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The Erdös-Rényi or G (n, p)-model

We construct a random graph with vertex set V = {1, . . . , n}. For
each candidates edge ij we flip a coin with success probability p to
decide whether or not to include it, independently of all other
edges.

Often one is interested in the behaviour of G (n, p) as n grows
large, where p = p(n) is allowed to vary with n. Depending on the
choice of p(n) qualitatively different types of behaviour can be
observed.

This model has been studied quite intensively over the past 5
decades and as a result quite a lot is known about it’s behaviour
which is often (surprisingly) complex.



The random geometric model

We construct a random graph Gn as follows. We pick vertices
X1, . . . , Xn ∈ Rd at random (iid according to some probability
distribution ν on Rd) and we join Xi ,Xj (i 6= j) by an edge if
‖Xi − Xj ‖< r .

We are interested in the behaviour of the various graph parameters
of this graph as n grows large, where r = r(n) is allowed to vary
with n. We will allow any choice of ν that has a bounded density
function and ‖ .‖ may be any norm.

The distance r(n) plays a role similar to that of p(n) in G (n, p).
Depending on the choice of r(n) qualitatively different types of
behaviour can be observed.



An instance



Graph theory notation and terminology

Let G = (V , E ) be a graph.

∆(G ) will denote the maximum degree of G .

L(G ) will denote the number of vertices in the largest component
of G .

A clique in G is a complete subgraph of G , ie. a set of vertices
C ⊆ V such that vw ∈ E for all v , w ∈ C .
The clique number ω(G ) is the size of the largest clique.

A k-colouring of G is a map f : V → {1, . . . , k} that satisfies
f (v) 6= f (w) whenever vw ∈ E
The chromatic number χ(G ) is the least k such that G is
k-colourable.

The degeneracy δ∗(G ) is the maximum over all subgraphs of G of
the minimum degree. The significance of δ∗ is that if the greedy
algorithm is used to colour G then δ∗(G ) + 1 colours will be used.



Probability terminology

If Z1, Z2, . . . is a sequence of random variables and c is a constant
then we say that Zn → c in probability if P(|Zn − c | > ε) → 0 for
all ε > 0.

If A1,A2, . . . is a sequence of events then we say that An holds
whp. (with high probability) if P(An) → 1.



Some background: connectivity

Theorem.[Erdös-Rényi 1959]

1. If np ≤ (1− ε) ln(n) then P(Gn is connected ) → 0;

2. If np ≥ (1 + ε) ln(n) then P(Gn is connected ) → 1.

Theorem.[Penrose 1998] There exists a constant c such that

1. If nrd ≤ (c − ε) ln(n) then P(Gn is connected ) → 0;

2. If nrd ≥ (c + ε) ln(n) then P(Gn is connected ) → 1.

Note: these are simplifications/corollaries of the actual results.

The constant c is chosen in such a way that the average degree is
∼ ln(n). Some restrictions on the probability measure ν and norm
‖ .‖ apply in this slide and the one after the next. In particular ν is
taken uniform on [0, 1]d .



nr d and the average degree

We prefer to describe the various cases in terms of the quantity
nrd , because nrd can be considered a measure of the average
degree of the graph. Intuitively it should be obvious that the
expected degree scales with nrd . More formally it can be shown
that:

Proposition. The average degree d of Gn satisfies:

1. If nrd À n−1 then d
nrd → θ

∫
Rd f 2(x)dx in probability;

2. If nrd = O(n−1) then lim infn→∞ P(d = 0) > 0.

Here θ is the d-dimensional volume of the unit ball and f is the
probability density function of ν.



Some more background: the giant component

Theorem[Erdös-Rényi 1960]

1. If np ≤ 1− ε then L(G(n,p))
n → 0 in probability;

2. If np ≥ 1 + ε then lim inf L(G(n,p))
n > 0 with probability 1.

Theorem[Penrose 2003] There is a constant c such that

1. If nrd ≤ c − ε then L(Gn)
n → 0 in probability;

2. If nrd ≥ c + ε then lim inf L(Gn)
n > 0 with probability 1.

Again these are simplifications/corollaries of the actual results.
The precise value of the constant c is unknown.



Two-point concentration in G (n, p(n))

Theorem.[Matula 1972] If p is fixed then

P(ω(G (n, p)) ∈ {k(n), k(n) + 1}) → 1,

where k(n) := 2 logb(n)− 2 logb logb(n) + 1 + 2 logb(e/2) with
b = 1/p.

Theorem.[ÃLuczak 1991] If p(n) ≤ n−
5
6
−δ for some δ > 0 then

P(χ(G (n, p)) ∈ {k(n), k(n) + 1}) → 1,

for some sequence k(n).

Theorem.[Alon& Krivelevich 1997] The result of ÃLuczak also

holds when p(n) ≤ n−
1
2
−δ.



Two-point concentration in random geometric graphs:
previous work

Theorem.[Månsson 1999] If Mn denotes the largest number of

points contained in a ball of radius r = r(n) and nrd = n−
1
k then

P(Mn ∈ {k, k + 1}) → 1.

Theorem.[Penrose 2002] If nrd = O(1) then

P(ω(Gn) ∈ {k(n), k(n) + 1}) → 1,

for some sequence k(n).

The result actually is shown to hold for a class of related random
variables.



Two-point concentration in random geometric graphs:
previous work cont’d

Theorem.[Penrose 2003] If nrd = o(ln(n)) and ν is uniform on
[0, 1]d then

P(∆(Gn) ∈ {k(n), k(n) + 1}) → 1,

for some sequence k(n).

He conjectured the last result to be true also for ω(Gn).



A framework: clustering rules

We assume we are given a a sequence of maps (hn)n that assign
non-negative integers to finite subsets of Rd s.t. for some
R1, R2 > 0 the following hold:

(C1) hn(A) ≤ |A|;
(C2) If A ⊆ B(x ;R1r(n)) for some x ∈ Rd then hn(A) = |A|;
(C3) If hn(A) > 0 then ‖a− b‖< R2r(n) for all a, b ∈ A;

(C4) If hn(A) = l then hn(A \ {a}) ≥ l − 1 for all but at most one
a ∈ A.

We will be interested in the maximum M = M(n) of hn(A) over all
subsets A ⊆ {X1, . . . ,Xn}. If hn(A) = l then we will say that A is
an l -cluster and we will say that A is a (≥ l)-cluster if hn(A) ≥ l .



Examples

Example. We get M(n) = ω(Gn) if we set hn(A) = |A| if
diam(A) < r(n) and hn(A) = 0 otherwise. We may take
R1 = 1

2 ,R2 = 1;

Example. If W is a bounded set with non-empty interior, then we
can get M(n) = maxx |{X1, . . . , Xn} ∩ (x + rW )|, the maximum
number of points contained in any translate of rW . We can put R1

equal to the inradius and R2 equal to the diameter of W ;

Example. Set hn(A) = 0 if A is not contained in some ball B(x ; r)
and otherwise let hn(A) be equal to the maximum degree + 1 of
the subgraph of Gn induced by A. Then M(n) = ∆(Gn) + 1 and
we can put R1 = 1

2 and R2 = 2.



Today’s main results

Theorem 1. If nrd = o(ln n) and (C1)-(C4) hold then

P(M(n) ∈ {k(n), k(n) + 1}) → 1,

for some sequence k(n).

Corollary 2. If r(n) satisfies nrd = o(ln n) then there exists a
sequence l(n) such that

P(χ(Gn) ∈ {l(n), l(n) + 1}) → 1.

Corollary 3. If r(n) satisfies nrd = o(ln n) then there exists a
sequence m(n) such that

P(δ∗(Gn) ∈ {m(n), m(n) + 1}) → 1.



Thm. 1 proof plan

1. Guess k;

2. Let Nk be the number of points in some (≥ k)-cluster and let
Pk+2 be the number of pairs of points in some
(≥ k + 2)-cluster;

3. Compute ENk ,Var(Nk),EPk+2 and observe:

a) P(M < k) = P(Nk = 0) ≤ P(|Nk − ENk | ≥ ENk) ≤
Var(Nk)/(ENk)

2 = o(1);
b) P(M > k + 1) = P(Pk+2 ≥

(
k+2

2

)
) = O(EPk+2/k2) = o(1).



Tools

The only fact about ν that we need is that f is bounded.

Lemma. There exists a constant η > 0, dependent only on ν, such
that the following holds. For any bounded set W ⊆ Rd with
λ(W ) > 0 and any r > 0 there exist Ω(r−d)-many disjoint
translates W1, . . . ,WK of rW with ν(Wi )/λ(Wi ) > η for all i .



Tools

Lemma. Let Z ∼ Bi(n, p) and k ≥ µ := np. Then

(
µ

ek
)k ≤ P(Z ≥ k) ≤ (

eµ

k
)k

Lemma. Let (Z1, . . . ,Zm) ∼ mult(n; p1, . . . , pm). Then

P(Z1 ≤ k1, . . . , Zm ≤ km) ≤ Πm
i=1P(Zi ≤ ki ).



Slightly more detailed sketch

Set j = j(n) = ln n/ ln( ln n
nrd ). (Note j/nrd →∞).

Lemma. (1− ε)j ≤ M ≤ (1 + ε)j + 1 whp.

Proof sketch:

1. P(M ≤ (1− ε)j) ≤ P(Bi(n, const · rd) ≤ (1− ε))Ω(r−d ) ≤
(1− ( const·nrd

j )(1−ε)j))Ω(r−d )

2. P(M ≥ (1 + ε)j + 1) ≤ n · P(Bi(n, const · rd) ≥ (1 + ε)j) ≤
n( const·nrd

j )(1+ε)j .

Note if nrd ≤ n−c then j remains bounded and we’re done. So we

assume nrd ≥ n−
3
2 in the sequel.



Slightly more detailed sketch cont’d

Now choose k such that

ENk − k(
j

nrd
)

1
4 ≥ 0 > ENk+1 − (k + 1)(

j

nrd
)

1
4 ,

where Nk is the number of points in clusters of size at least k.

Lemma. For n suff. large k ≥ 1
2 j .

Lemma. Var(Nk) = O(kENk).

This lemma contains the bulk of the computations.

We can conclude

Var(Nk)/(ENk)2 = O(k/ENk) = O((
j

nrd
)−

1
4 ) = o(1).



Slightly more detailed sketch cont’d

Now consider Pk+2.

Lemma. EPk+2 = O(nrdENk+1).

Proof sketch: The probability that X1, X2 are in a common
(≥ k + 2)-cluster is at most twice the probability that X1 is in
some (≥ k + 1)-cluster and ‖X1 − X2‖ ≤ R2r , using (C4).

So, EMk+2/k2 = O(k( j
nrd )

1
4 · nrd/k2) = O((nrd

k )( j
nrd )

1
4 ) =

O(( j
nrd )−

3
4 = o(1).

This concludes the proof (sketch) of thm. 1.



Cor. 1 proof sketch

As part of the proof of thm. 1 we have seen that for any ε > 0:

(1− ε)j ≤ M ≤ (1 + ε)j + 1 whp.,

where j = ln n/ ln( ln n
nrd ). So in particular (1− ε)j ≤ k ≤ (1 + ε)j ,

regardless of the clustering rule that was chosen.

Fix K (large),ε (small). Set M := max. chromatic number of a
subgraph induced by the points in a ball of radius Kr . Whp. the
following hold:

(i) M ∈ {k, k + 1};
(ii) No ball of radius Kr contains more than (1 + ε)j + 1 points.



Cor. 1 proof sketch cont’d

It suffices to show that if (i),(ii) hold then the chromatic number is
M. Set Vi := {X1, . . . , Xi} and suppose we can colour the
subgraph Gn[Vi ] induced by Vi with M colours. We can also colour
Gn[Vi+1 ∩ B(Xi+1; Kr)] with M colours.

As K is large, ε small the pigeon hole will give us some ”annulus”
A = B(Xi+1; rm) \B(Xi+1; r(m− 2)) with no more than M points.



Cor. 1 proof sketch cont’d

Xi+1

r
r

There exist an M-colouring of Vi+1 \ B(Xi+1; r(m − 1)) and of
Vi+1 ∩ B(Xi+1; r(m − 1)). Permute these colourings in such a way
that they use disjoint sets of colours on the annulus A.



What happens for other r?
Theorem. If ν is uniform on [0, 1]d then the following hold:

(i) If nrd = o(ln(n)) then there is a sequence a(n) such that

P(∆(Gn) ∈ {a(n), a(n) + 1}) → 1;

(ii) If nrd = t ln(n) then there is a constant β = β(t) > 1 and
sequences a(n), γ(n) with β−1 ≤ γ(n) ≤ 1 s.t.:

P(∆(Gn) < a(n) + K ) ∼ e−γ(n)β−K
,

for any fixed K ;

(iii) If ln(n) ¿ nrd ¿ ln(n)d then there exist sequences a(n), b(n)
such that:

P(
∆(Gn)− a(n)

b(n)
< x) → e−e−x

,

for all x ∈ R.

Part one is already due to Penrose.



Proof sketch

1. Let Nk denote the number of points of degree at least k;

2. For k in the appropriate range, Nk is approximately Poisson
(Stein’s method);

3. So, P(∆ < k) = P(Nk = 0) ≈ e−ENk ;

4. It now suffices to compute the expectations ENk .



Further work

1. Other ranges of r ;

2. The exact value of k in the range considered;

3. Maybe less ambitiously: do the differences χ(Gn)− ω(Gn)
stay bounded?


