Two-point concentration in random geometric graphs

Tobias Müller University of Oxford

27 March 2006

The Erdös-Rényi or $G(n, p)$ -model

We construct a random graph with vertex set $V = \{1, \ldots, n\}$. For each candidates edge ii we flip a coin with success probability p to decide whether or not to include it, independently of all other edges.

Often one is interested in the behaviour of $G(n, p)$ as n grows large, where $p = p(n)$ is allowed to vary with *n*. Depending on the choice of $p(n)$ qualitatively different types of behaviour can be observed.

This model has been studied quite intensively over the past 5 decades and as a result quite a lot is known about it's behaviour which is often (surprisingly) complex.

The random geometric model

We construct a random graph G_n as follows. We pick vertices $X_1,\ldots,X_n\in\mathbb{R}^d$ at random (iid according to some probability distribution ν on $\mathbb{R}^d)$ and we join λ_i, λ_j $(i \neq j)$ by an edge if $||X_i - X_i|| < r$.

We are interested in the behaviour of the various graph parameters of this graph as *n* grows large, where $r = r(n)$ is allowed to vary with n. We will allow any choice of ν that has a bounded density function and $\|.\|$ may be any norm.

The distance $r(n)$ plays a role similar to that of $p(n)$ in $G(n, p)$. Depending on the choice of $r(n)$ qualitatively different types of behaviour can be observed.

An instance

Graph theory notation and terminology

Let $G = (V, E)$ be a graph.

 $\Delta(G)$ will denote the maximum degree of G.

 $L(G)$ will denote the number of vertices in the largest component of G.

A clique in G is a complete subgraph of G , ie. a set of vertices $C \subset V$ such that $vw \in E$ for all $v, w \in C$.

The *clique number* $\omega(G)$ is the size of the largest clique.

A k-colouring of G is a map $f: V \rightarrow \{1, ..., k\}$ that satisfies $f(v) \neq f(w)$ whenever $vw \in E$ The chromatic number $\chi(G)$ is the least k such that G is k -colourable.

The *degeneracy* $\delta^*(G)$ is the maximum over all subgraphs of G of the minimum degree. The significance of δ^* is that if the greedy algorithm is used to colour G then $\delta^*(G) + 1$ colours will be used.

Probability terminology

If Z_1, Z_2, \ldots is a sequence of random variables and c is a constant then we say that $Z_n \to c$ in probability if $\mathbb{P}(|Z_n - c| > \epsilon) \to 0$ for all $\epsilon > 0$.

If A_1, A_2, \ldots is a sequence of events then we say that A_n holds whp. (with high probability) if $\mathbb{P}(A_n) \to 1$.

Some background: connectivity

Theorem. [Erdös-Rényi 1959]

- 1. If $np \leq (1 \epsilon) \ln(n)$ then $\mathbb{P}(G_n$ is connected $) \to 0$;
- 2. If $np > (1 + \epsilon) \ln(n)$ then $\mathbb{P}(G_n$ is connected $) \rightarrow 1$.

Theorem. [Penrose 1998] There exists a constant c such that

- 1. If $nr^d < (c \epsilon) \ln(n)$ then $\mathbb{P}(G_n$ is connected $) \to 0$;
- 2. If $nr^d > (c + \epsilon) \ln(n)$ then $\mathbb{P}(G_n \text{ is connected}) \to 1$.

Note: these are simplifications/corollaries of the actual results.

The constant c is chosen in such a way that the average degree is \sim ln(n). Some restrictions on the probability measure ν and norm **k.** apply in this slide and the one after the next. In particular ν is taken uniform on $[0,1]^d$.

nr^d and the average degree

We prefer to describe the various cases in terms of the quantity nr^d , because nr^d can be considered a measure of the average degree of the graph. Intuitively it should be obvious that the expected degree scales with nr^d . More formally it can be shown that:

Proposition. The average degree \overline{d} of G_n satisfies:

- 1. If $n r^d \gg n^{-1}$ then $\frac{\overline{d}}{nr^d} \rightarrow \theta$ R $\int_{\mathbb{R}^d} f^2(x)dx$ in probability;
- 2. If $nr^d = O(n^{-1})$ then $\liminf_{n\to\infty} \mathbb{P}(\overline{d} = 0) > 0$.

Here θ is the d-dimensional volume of the unit ball and f is the probability density function of ν .

Some more background: the giant component

Theorem[Erdös-Rényi 1960]

- 1. If $np \leq 1 \epsilon$ then $\frac{L(G(n,p))}{n} \to 0$ in probability;
- 2. If $np \geq 1 + \epsilon$ then $\liminf \frac{L(G(n,p))}{n} > 0$ with probability 1.

Theorem [Penrose 2003] There is a constant c such that

- 1. If $nr^d \leq c \epsilon$ then $\frac{L(G_n)}{n} \to 0$ in probability;
- 2. If $nr^d \geq c + \epsilon$ then $\liminf \frac{L(G_n)}{n} > 0$ with probability 1.

Again these are simplifications/corollaries of the actual results. The precise value of the constant c is unknown.

Two-point concentration in $G(n, p(n))$

Theorem. [Matula 1972] If p is fixed then

 $\mathbb{P}(\omega(G(n, p)) \in \{k(n), k(n) + 1\}) \rightarrow 1$,

where $k(n) := 2\log_b(n) - 2\log_b\log_b(n) + 1 + 2\log_b(e/2)$ with $b=1/p$.

Theorem.[Łuczak 1991] If $p(n) \le n^{-\frac{5}{6}-\delta}$ for some $\delta > 0$ then

 $\mathbb{P}(\chi(G(n, p)) \in \{k(n), k(n) + 1\}) \rightarrow 1,$

for some sequence $k(n)$.

Theorem. [Alon& Krivelevich 1997] The result of Łuczak also holds when $p(n) \leq n^{-\frac{1}{2}-\delta}$.

Two-point concentration in random geometric graphs: previous work

Theorem. [Månsson 1999] If M_n denotes the largest number of points contained in a ball of radius $r = r(n)$ and $nr^d = n^{-\frac{1}{k}}$ then

 $\mathbb{P}(M_n \in \{k, k+1\}) \rightarrow 1.$

Theorem. [Penrose 2002] If $nr^d = O(1)$ then

 $\mathbb{P}(\omega(G_n) \in \{k(n), k(n)+1\}) \rightarrow 1,$

for some sequence $k(n)$.

The result actually is shown to hold for a class of related random variables.

Two-point concentration in random geometric graphs: previous work cont'd

Theorem. [Penrose 2003] If $nr^d = o(\ln(n))$ and ν is uniform on $[0,1]^{d}$ then $\mathbb{P}(\Delta(G_n) \in \{k(n), k(n)+1\}) \to 1$,

for some sequence $k(n)$.

He conjectured the last result to be true also for $\omega(G_n)$.

A framework: clustering rules

We assume we are given a a sequence of maps $(h_n)_n$ that assign non-negative integers to finite subsets of \mathbb{R}^d s.t. for some $R_1, R_2 > 0$ the following hold:

 $(C1)$ $h_n(A) < |A|$; (C2) If $A \subseteq B(x; R_1r(n))$ for some $x \in \mathbb{R}^d$ then $h_n(A) = |A|$; (C3) If $h_n(A) > 0$ then $\|a - b\| < R_2r(n)$ for all $a, b \in A$; (C4) If $h_n(A) = I$ then $h_n(A \setminus \{a\}) \geq I - 1$ for all but at most one $a \in A$.

We will be interested in the maximum $M = M(n)$ of $h_n(A)$ over all subsets $A \subseteq \{X_1, \ldots, X_n\}$. If $h_n(A) = I$ then we will say that A is an *l-cluster* and we will say that A is a $(> l)$ -cluster if $h_n(A) \ge l$.

Examples

Example. We get $M(n) = \omega(G_n)$ if we set $h_n(A) = |A|$ if $diam(A) < r(n)$ and $h_n(A) = 0$ otherwise. We may take $R_1 = \frac{1}{2}$ $\frac{1}{2}$, $R_2 = 1$;

Example. If W is a bounded set with non-empty interior, then we can get $M(n) = \max_{x} |\{X_1, \ldots, X_n\} \cap (x + rW)|$, the maximum number of points contained in any translate of rW. We can put R_1 equal to the inradius and R_2 equal to the diameter of W;

Example. Set $h_n(A) = 0$ if A is not contained in some ball $B(x; r)$ and otherwise let $h_n(A)$ be equal to the maximum degree $+1$ of the subgraph of G_n induced by A. Then $M(n) = \Delta(G_n) + 1$ and we can put $R_1=\frac{1}{2}$ $\frac{1}{2}$ and $R_2 = 2$.

Today's main results

Theorem 1. If $nr^d = o(\ln n)$ and (C1)-(C4) hold then $\mathbb{P}(M(n) \in \{k(n), k(n) + 1\}) \to 1$,

for some sequence $k(n)$.

Corollary 2. If $r(n)$ satisfies $nr^d = o(ln n)$ then there exists a sequence $I(n)$ such that

 $\mathbb{P}(\chi(G_n) \in \{l(n), l(n)+1\}) \to 1.$

Corollary 3. If $r(n)$ satisfies $nr^d = o(\ln n)$ then there exists a sequence $m(n)$ such that

 $\mathbb{P}(\delta^*(G_n) \in \{m(n), m(n)+1\}) \to 1.$

Thm. 1 proof plan

- 1. Guess k :
- 2. Let N_k be the number of points in some $(2k)$ -cluster and let P_{k+2} be the number of pairs of points in some $(> k + 2)$ -cluster;
- 3. Compute $\mathbb{E} N_k$, $Var(N_k)$, $\mathbb{E} P_{k+2}$ and observe:
	- a) $\mathbb{P}(M < k) = \mathbb{P}(N_k = 0) \leq \mathbb{P}(|N_k \mathbb{E}N_k| > \mathbb{E}N_k)$ $Var(N_k)/(\mathbb{E} N_k)^2 = o(1)$; ¢
	- b) $\mathbb{P}(M > k+1) = \mathbb{P}(P_{k+2} \geq$ $\binom{k+2}{2}$ $= O(\mathbb{E} P_{k+2}/k^2) = o(1).$

The only fact about ν that we need is that f is bounded.

Lemma. There exists a constant $n > 0$, dependent only on ν , such that the following holds. For any bounded set $W \subseteq \mathbb{R}^d$ with $\lambda(W) > 0$ and any $r > 0$ there exist $\Omega(r^{-d})$ -many disjoint translates W_1, \ldots, W_K of rW with $\nu(W_i)/\lambda(W_i) > \eta$ for all *i*.

Tools

Lemma. Let $Z \sim Bi(n, p)$ and $k \ge \mu := np$. Then $(\frac{\mu}{ek})^k \le \mathbb{P}(Z \ge k) \le (\frac{e\mu}{k})$ $(\frac{2\mu}{k})^k$

Lemma. Let $(Z_1, \ldots, Z_m) \sim \text{mult}(n; p_1, \ldots, p_m)$. Then $\mathbb{P}(Z_1 \le k_1, ..., Z_m \le k_m) \le \prod_{i=1}^m \mathbb{P}(Z_i \le k_i).$

Slightly more detailed sketch

Set $j = j(n) = \ln n / \ln(\frac{\ln n}{n r^d})$. (Note $j/nr^d \to \infty$).

Lemma. $(1 - \epsilon)i \leq M \leq (1 + \epsilon)i + 1$ whp.

Proof sketch:

1.
$$
\mathbb{P}(M \leq (1 - \epsilon)j) \leq \mathbb{P}(Bi(n, const \cdot r^d) \leq (1 - \epsilon))^{\Omega(r^{-d})} \leq (1 - \frac{const \cdot nr^d}{j})^{(1 - \epsilon)j})^{\Omega(r^{-d})}
$$

2.
$$
\mathbb{P}(M \geq (1 + \epsilon)j + 1) \leq n \cdot \mathbb{P}(Bi(n, const \cdot r^d) \geq (1 + \epsilon)j) \leq n(\frac{const \cdot nr^d}{j})^{(1 + \epsilon)j}.
$$

Note if $nr^d \leq n^{-c}$ then j remains bounded and we're done. So we assume $nr^d \geq n^{-\frac{3}{2}}$ in the sequel.

Slightly more detailed sketch cont'd

Now choose k such that

$$
\mathbb{E} N_k - k(\frac{j}{nr^d})^{\frac{1}{4}} \geq 0 > \mathbb{E} N_{k+1} - (k+1)(\frac{j}{nr^d})^{\frac{1}{4}},
$$

where N_k is the number of points in clusters of size at least k. **Lemma.** For *n* suff. large $k \geq \frac{1}{2}$ $\frac{1}{2}j$. **Lemma.** $Var(N_k) = O(kEN_k)$.

This lemma contains the bulk of the computations.

We can conclude

$$
Var(N_k)/(\mathbb{E}N_k)^2 = O(k/\mathbb{E}N_k) = O((\frac{j}{nr^d})^{-\frac{1}{4}}) = o(1).
$$

Slightly more detailed sketch cont'd

Now consider P_{k+2} .

Lemma. $\mathbb{E}P_{k+2} = O(n r^d \mathbb{E}N_{k+1})$.

Proof sketch: The probability that X_1, X_2 are in a common $(2 k + 2)$ -cluster is at most twice the probability that X_1 is in some ($\geq k+1$)-cluster and $||X_1 - X_2|| \leq R_2r$, using (C4).

So,
$$
\mathbb{E}M_{k+2}/k^2 = O(k(\frac{j}{n r^d})^{\frac{1}{4}} \cdot nr^d/k^2) = O((\frac{nr^d}{k})(\frac{j}{n r^d})^{\frac{1}{4}}) = O((\frac{j}{n r^d})^{-\frac{3}{4}} = o(1).
$$

This concludes the proof (sketch) of thm. 1.

Cor. 1 proof sketch

As part of the proof of thm. 1 we have seen that for any $\epsilon > 0$:

 $(1 - \epsilon)i$ < M < $(1 + \epsilon)i$ + 1 whp.

where $j=\ln n/\ln(\frac{\ln n}{n r^d})$. So in particular $(1-\epsilon)j\leq k\leq (1+\epsilon)j$, regardless of the clustering rule that was chosen.

Fix K (large), ϵ (small). Set $M := \max$. chromatic number of a subgraph induced by the points in a ball of radius Kr . Whp. the following hold:

(i) $M \in \{k, k+1\}$;

(ii) No ball of radius Kr contains more than $(1 + \epsilon)j + 1$ points.

It suffices to show that if (i) , (ii) hold then the chromatic number is M. Set $V_i := \{X_1, \ldots, X_i\}$ and suppose we can colour the subgraph $\mathsf{G}_n[V_i]$ induced by V_i with M colours. We can also colour $G_n[V_{i+1} \cap B(X_{i+1}; Kr)]$ with M colours.

As K is large, ϵ small the pigeon hole will give us some "annulus" $A = B(X_{i+1};rm) \setminus B(X_{i+1};r(m-2))$ with no more than M points.

Cor. 1 proof sketch cont'd

There exist an M-colouring of $V_{i+1} \setminus B(X_{i+1}; r(m-1))$ and of $V_{i+1} \cap B(X_{i+1}; r(m-1))$. Permute these colourings in such a way that they use disjoint sets of colours on the annulus A .

What happens for other *?*

Theorem. If ν is uniform on $[0,1]^d$ then the following hold:

(i) If $nr^d = o(\ln(n))$ then there is a sequence $a(n)$ such that

$\mathbb{P}(\Delta(G_n) \in \{a(n), a(n)+1\}) \to 1;$

(ii) If $nr^d = t \ln(n)$ then there is a constant $\beta = \beta(t) > 1$ and sequences $a(n), \gamma(n)$ with $\beta^{-1} \leq \gamma(n) \leq 1$ s.t.:

$$
\mathbb{P}(\Delta(G_n)< a(n)+K)\sim e^{-\gamma(n)\beta^{-K}},
$$

for any fixed K ;

(iii) If $\ln(n) \ll nr^d \ll \ln(n)^d$ then there exist sequences $a(n)$, $b(n)$ such that:

$$
\mathbb{P}(\frac{\Delta(G_n)-a(n)}{b(n)}
$$

for all $x \in \mathbb{R}$.

Part one is already due to Penrose.

Proof sketch

- 1. Let N_k denote the number of points of degree at least k ;
- 2. For k in the appropriate range, N_k is approximately Poisson (Stein's method);
- 3. So, $\mathbb{P}(\Delta < k) = \mathbb{P}(N_k = 0) \approx e^{-\mathbb{E} N_k}$;
- 4. It now suffices to compute the expectations $\mathbb{E} N_k$.

Further work

- 1. Other ranges of r ;
- 2. The exact value of k in the range considered;
- 3. Maybe less ambitiously: do the differences $\chi(G_n) \omega(G_n)$ stay bounded?