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The Erdos-Rényi or G(n, p)-model

We construct a random graph with vertex set V = {1,...,n}. For
each candidates edge ij we flip a coin with success probability p to
decide whether or not to include it, independently of all other
edges.

Often one is interested in the behaviour of G(n, p) as n grows
large, where p = p(n) is allowed to vary with n. Depending on the
choice of p(n) qualitatively different types of behaviour can be
observed.

This model has been studied quite intensively over the past 5
decades and as a result quite a lot is known about it’s behaviour
which is often (surprisingly) complex.



The random geometric model

We construct a random graph G, as follows. We pick vertices
Xi,...,X, € RY at random (iid according to some probability
distribution v on R?) and we join X;, X; (i # j) by an edge if
1X; — Xll< r.

We are interested in the behaviour of the various graph parameters
of this graph as n grows large, where r = r(n) is allowed to vary
with n. We will allow any choice of v that has a bounded density
function and ||.|| may be any norm.

The distance r(n) plays a role similar to that of p(n) in G(n, p).
Depending on the choice of r(n) qualitatively different types of
behaviour can be observed.
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Graph theory notation and terminology

Let G = (V, E) be a graph.
A(G) will denote the maximum degree of G.

L(G) will denote the number of vertices in the largest component
of G.

A cligue in G is a complete subgraph of G, ie. a set of vertices
C C V such that vw € E for all v,w € C.
The clique number w(G) is the size of the largest clique.

A k-colouring of G isamap f: V — {1,..., k} that satisfies
f(v) # f(w) whenever vw € E

The chromatic number x(G) is the least k such that G is
k-colourable.

The degeneracy §*(G) is the maximum over all subgraphs of G of
the minimum degree. The significance of §* is that if the greedy
algorithm is used to colour G then ¢*(G) + 1 colours will be used.



Probability terminology

If Z1,7Z5,... is a sequence of random variables and c is a constant
then we say that Z, — c in probability if P(|Z, — c| > €) — 0 for
all e > 0.

If A1, Ao, ... is a sequence of events then we say that A, holds

whp. (with high probability) if P(A,) — 1.



Some background: connectivity

Theorem.[Erdds-Rényi 1959]
1. If np < (1 —€)In(n) then P(G, is connected ) — 0;
2. If np > (1+¢€)In(n) then P(G, is connected ) — 1.

Theorem.[Penrose 1998] There exists a constant ¢ such that
L. If nr? < (c — €)In(n) then P(G, is connected ) — 0;
2. If nr? > (c + €)In(n) then P(G, is connected ) — 1.

Note: these are simplifications/corollaries of the actual results.

The constant c is chosen in such a way that the average degree is

~ In(n). Some restrictions on the probability measure v and norm

|||l apply in this slide and the one after the next. In particular v is
taken uniform on [0, 1]9.



nr? and the average degree

We prefer to describe the various cases in terms of the quantity
nrd, because nr¢ can be considered a measure of the average
degree of the graph. Intuitively it should be obvious that the
expected degree scales with nr?. More formally it can be shown
that:

Proposition. The average degree d of G, satisfies:
1. If nr? > n~1 then n% — 0 [pa F2(x)dx in probability;
2. If nr? = O(n~1) then liminf,_ o P(d = 0) > 0.

Here 0 is the d-dimensional volume of the unit ball and f is the
probability density function of v.



Some more background: the giant component

Theorem[Erdos-Rényi 1960]

1. If np <1 — € then M — 0 in probability;

2. If np > 1+ € then lim inf@ > 0 with probability 1.
Theorem[Penrose 2003] There is a constant ¢ such that

1. If nrY < c — e then @ — 0 in probability;

2. 1f nr? > ¢ + € then liminf X5 > 0 with probability 1.

Again these are simplifications/corollaries of the actual results.
The precise value of the constant ¢ is unknown.



Two-point concentration in G(n, p(n))

Theorem.[Matula 1972] If p is fixed then

P(w(G(n, p)) € {k(n), k(n) +1}) — 1,

where k(n) := 2log,(n) — 2logy log,(n) + 1 + 2log,(e/2) with
b=1/p.

Theorem.[tuczak 1991] If p(n) < n~8 for some & > 0 then

P(x(G(n,p)) € {k(n), k(n) +1}) — 1,

for some sequence k(n).

Theorem.[Alon& Krivelevich 1997] The result of Luczak also

holds when p(n) < n=279.



Two-point concentration in random geometric graphs:
previous work

Theorem.[Mansson 1999] If M, denotes the largest number of
points contained in a ball of radius r = r(n) and nr¢ = n then

P(M, € {k k+1}) — 1.

Theorem.[Penrose 2002] If nr¢ = O(1) then
P(w(Gn) € {k(n), k(n) +1}) — 1,

for some sequence k(n).

The result actually is shown to hold for a class of related random
variables.



Two-point concentration in random geometric graphs:
previous work cont'd

Theorem.[Penrose 2003] If nr? = o(In(n)) and v is uniform on
[0,1]7 then
P(A(Gh) € {k(n), k(n) +1}) — 1,

for some sequence k(n).

He conjectured the last result to be true also for w(Gp,).



A framework: clustering rules

We assume we are given a a sequence of maps (h,), that assign
non-negative integers to finite subsets of RY s.t. for some

R1, R>» > 0 the following hold:
(C1) ha(A) < |A]
(C2) If AC B(x;Ryr(n)) for some x € R? then h,(A) = |A|;
(C3) If hp(A) > 0 then |[a — b||< Rar(n) for all a,b € A;
(C4)

C4) If hp(A) =1 then h,(A\ {a}) >/ — 1 for all but at most one
acA.

We will be interested in the maximum M = M(n) of h,(A) over all
subsets A C {Xq,...,Xp}. If hy(A) = I then we will say that A is
an /-cluster and we will say that A is a (> /)-cluster if h,(A) > |I.



Examples

Example. We get M(n) =
diam(A) < r(n) and h,(A)
Ri=%1R =1,

w(Gp) if we set h,(A) = |A| if
= 0 otherwise. We may take

Example. If W is a bounded set with non-empty interior, then we
can get M(n) = max, [{X1,..., Xs} N (x + rW)|, the maximum
number of points contained in any translate of rW. We can put Ry
equal to the inradius and R» equal to the diameter of W,

Example. Set h,(A) = 0 if A is not contained in some ball B(x; r)
and otherwise let h,(A) be equal to the maximum degree + 1 of

the subgraph of G, induced by A. Then M(n) = A(G,) + 1 and
we can put R; = % and Ry = 2.



Today's main results
Theorem 1. If nr? = o(In n) and (C1)-(C4) hold then
P(M(n) € {k(n), k(n) +1}) — 1,

for some sequence k(n).

Corollary 2. If r(n) satisfies nr9

sequence /(n) such that

= o(In n) then there exists a

P(x(Gn) € {I(n), I(n) +1}) — 1.

Corollary 3. If r(n) satisfies nr9

sequence m(n) such that

= o(In n) then there exists a

P(6*(Gp) € {m(n), m(n) +1}) — 1.



Thm. 1 proof plan

1. Guess k;

2. Let N be the number of points in some (> k)-cluster and let
P42 be the number of pairs of points in some
(> k + 2)-cluster;
3. Compute ENy, Var(Ny), EPy» and observe:
a) P(M < k) =P(Nx = 0) < P(|Nx — ENi| = ENy) <
Var(Ny)/(ENk)? = o(1);
b) P(M > k+1) = P(Pii2 > (“3?)) = O(EPx12/k?) = o(1).



Tools

The only fact about v that we need is that f is bounded.

Lemma. There exists a constant > 0, dependent only on v, such
that the following holds. For any bounded set W C RY with
MW) > 0 and any r > 0 there exist Q(r~9)-many disjoint
translates Wi, ..., Wk of rW with v(W;)/A\(W;) > n for all /.



Tools

Lemma. Let Z ~ Bi(n,p) and k >y := np. Then
Mo\ CH Ak
IV <P(Z > k)< (—
(o <mz> K< ()

Lemma. Let (Z3,...,2Zy,) ~ mult(n; p1,...,pm). Then

P(Z1 < ki,.oo s Zm < km) < NLP(Z < k).



Slightly more detailed sketch

Set j =j(n) =In n/In(':TZ). (Note j/nr? — o).

Lemma. (1 —¢)j <M < (1+¢€)j+ 1 whp.
Proof sketch:
1. P(M < (1 —€)j) < P(Bi(n, const - r?) < (1 — €)™ <
(1— (conth nrd)(l e)J))Q(r‘d)

2. P(M > (1+¢€)j+1) < n-P(Bi(n,const - r?) > (1 +¢€)j) <
n( consi;~nrd)(1+e)j_
j

Note if nr¥ < n¢ then j remains bounded and we're done. So we
3 .
assume nr? > n~2 in the sequel.



Slightly more detailed sketch cont'd

Now choose k such that

where Ny is the number of points in clusters of size at least k.
Lemma. For n suff. large k > %j.

Lemma. Var(Ny) = O(KENy).

This lemma contains the bulk of the computations.

We can conclude

Var(Ni) /(BN = O(K/EN) = O((25)3) = o(1).



Slightly more detailed sketch cont'd

Now consider Py ».

Lemma. EP, 5> = O(nr9EN1).

Proof sketch: The probability that Xi, X5 are in a common
(> k + 2)-cluster is at most twice the probability that Xj is in
some (> k + 1)-cluster and || X1 — Xz|| < Ryr, using (C4).

So, EMy12/K> = O(k(-Lg)7 - nrd /k?) = O((%2)(5)%) =
H 3

O((45)"% = o(1).

This concludes the proof (sketch) of thm. 1.



Cor. 1 proof sketch

As part of the proof of thm. 1 we have seen that for any ¢ > 0:

(1—¢€)j<M<(1+4¢€)j+1whp.,

where j = In n/In(',;‘Tf]). So in particular (1 —¢€)j < k < (1 +¢€)j,
regardless of the clustering rule that was chosen.

Fix K (large),e (small). Set M := max. chromatic number of a
subgraph induced by the points in a ball of radius Kr. Whp. the
following hold:

(i) Me {k, k+1}
(i) No ball of radius Kr contains more than (1 + €)j + 1 points.



Cor. 1 proof sketch cont'd

It suffices to show that if (i),(ii) hold then the chromatic number is
M. Set V; :={Xi,..., X;} and suppose we can colour the
subgraph G,[V;] induced by V; with M colours. We can also colour
Gp[Vig1 N B(Xiy1; Kr)] with M colours.

As K is large, € small the pigeon hole will give us some "annulus”
A = B(Xit1;rm) \ B(Xi+1; r(m —2)) with no more than M points.



Cor. 1 proof sketch cont'd

There exist an M-colouring of Vi1 \ B(Xj4+1; r(m — 1)) and of
Vi1 N B(Xiy1; r(m —1)). Permute these colourings in such a way
that they use disjoint sets of colours on the annulus A.



What happens for other r?
Theorem. If v is uniform on [0, 1]9 then the following hold:
(i) If nr? = o(In(n)) then there is a sequence a(n) such that

P(A(Gy) € {a(n),a(n) +1}) — 1,

(ii) If nr? = tIn(n) then there is a constant 3 = 3(t) > 1 and
sequences a(n),y(n) with 371 < ~(n) < 1s.t.:

P(A(G,) < a(n) + K) ~ e /(M5

for any fixed K;

(iii) If In(n) < nr¥ < In(n)9 then there exist sequences a(n), b(n)
such that:

for all x € R.

Part one is already due to Penrose.



Proof sketch

1. Let Nj denote the number of points of degree at least k;

2. For k in the appropriate range, Ny is approximately Poisson
(Stein’s method);

3. So, P(A < k) = P(Ny = 0) ~ e FN;

4. It now suffices to compute the expectations EN,.



Further work

1. Other ranges of r;
2. The exact value of k in the range considered;

3. Maybe less ambitiously: do the differences x(G,) — w(G,)
stay bounded?



