Nevanlinna-Pick interpolation and relaxed commutant lifting

Sanne ter Horst (VUA)

NMC, 27-03-2006

Nevanlinna-Pick interpolation on H^{∞}

Data: Distinct points $z_1 \ldots, z_n$ in \mathbb{D} , and complex numbers β_1, \ldots, β_n .

Problem: Find $f : \mathbb{D} \to \mathbb{C}$, analytic, such that

(NP1) $f(z_j) = \beta_j$ for $j = 1, \ldots, n$, and

(NP2) $||f||_{\infty} = \sup$ $z\in\mathbb{D}$ $|f(z)| \leq 1$.

Pick (1916): problem is solvable if and only if the "Pick matrix"

$$
\left[\begin{array}{c} \frac{1-\beta_i\overline{\beta}_j}{1-z_i\overline{z}_j}\end{array}\right]_{i,j=1}^n
$$
 is positive.

Nevanlinna (1919): linear fractional description of all solutions.

Nevanlinna-Pick interpolation on H^2

Data: Distinct points $z_1 \ldots, z_n$ in \mathbb{D} , and complex numbers β_1, \ldots, β_n .

Problem: Find $f : \mathbb{D} \to \mathbb{C}$, analytic, such that

(NP1')
$$
f(z_j) = \beta_j
$$
 for $j = 1, \ldots, n$, and

$$
(\text{NP2'}) \quad \|f\|_2 = (\lim_{r \uparrow 1} \int_0^{2\pi} |f(re^{i\omega})|^2 d\omega)^{\frac{1}{2}} \le 1.
$$

Alpay-Bolotnikov-Peretz (1995): problem is solvable if and only if the "Pick matrix"

$$
\left[\frac{1}{1-z_i\overline{z}_j}-\beta_i\overline{\beta}_j\right]_{i,j=1}^n \text{ is positive.}
$$

Also a linear fractional description of all solutions is given.

The H^∞ norm

With an $f \in H^\infty$ we associate a multiplication operator on H^2 :

If
$$
g \in H^2
$$
 then $z \mapsto f(z)g(z) \in H^2$.

Moreover, for $f \in H^{\infty}$:

$$
||f||_{\infty}^{2} = \lim_{r \uparrow 1} \sup_{g \in \mathbf{H}^{2}, ||g||_{2} \leq 1} \int_{0}^{2\pi} |f(re^{i\omega})g(re^{i\omega})|^{2} d\omega.
$$

Compare this with

$$
||g||_2^2 = \lim_{r \uparrow 1} \int_0^{2\pi} |g(re^{i\omega})|^2 d\omega
$$

for $g \in H^2$.

Introduction of H^2_m

Put

 $\mathcal{P}_m:=\{$ polynomials of degree $\leq m-1\}\subset \mathbf{H}^2.$

For $g \in H^2$ we define $||g||_{2,m}^2 := \lim_{n \uparrow 1}$ $r{\uparrow}1$ sup $h{\in}\mathcal{P}_m,\|h\|_2{\leq}1$ \int ^{2π} 0 $|h(re^{i\omega})g(re^{i\omega})|^2d\omega$.

Then $\|\cdot\|_{2,m}$ defines an alternative norm for H^2 . This space is denoted by $\mathrm{H}^2_m.$

Note:

$$
m = 1: \t||g||_{2,1} = ||g||_2,
$$

and

$$
\text{if } f \in \mathbf{H}^{\infty}: \quad \lim_{m \to \infty} \|f\|_{2,m} = \|f\|_{\infty}.
$$

Nevanlinna-Pick interpolation on H^2_m

Data: Distinct points $z_1 \ldots, z_n$ in \mathbb{D} , and complex numbers β_1, \ldots, β_n .

Problem: Find $f : \mathbb{D} \to \mathbb{C}$, analytic, such that

(RNP1)
$$
f(z_j) = \beta_j
$$
 for $j = 1, ..., n$, and

 $(RNP2)$ $||f||_{2,m} \leq 1.$

Foias-Frazho-Kaashoek (2002): problem is solvable if and only if the "Pick matrix"

$$
\left[\begin{array}{c}\frac{1-\beta_i\overline{\beta}_j(1-z_i^m\overline{z}_j^m)}{1-z_i\overline{z}_j}\end{array}\right]_{i,j=1}^n \text{ is positive.}
$$

Method:

The relaxed commutant lifting theorem.

The relaxed commutant lifting problem

Lifting data set (LDS): $\{A, T', U', R, Q\}$ such that

> $A: \mathcal{H} \rightarrow \mathcal{H}'$, T' on \mathcal{H}' a contraction, $R, Q: \mathcal{H}_{0} \to \mathcal{H}, \quad R^*R \leq Q^*Q,$ $T'AR = AQ$,

U' on $K' = H' \oplus M$ an isometric lifting of T',

i.e.,
$$
U' = \begin{bmatrix} T' & 0 \\ * & * \end{bmatrix}
$$
 on $\begin{bmatrix} \mathcal{H}' \\ \mathcal{M} \end{bmatrix}$, U' isometry

Problem (RCLP): Find $B: \mathcal{H} \rightarrow \mathcal{K}'$ such that

1)
$$
B = \begin{bmatrix} A \\ * \end{bmatrix}
$$
 : $\mathcal{H} \rightarrow \begin{bmatrix} \mathcal{H}' \\ \mathcal{M} \end{bmatrix}$, a contraction,

2) $U'BR = BQ$.

RCLT (FFK'02): Solvable iff $||A|| \le 1$.

Frazho-H-Kaashoek '06:

A description of all solutions.

Connection to operator theory

The Hilbert space ℓ^2 :

$$
\ell^2 = \left\{ \begin{bmatrix} x_0 & x_1 & \dots \end{bmatrix}^T | x_k \in \mathbb{C}, \sum_{k=0}^{\infty} |x_k|^2 < \infty \right\}.
$$

Let $f: \mathbb{D} \to \mathbb{C}$ analytic, $f(z) = \sum_{k=0}^{\infty} f_k z^k$. For H^2 :

$$
f \in H^2 \iff T_{f,1} := [f_0 \ f_1 \ \dots]^T \in \ell^2
$$

 $\iff T_{f,1} : \mathbb{C} \to \ell^2$ bounded.

And $||f||_2 = ||T_{f,1}||$.

For H^{∞} : $f \in H^{\infty}$ iff

$$
T_f := \begin{bmatrix} f_0 & 0 & 0 & \dots \\ f_1 & f_0 & 0 & \dots \\ f_2 & f_1 & f_0 & \dots \end{bmatrix}
$$
 on ℓ^2 bounded.
And $||f||_{\infty} = ||T_f||$.

Condition RNP2 in operator form

Now for H^2_m :

Let f be a function from H^2 . Define

$$
T_{f,m} := \begin{bmatrix} f_0 & 0 \\ \vdots & \ddots & \\ f_{m-1} & \dots & f_0 \\ \vdots & \vdots & \vdots \end{bmatrix} : \mathbb{C}^m \to \ell^2 \text{ bounded.}
$$

Then $||f||_{2,m} = ||T_{f,m}||$.

Thus the condition (RNP2) is equivalent to

(RNP2') $T_{f,m}$ is a contraction.

Identifying $T_{f,m}$ in $\mathbf{L}(\mathbb{C}^m,\ell^2)$

Define

$$
S = \begin{bmatrix} 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix}, \text{ on } \ell^2 \text{ (forward shift)},
$$

$$
R = \begin{bmatrix} I_{m-1} \\ 0 \end{bmatrix}, Q = \begin{bmatrix} 0 \\ I_{m-1} \end{bmatrix} : \mathbb{C}^{m-1} \to \mathbb{C}^m.
$$

Then for $f\in\mathbf{H}_{m}^{2}$

$$
ST_{f,m}R = T_{f,m}Q.
$$

In fact:

LEMMA. Let $B: \mathbb{C}^m \to \ell^2$ be a (bounded) operator. Then

 $SBR = BQ \iff B = T_{f,m}$ for some $f \in \text{H}^2_m$.

Some operators

Put $Z = diag(z_1, ..., z_n)$ on \mathbb{C}^n , and $\alpha = \left[\begin{array}{ccc} 1 & \ldots & 1 \end{array}\right]^T, \beta = \left[\begin{array}{ccc} \beta_1 & \ldots & \beta_n \end{array}\right]$ $\big]^{T}:\mathbb{C}\rightarrow\mathbb{C}^{n}.$ Define

$$
W = \begin{bmatrix} \alpha & Z\alpha & Z^2\alpha & \dots \\ 1 & z_1 & z_1^2 & \dots \\ \vdots & \vdots & \vdots & \vdots \\ 1 & z_n & z_n^2 & \dots \end{bmatrix} : \ell^2 \to \mathbb{C}^n.
$$

$$
W_m = \begin{bmatrix} \beta & Z\beta & \dots & Z^{m-1}\beta \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \beta_1 & z_1\beta_1 & \dots & z_1^{m-1}\beta_1 \\ \vdots & \vdots & & \vdots \\ \beta_n & z_n\beta_n & \dots & z_n^{m-1}\beta_n \end{bmatrix} : \mathbb{C}^m \to \mathbb{C}^n.
$$
\n
$$
P = WW^* \text{ on } \mathbb{C}^n, \quad P_m = W_m W_m^* \text{ on } \mathbb{C}^n.
$$
\nThen

$$
z_i \neq z_j
$$
 if $i \neq j \Rightarrow P$ is invertible.

And

 $WS = ZW$, $W_mR = W_{m-1}$, $W_mQ = ZW_{m-1}$, where W_{m-1} is defined similar as W_m .

Condition RNP1 in operator form

Define
$$
\mathcal{H}' = \text{Im } W^* \subset \ell^2
$$
 and
\n $A = W^* P^{-1} W_m : \mathbb{C}^m \to \mathcal{H}'$.
\nThen for $f \in \mathbb{H}_m^2$:
\n $f(z_i) = \beta_i \ \forall i \iff WT_{f,m} = W_m$
\n $\iff WT_{f,m} = WW^* P^{-1} W_m$
\n $= WA$
\n $T_{f,m} = \begin{bmatrix} A \\ * \end{bmatrix}$.

Thus the condition (RNP1) is equivalent to

$$
(\text{RNP1'}) \quad T_{f,m} = \left[\begin{array}{c} A \\ * \end{array} \right].
$$

NP-interpolation on \mathbf{H}_{m}^{2} in operator language:

Let $f : \mathbb{D} \to \mathbb{C}$ be analytic. Then f is a NPinterpolant in H^2_m if and only if

$$
(\mathsf{RNP1'}) \quad T_{f,m} = \left[\begin{array}{c} A \\ * \end{array} \right], \text{ and}
$$

(RNP2') $T_{f,m}$ is a contraction.

Connection with relaxed commutant lifting

Put

$$
T' = \Pi_{\mathcal{H}'} S |\mathcal{H}' \text{ on } \mathcal{H}'.
$$

Then $\{A, T', S, R, Q\}$ is a LDS if (1) S is an isometric lifting of T' and (2) $T'AR = AQ$.

Proof of (1) : S is an isometry and

$$
S^*W^* = W^*Z^* \Rightarrow S^*\mathcal{H}' \subset \mathcal{H}'.
$$

Proof of (2):

$$
WT'AR = WSW^*P^{-1}W_mR = ZWW^*P^{-1}W_{m-1}
$$

= $ZW_{m-1} = W_mQ = WW^*P^{-1}W_mQ$
= WAQ .

Thus

$$
\text{Im } W^* = \mathcal{H}' \ \Rightarrow \ T'AR = AQ.
$$

Conclusion 1

THM. Let $f : \mathbb{D} \to \mathbb{C}$ be analytic and let $\Omega := \{A, T', S, R, Q\}$ be the LDS as constructed above. Then f is a NP-interpolant in H^2_m for our given data if and only if there exists a solution B to the RCLP for LDS Ω such that $B=T_{f,m}$.

RCLT: There exists a solution to the RCLP for LDS Ω iff $||A|| \leq 1$.

$$
||A|| \le 1 \iff I - A^*A \ge 0
$$

$$
\iff I - W_m^* P^{-1} W_m \ge 0
$$

$$
\iff P - W_m W_m^* \ge 0
$$

$$
\iff P - P_m \ge 0
$$

Conclusion 2: The Pick matrix

Note

$$
P = \sum_{k=0}^{\infty} Z^k \alpha \alpha^* (Z^*)^k = \left[\sum_{k=0}^{\infty} z_i^k \overline{z}_j^k \right]_{i,j=1}^n
$$

= $\left[\frac{1}{1 - z_i \overline{z}_j} \right]_{i,j=1}^n$

and

$$
P_m = \sum_{k=0}^{m-1} Z^k \beta \beta^* (Z^*)^k = \left[\sum_{k=0}^{m-1} z_i^k \beta_i \overline{\beta}_j \overline{z}_j^k \right]_{i,j=1}^n
$$

=
$$
\left[\frac{\beta_i \overline{\beta}_j (1 - z_i^m \overline{z}_j^m)}{1 - z_i \overline{z}_j} \right]_{i,j=1}^n.
$$

Therefore

$$
P - P_m = \left[\frac{1 - \beta_i \overline{\beta}_j (1 - z_i^m \overline{z}_j^m)}{1 - z_i \overline{z}_j} \right]_{i,j=1}^n.
$$