (S2

T − K)+ and S1
T (K − S2

T )+,

and we will use the following notation for the value of the quanto call option

QC(S1, S2,K) = E[S1
T (S2

T − K)+](5.2)

and similarly for the quanto put option

QP(S1,K,S2) = E[S1
T (K − S2

T )+].(5.3)

The different variants of the quanto option traded in Foreign Exchange markets are
explained in detail in Musiela and Rutkowski (2005).

The payoff of a digital (cash-or-nothing) and a correlation, or quanto, digital
option, respectively, is

1{ST >K} and S1
T 1{S2

T >K}.

Hence, the holder of a correlation digital option receives one unit of the payment
asset (S1) at expiration, if the measurement asset (S2) ends up in the money. Of
course, this is a generalization of the (standard) digital asset-or-nothing option,
where the holder receives one unit of the asset if it ends up in the money. We
denote the value of the digital option by

D(S,K) = E
[
1{ST >K}

]
(5.4)

and the value of the correlation digital option by

CD(S1, S2,K) = E
[
S1

T 1{S2
T >K}

]
.(5.5)

Moreover, we denote the values of the standard call and put options by

C(S,K) = E[(ST − K)+](5.6)

and

P(K,S) = E[(K − ST )+].(5.7)
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THEOREM 5.1. Assume that the asset price processes evolve as exponential
semimartingales according to (3.1)–(3.3), Assumption (ES) is in force and eHi ∈
M(P ), i = 1,2. Then we can relate the value of a swap and a plain vanilla option
via the following duality:

M(S1, S2) = Pϑ(1, Su) = Cθ (S
v,1),(5.8)

where the characteristics (Cu, νu) and (Cv, νv) of Hu = logSu and Hv = logSv ,
respectively, are given by Theorem 4.1 for ϑ = (1,0)�, u = (−1,1)�, and θ =
(0,1)�, v = (1,−1)�.

PROOF. We will use asset S1 as the numéraire asset; if we use asset S2 instead,
then we get the duality relationship with a call option. The value of the swap, or
“Margrabe,” option is

M(S1, S2) = E[(S1
T − S2

T )+]
(5.9)

= E

[
eH 1

T

(
1 − S2

T

S1
T

)+]
= E

[
e〈ϑ,HT 〉

(
1 − S2

T

S1
T

)+]
,

where ϑ = (1,0)�. Moreover, e〈ϑ,H 〉 ∈ M(P ) by assumption. Define a new mea-
sure Pϑ via the Radon–Nikodym derivative

dPϑ

dP
= e〈ϑ,HT 〉

and the valuation problem (5.9) takes the form

M(S1, S2) = Eϑ

[(
1 − S2

T

S1
T

)+]
,

where we define the process Su = (Su
t )0≤t≤T via

Su
t = S2

t

S1
t

= eH 2
t

eH 1
t

= e〈u,Ht 〉 = eHu
t , 0 ≤ t ≤ T ,(5.10)

for u = (−1,1)�. The triplet of predictable characteristics of the semimartingale
Hu is given by Theorem 4.1 for ϑ = (1,0)� and u = (−1,1)�.

Now, applying Proposition III.3.8 in JS, we obtain that

e〈u,H 〉 ∈ M(Pϑ) since e〈u,H 〉e〈ϑ,H 〉 = eH 2 ∈ M(P ).

Therefore, we can conclude that

M(S1, S2) = Eϑ [(1 − Su
T )+]. �
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THEOREM 5.2. Assume that the asset price processes evolve as exponential
semimartingales according to (3.1)–(3.3), Assumption (ES) is in force and eHi ∈
M(P ), i = 1,2. Then we can relate the value of a quanto call and a plain vanilla
call option via the following duality:

QC(S1, S2,K) = Cϑ(Su,K),(5.11)

where the characteristics (Cu, νu) of Hu = logSu are given by Theorem 4.1 for
ϑ = (1,0)� and u = (0,1)�. An analogous duality result relates the quanto put
option and the standard put option.

PROOF. The value of the quanto call option is

QC(S1, S2,K) = E[S1
T (S2

T − K)+]
= E[eH 1

T (S2
T − K)+]

(5.12)
= E

[
e〈ϑ,HT 〉(eH 2

T − K)+
]

= Eϑ [(eHu
T − K)+],

where dPϑ

dP
= e〈ϑ,HT 〉 for ϑ = (1,0)� and Hu = u�H for u = (0,1)�. Hence, the

statement is proved. �

REMARK 5.3. Note that

eHu = eH 2
/∈ M(Pϑ) because eHu

e〈ϑ,H 〉 = eH 1+H 2
/∈ M(P ).

Hence, this result is a useful computational tool, but cannot serve as a “dual mar-
ket” theory.

THEOREM 5.4. Assume that the asset price processes evolve as exponential
semimartingales according to (3.1)–(3.3), Assumption (ES) is in force and eHi ∈
M(P ), i = 1,2. Then we can relate the value of a correlation digital option and a
standard digital option via the following duality:

CD(S1, S2,K) = Dϑ(Su,K),(5.13)

where the characteristics (Cu, νu) of Hu = logSu are given by Theorem 4.1 for
ϑ = (1,0)� and u = (0,1)�.

PROOF. Similar to the proof of Theorem 5.2 and therefore omitted. �

2. In the same framework, we will treat an option that depends on three assets,
which will be called, for obvious reasons, a quanto-swap option. The payoff of the
quanto-swap option is

S1
T (S2

T − S3
T )+
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and can be interpreted as a swap option struck in a foreign currency. Let us denote
its value by

QS(S1, S2, S3) = E[S1
T (S2

T − S3
T )+].

Here, we will restrict ourselves to semimartingales with independent increments
(PII).

THEOREM 5.5. Assume that the asset price processes evolve as exponential
semimartingale PIIs according to (3.1)–(3.3), Assumption (ES) is in force and
eHi ∈ Mloc(P ), i = 1,2,3. Assume further that ϑ�H is exponentially special for

ϑ = (1,1,0) and e〈ϑ,H 〉
E(K(ϑ))

∈ M(P ). Then we can relate the value of a quanto swap
option and a standard put (or call) option via the following duality:

QS(S1, S2, S3) = CPϑ(1, Su),(5.14)

where the characteristics (Cu, νu) of Hu = logSu are given by Theorem 4.1 for
ϑ = (1,1,0)� and u = (0,−1,1)�. Moreover, the constant C := E (K(ϑ)).

PROOF. Instead of changing measure once using S1 as the numéraire and then
once more using either S2 or S3, we will combine S1 and S2 (or S3) directly. We
have

QS(S1, S2, S3) = E[S1
T

(
S2

T − S3
T

)+]

= E

[
S1

T S2
T

(
1 − S3

T

S2
T

)+]
(5.15)

= E
[
e〈ϑ,HT 〉(1 − e〈u,HT 〉)+]

,

where ϑ = (1,1,0)� and u = (0,−1,1)�.
Clearly, e〈ϑ,HT 〉 /∈ M(P ), but since ϑ�H is exponentially special it has a unique

exponential compensator; the exponential compensator is given by K(ϑ) and is
deterministic, since H is a PII. Hence, we have

QS(S1, S2, S3) = E (K(ϑ))E

[
e〈ϑ,HT 〉

E (K(ϑ))

(
1 − e〈u,HT 〉)+]

(5.16)
= CEϑ [(1 − eHu

T )+],
where dPϑ

dP
= e〈ϑ,HT 〉 and Hu = u�H . Therefore, the triplet T(Hu|Pϑ) can be

calculated using Theorem 4.1 with ϑ = (1,1,0)� and u = (0,−1,1)�, and the
statement is proved. �

3. The aim of this final section is to further calculate some explicit examples,
especially for processes with jumps. In case the driving semimartingale is contin-
uous, then Theorem 4.1 states that we are dealing again with a continuous semi-
martingale, usually of the same class, and the characteristics can be calculated very
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easily. When dealing with semimartingales that exhibit jumps, then one must work
a little bit more.

Here, we first revisit the classical result of Margrabe (1978) in the Black–
Scholes model, although the same calculations are valid for any continuous semi-
martingale. The next example involves quanto options and a multidimensional gen-
eralization of Merton’s jump-diffusion model [cf. Merton (1976)].

The final and more interesting example involves swap and quanto options for
multidimensional generalized hyperbolic Lévy processes. The moral of this exam-
ple can be summarized as follows: when modeling assets by a two-dimensional
generalized hyperbolic Lévy model, then the valuation of swap and quanto op-
tions is equivalent to the valuation of a call or put option in a one-dimensional
generalized hyperbolic Lévy model with suitable parameters.

EXAMPLE 5.6 [Margrabe (1978)]. Consider two assets, S1 and S2, where the
dynamics of each asset are

Si
t = exp(H i

t ) = exp(bi t + σiW
i
t ), i = 1,2,0 ≤ t ≤ T ;(5.17)

hence, Hi is a Brownian motion with drift, i = 1,2. In other words, the local or
differential characteristics of H = (H 1,H 2) are

c =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
and F ≡ 0,

where σ1, σ2 ≥ 0 and ρ ∈ [−1,1] is the correlation coefficient of the Brownian
motions W 1 and W 2, i.e. 〈W 1,W 2〉 = ρ. Assume, as in Margrabe (1978), that the
assets pay no dividends. According to (3.3), the drift characteristic has the form

b = −1

2

(
c11
c22

)
= −1

2

(
σ 2

1
σ 2

2

)
.

The price of the option to exchange asset S1 for asset S2, according to Theo-
rem 5.1, is equal to the price of a put option with strike 1, on an asset Su with char-
acteristics (Cu, νu) described by Theorem 4.1 for ϑ = (1,0)� and u = (−1,1)�.
Hence, we get that

cu = u�cu = (−1 1 )

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

)(−1
1

)
= σ 2

1 + σ 2
2 − 2ρσ1σ2

and Fu ≡ 0. Therefore, we have recovered the original result of Margrabe [cf.
Margrabe (1978), page 179] as a special case in our setting.

Moreover, we have that the drift term bu of Su has the form

bu = u�b + u�cϑ

= −1

2
(−1 1 )

(
σ 2

1
σ 2

2

)
+ (−1 1 )

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

)(
1
0

)
= −1

2
(σ 2

1 + σ 2
2 − 2ρσ1σ2) = −1

2
cu,

as was expected, since Su is a Pϑ -martingale.
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EXAMPLE 5.7. Let us consider the following extension of Merton’s jump dif-
fusion model: the two assets S1 and S2 are modeled as exponential jump-diffusion
processes

Si
t = exp(bit + H

i,c
t + H

i,d
t ), i = 1,2,(5.18)

where (a) the drift terms are determined by the martingale condition (3.3); (b) the
continuous martingale parts Hi,c are correlated Brownian motions with variance
σi and correlation ρσ1σ2 (as in the previous example); the pure jump parts Hi,d

are compound Poisson processes with intensity λi , where the jump heights follow,
for the sake of brevity, independent normal distributions with variance τi and zero
mean. Note that since the Poisson process has finite variation, we can choose the
truncation function h(x) ≡ 0. Hence, the local characteristics of H = (H 1,H 2)�
are

b =
(

b1
b2

)
, c =

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

)
,(5.19)

and F has the Lebesgue density f where

f (x1, x2) =
2∏

i=1

1

τi

√
2π

exp
(
− x2

i

2τ 2
i

)
· λi.(5.20)

Now, the price of a quanto call option with strike K , according to Theorem 5.2,
is equal to the price of a call option with the same strike K , on an asset Su with
characteristics (Bu,Cu, νu) provided by Theorem 4.1 for ϑ = (1,0)� and u =
(0,1)�. Hence, we can calculate

bu = b2 + c12 = b2 + ρσ1σ2,(5.21)

cu = c22 = σ 2
2 ;(5.22)

for the Lévy measure, using the independence of the normal variables and com-
pleting the square, we have for y ∈ R, E ∈ B(R\{0}):

1E(y) ∗ Fu = 1E(x2)e
x1 ∗ F

=
∫

R2
1E(x2)e

x1

2∏
i=1

(
1

τi

√
2π

exp
(−x2

i

2τ 2
i

)
λi

)
dx1 dx2

= λ2

∫
E

1

τ2
√

2π
exp

(−x2
2

2τ 2
2

)
dx2(5.23)

× λ1e
τ 2

1 /2
∫

R

1

τ1
√

2π
exp

(
−(x1 − τ 2

1 )2

2τ 2
1

)
dx1︸ ︷︷ ︸

=1

= λ2λ1e
τ 2

1 /2
∫
E

1

τ2
√

2π
exp

(
− x2

2

2τ 2
2

)
dx2.
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Therefore, pricing a quanto option in case the two assets are modeled as jump-
diffusions, is equivalent to pricing a call option in a univariate jump-diffusion
model of the same class, with parameters given by (5.21)–(5.23). In particu-
lar, jumps occur according to a compound Poisson process with intensity λu =
λ2λ1 exp

τ 2
1
2 , and jump heights are normally distributed with jump variance τ2 and

zero mean.

REMARK 5.8. If we assume that the normal variables in the Lévy measure are
correlated, then the statement remains essentially the same. The jump intensity will
be different and the normal distribution describing the jumps will have a nonzero
mean, but the same variance τ2.

EXAMPLE 5.9 (GH). Consider two assets that are modeled as (depen-
dent) generalized hyperbolic (henceforth GH) Lévy processes, hence, H =
(H 1,H 2)� ∼ GH2(λ,α,β, δ,μ,�); cf. Barndorff-Nielsen (1977). The parame-
ters can take the following values: λ ∈ R, α, δ ∈ R≥0, β,μ ∈ R2, and � ∈ R2×2 is
a symmetric, positive definite matrix; w.l.o.g. we can assume det(�) = 1. There-
fore, the triplet of predictable characteristics (b, c,F ) is

b =
(

b1
b2

)
, c ≡ 0,(5.24)

where b1, b2 are determined by the martingale condition (3.3); the Lévy measure
F has the Lebesgue density f where, for x ∈ R2,

f (x) = e〈β,x〉

π

√
〈x,�−1x〉

(∫ ∞
0

√
2y + α2K1(

√
(2y + α2)〈x,�−1x〉)

π2y(J 2|λ|(δ
√

2y) + Y 2|λ|(δ
√

2y))
dy

(5.25)

+ αK1
(
α

√
〈x,�−1x〉)1{λ>0}

)
;

cf. Masuda (2004). The limiting case δ = 0, for λ > 0, corresponds to the bivariate
Variance Gamma model and the Lévy measure is

f (x) = λαe〈β,x〉

π

√
〈x,�−1x〉

K1
(
α

√
〈x,�−1x〉);(5.26)

cf. Hammerstein (2004). If α2 − 〈β,�β〉 > 0, then moments of all orders and the
moment generating function exist.

Now, we want to determine the triplet of local characteristics for the univariate
Lévy process Hu under the measure Pϑ , resulting from the duality results for
swap and quanto options. According to Theorems 5.1 and 5.2, the characteristics
are provided by Theorem 4.1 for ϑ = (1,0)� and u = (−1,1)� and ϑ = (1,0)�
and u = (0,1)�, respectively.
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As a first step, we have that the change of probability measure from P to Pϑ

produces an exponential tilting of the Lévy measure by 〈ϑ,x〉 = x1, in both cases.
Therefore, under Pϑ we have a Lévy process from the same class, with new skew-
ness parameter βϑ = (β1 + 1, β2).

The following result determines the parameters of a multidimensional GH dis-
tribution under a Radon transformation; the proof follows directly using the char-
acteristic function, see also Lillestøl (2002) for the NIG case. Let H be a ran-
dom vector such that H ∼ GHn(λ,α,β, δ,μ,�) and consider the transformation
Hu = u�H , for u ∈ Rn\{0}. Then

Hu ∼ GH1(λ
u,αu,βu, δu,μu),

where

λu = λ, αu =
√

α2 − β��β

u��u
+

(
u��β

u��u

)2

,

βu = u��β

u��u
, δu = δ

√
u��u, μu = u�μ.

Therefore, for the swap option we have that Hu under Pϑ follows a univariate
GH distribution with parameters

λu = λ,

αu =
√

α2 − (β1 + 1)2δ11 − β2
2δ22 − 2(β1 + 1)β2δ12

δ11 + δ22 − 2δ12
+ (βu)2,

βu = β2δ22 − (β1 + 1)δ11 − δ12(β2 − β1 − 1)

δ11 + δ22 − 2δ12
,(5.27)

δu = δ
√

δ11 + δ22 − 2δ12,

μu = μ2 − μ1,

hence, the Lévy measure is known. The drift term bu is determined by the martin-
gale property of Su = eHu

under the measure Pϑ .
Similarly, for the quanto option we have that Hu under Pϑ follows a univariate

GH distribution with parameters

λu = λ, αu =
√√√√α2 − (β1 + 1)2(δ11 − δ−1

22 δ2
12)

δ22
,

(5.28)

βu = β2 + (β1 + 1)δ12

δ22
, δu = δ

√
δ22, μu = μ2,

which also provides the Lévy measure. The drift term is given by

bu = b2 +
∫

R2
x2(e

x1 − 1)F (dx).(5.29)
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REMARK 5.10. The calculations for quanto options are also valid for correla-
tion digital options.
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