Nevanlinna-Pick interpolation and relaxed commutant lifting

Sanne ter Horst (VUA)

NMC, 27-03-2006

Nevanlinna-Pick interpolation on \mathbf{H}^∞

Data: Distinct points $z_1 \dots, z_n$ in \mathbb{D} , and complex numbers β_1, \dots, β_n .

Problem: Find $f : \mathbb{D} \to \mathbb{C}$, analytic, such that

(NP1) $f(z_j) = \beta_j$ for $j = 1, \ldots, n$, and

 $(\mathsf{NP2}) \quad \|f\|_{\infty} = \sup_{z \in \mathbb{D}} |f(z)| \le 1.$

Pick (1916): problem is solvable if and only if the "Pick matrix"

$$\left[\left. rac{1-eta_i\overline{eta}_j}{1-z_i\overline{z}_j} \right.
ight]_{i,j=1}^n$$
 is positive.

Nevanlinna (1919): linear fractional description of all solutions.

Nevanlinna-Pick interpolation on H^2

Data: Distinct points $z_1 \dots, z_n$ in \mathbb{D} , and complex numbers β_1, \dots, β_n .

Problem: Find $f : \mathbb{D} \to \mathbb{C}$, analytic, such that

(NP1')
$$f(z_j) = \beta_j$$
 for $j = 1, ..., n$, and

(NP2')
$$||f||_2 = (\lim_{r \uparrow 1} \int_0^{2\pi} |f(re^{i\omega})|^2 d\omega)^{\frac{1}{2}} \le 1.$$

Alpay-Bolotnikov-Peretz (1995): problem is solvable if and only if the "Pick matrix"

$$\left[\frac{1}{1-z_i\overline{z}_j} - \beta_i\overline{\beta}_j \right]_{i,j=1}^n$$
 is positive.

Also a linear fractional description of all solutions is given.

The H^∞ norm

With an $f \in \mathbf{H}^{\infty}$ we associate a multiplication operator on \mathbf{H}^2 :

If
$$g \in \mathbf{H}^2$$
 then $z \mapsto f(z)g(z) \in \mathbf{H}^2$.

Moreover, for $f \in \mathbf{H}^{\infty}$:

$$||f||_{\infty}^{2} = \lim_{r \uparrow 1} \sup_{g \in \mathbf{H}^{2}, ||g||_{2} \le 1} \int_{0}^{2\pi} |f(re^{i\omega})g(re^{i\omega})|^{2} d\omega.$$

Compare this with

$$||g||_2^2 = \lim_{r \uparrow 1} \int_0^{2\pi} |g(re^{i\omega})|^2 d\omega$$

for $g \in \mathbf{H}^2$.

Introduction of \mathbf{H}_m^2

Put

 $\mathcal{P}_m := \{ \text{polynomials of degree } \leq m-1 \} \subset \mathbf{H}^2.$

For $g \in \mathbf{H}^2$ we define $\|g\|_{2,m}^2 := \lim_{r \uparrow 1} \sup_{h \in \mathcal{P}_m, \|h\|_2 \le 1} \int_0^{2\pi} |h(re^{i\omega})g(re^{i\omega})|^2 d\omega.$

Then $\|\cdot\|_{2,m}$ defines an alternative norm for \mathbf{H}^2 . This space is denoted by \mathbf{H}_m^2 .

Note:

$$m = 1$$
: $||g||_{2,1} = ||g||_2$,

and

if
$$f \in \mathbf{H}^{\infty}$$
: $\lim_{m \to \infty} ||f||_{2,m} = ||f||_{\infty}$.

Nevanlinna-Pick interpolation on \mathbf{H}_m^2

Data: Distinct points $z_1 \dots, z_n$ in \mathbb{D} , and complex numbers β_1, \dots, β_n .

Problem: Find $f : \mathbb{D} \to \mathbb{C}$, analytic, such that

(RNP1) $f(z_j) = \beta_j$ for j = 1, ..., n, and

(RNP2) $||f||_{2,m} \leq 1.$

Foias-Frazho-Kaashoek (2002): problem is solvable if and only if the "Pick matrix"

$$\left[\frac{1 - \beta_i \overline{\beta}_j (1 - z_i^m \overline{z}_j^m)}{1 - z_i \overline{z}_j} \right]_{i,j=1}^n \text{ is positive.}$$

Method:

The relaxed commutant lifting theorem.

The relaxed commutant lifting problem

Lifting data set (LDS): $\{A, T', U', R, Q\}$ such that

 $A: \mathcal{H} \to \mathcal{H}', \quad T' \text{ on } \mathcal{H}' \text{ a contraction},$ $R, Q: \mathcal{H}_0 \to \mathcal{H}, \quad R^*R \leq Q^*Q,$ T'AR = AQ,

U' on $\mathcal{K}' = \mathcal{H}' \oplus \mathcal{M}$ an isometric lifting of T',

i.e.,
$$U' = \begin{bmatrix} T' & 0 \\ * & * \end{bmatrix}$$
 on $\begin{bmatrix} \mathcal{H}' \\ \mathcal{M} \end{bmatrix}$, U' isometry

Problem (RCLP): Find $B : \mathcal{H} \to \mathcal{K}'$ such that

1)
$$B = \begin{bmatrix} A \\ * \end{bmatrix} : \mathcal{H} \to \begin{bmatrix} \mathcal{H}' \\ \mathcal{M} \end{bmatrix}$$
, a contraction,

2) U'BR = BQ.

RCLT (FFK'02): Solvable iff $||A|| \leq 1$.

Frazho-H-Kaashoek '06:

A description of all solutions.

Connection to operator theory

The Hilbert space ℓ^2 :

$$\ell^2 = \{ \begin{bmatrix} x_0 & x_1 & \dots \end{bmatrix}^T | x_k \in \mathbb{C}, \sum_{k=0}^\infty |x_k|^2 < \infty \}.$$

Let $f : \mathbb{D} \to \mathbb{C}$ analytic, $f(z) = \sum_{k=0}^{\infty} f_k z^k$. For \mathbf{H}^2 :

$$\begin{array}{ll} f \in \mathbf{H}^2 & \Longleftrightarrow & T_{f,1} := \left[\begin{array}{cc} f_0 & f_1 & \dots \end{array} \right]^T \in \ell^2 \\ & \Longleftrightarrow & T_{f,1} : \mathbb{C} \to \ell^2 \text{ bounded.} \end{array}$$

And $||f||_2 = ||T_{f,1}||$.

For \mathbf{H}^{∞} : $f \in \mathbf{H}^{\infty}$ iff

$$T_f := \begin{bmatrix} f_0 & 0 & 0 & \dots \\ f_1 & f_0 & 0 & \dots \\ f_2 & f_1 & f_0 & \\ \vdots & & \ddots & \end{bmatrix} \text{ on } \ell^2 \text{ bounded.}$$

And $\|f\|_{\infty} = \|T_f\|.$

Condition RNP2 in operator form

Now for \mathbf{H}_m^2 :

Let f be a function from \mathbf{H}^2 . Define

$$T_{f,m} := \begin{bmatrix} f_0 & 0\\ \vdots & \ddots & \\ f_{m-1} & \dots & f_0\\ f_m & \dots & f_1\\ \vdots & \vdots & \vdots \end{bmatrix} : \mathbb{C}^m \to \ell^2 \text{ bounded.}$$

Then $||f||_{2,m} = ||T_{f,m}||.$

Thus the condition (RNP2) is equivalent to

(RNP2') $T_{f,m}$ is a contraction.

Identifying $T_{f,m}$ in $L(\mathbb{C}^m, \ell^2)$

Define

$$S = \begin{bmatrix} 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix}, \text{ on } \ell^2 \text{ (forward shift)},$$
$$R = \begin{bmatrix} I_{m-1} \\ 0 \end{bmatrix}, Q = \begin{bmatrix} 0 \\ I_{m-1} \end{bmatrix} : \mathbb{C}^{m-1} \to \mathbb{C}^m.$$

Then for $f \in \mathbf{H}_m^2$

$$ST_{f,m}R = T_{f,m}Q.$$

In fact:

LEMMA. Let $B : \mathbb{C}^m \to \ell^2$ be a (bounded) operator. Then

 $SBR = BQ \iff B = T_{f,m}$ for some $f \in \mathbf{H}_m^2$.

Some operators

Put $Z = \text{diag}(z_1, \ldots, z_n)$ on \mathbb{C}^n , and $\alpha = \begin{bmatrix} 1 & \ldots & 1 \end{bmatrix}^T, \beta = \begin{bmatrix} \beta_1 & \ldots & \beta_n \end{bmatrix}^T : \mathbb{C} \to \mathbb{C}^n.$ Define

$$W = \begin{bmatrix} \alpha & Z\alpha & Z^2\alpha & \dots \end{bmatrix}$$
$$= \begin{bmatrix} 1 & z_1 & z_1^2 & \dots \\ \vdots & \vdots & \vdots \\ 1 & z_n & z_n^2 & \dots \end{bmatrix} : \ell^2 \to \mathbb{C}^n.$$

$$W_m = \begin{bmatrix} \beta & Z\beta & \dots & Z^{m-1}\beta \end{bmatrix}$$
$$= \begin{bmatrix} \beta_1 & z_1\beta_1 & \dots & z_1^{m-1}\beta_1 \\ \vdots & \vdots & & \vdots \\ \beta_n & z_n\beta_n & \dots & z_n^{m-1}\beta_n \end{bmatrix} : \mathbb{C}^m \to \mathbb{C}^n.$$
$$P = WW^* \text{ on } \mathbb{C}^n, \quad P_m = W_m W_m^* \text{ on } \mathbb{C}^n.$$

Then

$$z_i \neq z_j$$
 if $i \neq j \Rightarrow P$ is invertible.

And

WS = ZW, $W_m R = W_{m-1}$, $W_m Q = ZW_{m-1}$, where W_{m-1} is defined similar as W_m . Condition RNP1 in operator form

Define
$$\mathcal{H}' = \operatorname{Im} W^* \subset \ell^2$$
 and
 $A = W^* P^{-1} W_m : \mathbb{C}^m \to \mathcal{H}'.$
Then for $f \in \mathbf{H}_m^2$:
 $f(z_i) = \beta_i \,\forall i \iff WT_{f,m} = W_m$
 $\iff WT_{f,m} = WW^* P^{-1} W_m$
 $= WA$
 $\iff T_{f,m} = \begin{bmatrix} A \\ * \end{bmatrix}.$

Thus the condition (RNP1) is equivalent to

(RNP1')
$$T_{f,m} = \begin{bmatrix} A \\ * \end{bmatrix}$$
.

NP-interpolation on \mathbf{H}_m^2 in operator language:

Let $f:\mathbb{D}\to\mathbb{C}$ be analytic. Then f is a NP-interpolant in \mathbf{H}_m^2 if and only if

(RNP1')
$$T_{f,m} = \begin{bmatrix} A \\ * \end{bmatrix}$$
, and

(RNP2') $T_{f,m}$ is a contraction.

Connection with relaxed commutant lifting

Put

$$T' = \Pi_{\mathcal{H}'} S | \mathcal{H}' \text{ on } \mathcal{H}'.$$

Then $\{A, T', S, R, Q\}$ is a LDS if (1) S is an isometric lifting of T' and (2) T'AR = AQ.

Proof of (1): S is an isometry and

$$S^*W^* = W^*Z^* \Rightarrow S^*\mathcal{H}' \subset \mathcal{H}'.$$

Proof of (2):

$$WT'AR = WSW^*P^{-1}W_mR = ZWW^*P^{-1}W_{m-1}$$
$$= ZW_{m-1} = W_mQ = WW^*P^{-1}W_mQ$$
$$= WAQ.$$

Thus

$$\operatorname{Im} W^* = \mathcal{H}' \; \Rightarrow \; T'AR = AQ.$$

Conclusion 1

THM. Let $f : \mathbb{D} \to \mathbb{C}$ be analytic and let $\Omega := \{A, T', S, R, Q\}$ be the LDS as constructed above. Then f is a NP-interpolant in \mathbf{H}_m^2 for our given data if and only if there exists a solution B to the RCLP for LDS Ω such that $B = T_{f,m}$.

RCLT: There exists a solution to the RCLP for LDS Ω iff $||A|| \le 1$.

$$\|A\| \leq 1 \iff I - A^*A \geq 0$$

$$\iff I - W_m^* P^{-1} W_m \geq 0$$

$$\iff P - W_m W_m^* \geq 0$$

$$\iff P - P_m \geq 0$$

Conclusion 2: The Pick matrix

Note

$$P = \sum_{k=0}^{\infty} Z^k \alpha \alpha^* (Z^*)^k = \left[\sum_{k=0}^{\infty} z_i^k \overline{z}_j^k \right]_{i,j=1}^n$$
$$= \left[\frac{1}{1 - z_i \overline{z}_j} \right]_{i,j=1}^n$$

and

$$P_m = \sum_{k=0}^{m-1} Z^k \beta \beta^* (Z^*)^k = \left[\sum_{k=0}^{m-1} z_i^k \beta_i \overline{\beta}_j \overline{z}_j^k \right]_{i,j=1}^n$$
$$= \left[\frac{\beta_i \overline{\beta}_j (1 - z_i^m \overline{z}_j^m)}{1 - z_i \overline{z}_j} \right]_{i,j=1}^n.$$

Therefore

$$P - P_m = \left[\frac{1 - \beta_i \overline{\beta}_j (1 - z_i^m \overline{z}_j^m)}{1 - z_i \overline{z}_j} \right]_{i,j=1}^n.$$