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Overview

- Cross ratio and invariants

- Geometric invariant theory

- Examples

- Gale duality
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Work over a field k.

Cross ratio for four points on a line:

cr(A, B, C, D) =
CA/CB

DA/DB
.

(A, B, C, D) ∈ P1 × P1 × P1 × P1

A = [x1, y1], B = [x2, y2], C = [x3, y3], D = [x4, y4]

cr(A, B, C, D) =
(x1y3 − x3y1)(x2y4 − x4y2)

(x1y4 − x4y1)(x2y3 − x3y2)
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Basic invariant of point sequences on the line
(for the action of SL2): ∣∣∣∣∣ xi xj

yi yj

∣∣∣∣∣ =: [ij]

Need multihomogeneous expressions!

Four points:

[12][34], [13][24], [14][23]

Relation:

[12][34]− [13][24] + [14][23] = 0

Cross ratio:

[13][24]

[14][23]
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Note: when all invariants are zero then at least three of the four

points coincide.

Such sequences of points are called unstable.

Stable sequence: all four points different.

Semistable: each point occurs at most twice.

Three minimal semistable orbits:

(P, P, Q, Q), (P, Q, P, Q), (P, Q, Q, P )
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Geometric invariant theory:

Quotient map

(P1 × P1 × P1 × P1)ss → P2

via three basic invariants

X0 = [12][34], X1 = [13][24], X2 = [14][23]

image is the line X0 −X1 + X2 = 0 with three special points

[0,1,1], [1,0,−1], [1,1,0].

Fibres of the quotient map: stable orbits (are closed in semistable

locus) or union of semistable orbits (minimal semistable orbit plus

all orbits containing it in their closure).
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Invariants for points and hyperplanes

Consider the action of SLn+1 on

X := (Pn)N1 × ((Pn)∗)N2

Here (Pn)∗ is the dual projective space: elements are hyperplanes.
Equivalently: let V = kn+1 and consider sequences

(x1, . . . , xN1
, x∗1, . . . , n∗N2

)

where xi ∈ V, x∗j ∈ V ∗, all nonzero.

Let

[i0i1 . . . in] := det(xi0, . . . , xin)

[j0j1 . . . jn]
′ := det(x∗j0, . . . , x

∗
jn)

(ij) := 〈x∗j , xi〉
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First fundamental theorem of invariant theory:

The algebra of invariant polynomials on V N1×(V ∗)N2 is generated

by all

[i0i1 . . . in], [j0j1 . . . jn]
′, (ij)

For geometric invariants for X need multihomogeneous polyno-

mials.
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General situation: sequences

(L1, . . . , LN)

where

Lj ⊂ Pn−1

projective subspace of dimension di − 1.

Equivalently: let V be a k-vector space of dimension n.
Consider sequences

(V1, . . . , VN)

where

Vj ⊂ V

linear subspace of dimension di.

Group acting: SLn(k) or SL(V ).
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Configuration space: product of Grassmannians.

G(d, V ): set of linear subspaces of V of dimension d.

Embedded in P(
∧d V ) by Plücker coordinates.

Consider action of SLn(V ) on multi-homogeneous expressions in

Plücker coordinates.
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Dimension of the moduli space

Naive dimension count: Virtual dimension := dimension of con-

figuration space minus dimension of the group acting

vdim(M) =
∑
i

di(n− di)− n2 + 1
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Example: lines in space. Choose 2× 4 matrix(
x0 x1 x2 x3
y0 y1 y2 y3

)
whose row space is the given line. For 0 ≤ i < j ≤ 3 let

pij = xiyj − xjyi

Then

G(2,4) ↪→ P5

via

` 7→ [p01(`), p02(`), p03(`), p12(`), p13(`), p23(`)]
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Two lines ` and m intersect if and only if

h(`, m) := p01(`)p23(m)− p02(`)p13(m) + p03(`)p12(m)

+p12(`)p03(m)− p13(`)p02(m) + p23(`)p01(m) = 0

Invariants for four lines (`1, `2, `3, `4):

X0 := h(`1, `2)h(`3, `4), X1 := h(`1, `3)h(`2, `4), X2 := h(`1, `4)h(`2, `3).

Moduli space = GIT quotient = P2. Note that

vdimM = 1, dim(M) = 2
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Geometric explanation
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Generalisation of this example:

Four Pd−1’s in P2d−1.

Equivalent with vdim(M) = 1.

Moduli space: Pd.
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Quartic surfaces in P3 with a double conic

Are projection from a general point of intersection of two qua-

drics in P4 = Del Pezzo surface of degree four (in thesis of

Martijn Grooten: cyclide quartic surface)

Moduli space of these surfaces (suitably marked)? Open subset

of G(2,5).

Generic pencil of quadrics in P5: five singular ones, rank five, get

five poles.

Center of projection P5 → P3: sixth point. Del Pezzo surface

contains sixteen lines...
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Example: three points and three lines in the projective plane

W := [012][012]′

Xσ := (0σ(0))(1σ(1))(2σ(2))

where σ runs over the permutations of {0,1,2}.

Moreover:

W =
∑
σ

ε(σ)Xσ

and ∏
σ

X
ε(σ)
σ = 1
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The hypersurface of P5 with equation

X0X1X2 = X3X4X5

contains as a dense open subset the torus

{[1, s, t, u, v, stu−1v−1] | s, t, u, v 6= 0}

and is a toric variety!

Has a birational map to moduli space of six points in the plane!

18



Some minimal semistable orbits:

[1,1,1,1,1,1]
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[1,0,0,0,0,0]
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Duality:

Xσ 7→ Xσ−1

Gale duality

Consider configuration as projection of generic configuration.

D :=
∑

di, then generic configuration in PD−1. Project to Pn−1

from center ' PD−n−1. Corresponds to exact sequence

0 → W →
⊕

Vi → V → 0

21



Dualise to

0 → V ∗ →
⊕

V ∗
i → W ∗ → 0

Example: five points on P1 give five points on P2.

Theorem: Gale duality induces an isomorphism of moduli spaces.

Example: six points in plane are Gale self-dual if they lie on a

conic.
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