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Cauchy’s Residue Sore Thumb
Harold P. Boas

Abstract. Cauchy’s method from two centuries ago for computing integrals along the real axis
by passing into the complex plane is not rigorous by present-day standards. Yet when properly
formulated, his original approach is simpler than modern presentations of the residue calculus.

Are you good at computing integrals? Try this one:
∫ ∞

0
ecos(x) sin(sin(x))

x

x2 + 1
dx. (1)

No fair peeking at the answer! But you get partial credit for showing at least that this
improper integral converges.

If you find this problem a hard nut to crack, you are in good company. The integral is
absent from the exhaustive tables [17] of Gradshteyn and Ryzhik,1 and when I fed this
problem to Maple 18 and to Mathematica 11, both software programs choked. Even
the great Augustin-Louis Cauchy (1789–1857), who posed the problem, got the answer
wrong on his first try.

There is no hope to evaluate (1) by first computing an explicit antiderivative of the
integrand. The failure of standard computer programs to produce an elementary an-
tiderivative is compelling evidence that there is none; skeptical readers can prove the
nonexistence by invoking the theory of differential fields as illustrated in the expository
article [25] by Maxwell Rosenlicht (1924–1999).

Mathematicians of the 19th century knew so many special tricks for evaluating def-
inite integrals that the Dutch scholar David Bierens de Haan (1822–1895) could write
a book [3] on the topic. The approach to the integral (1) that likely occurs to a math-
ematician of the 21st century is Cauchy’s residue theorem for functions of a complex
variable. Indeed, the application of complex analysis to solve purely real problems is
nowadays a familiar idea [22].

Euler’s formula for the complex exponential function implies that

ee
ix = ecos(x)+i sin(x) = ecos(x) (cos(sin(x)) + i sin(sin(x))) .

Accordingly, a conceivable method for attacking (1) is first to integrate the expression
ee

iz
z/(z2 + 1) around a suitable contour and then to take the imaginary part of the result.

The integral over a simple, closed, counterclockwise curve in the upper half-plane sur-
rounding the singular point i equals 2π i times the residue—the coefficient of (z− i)−1

in the local expansion of the function in positive and negative powers of (z− i). The

integrand can be written as [ee
iz
z(z+ i)−1](z− i)−1, so the residue equals ee

i2

i(2i)−1,

1 Entry 3.973 is a near miss.
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whence the integral over the closed curve equals π ie1/e. The nontrivial obstacle to ex-
ecuting this method is that the original integration path is not a closed curve.

The integral (1) appears [14, appendix, formula (25)] in a long list of integrals that
Cauchy evaluates2 in a memoir of 1825 that is often viewed as the origin of the residue
theorem. Observing by symmetry that (1) is half the integral over the whole real line,
Cauchy deduces the incorrect value 1

2πe
1/e for (1). He soon corrects the mistake [12,

p. 139], acknowledging that a mishandling of his powerful new tool is the cause of his
smashed thumb.3

The influential philosopher Imre Lakatos (1922–1974) emphasizes in a seminal
book [20] that new concepts and theorems are generated by proofs—not the other way
around. Two examples that he cites from the work of Cauchy are a purported proof
of Euler’s formula for polyhedra and a purported proof of continuity of convergent
series of continuous functions, both of which Lakatos views as good arguments
in search of valid theorems. Similarly, the residue calculus represents a remark-
ably successful technique, even though Cauchy’s implementations lack accurate
hypotheses.

My goal in this article is not merely to supply a sound calculation of the integral (1)
but also to formulate and prove natural theorems that realize Cauchy’s original vision.
My treatment differs from the standard exposition of the residue calculus in modern
sources. So many cooks have seasoned the residue broth during the past two centuries
that the recipe now has become codified in a form that loses sight of Cauchy’s simple
initial conception. I present, in a few paragraphs,4 a self-contained development of the
part of Cauchy’s theory needed for evaluating integrals over the real axis.

Although I do not aim to compete with comprehensive studies of the history and
applications of Cauchy’s work on complex integration (such as [2], [7], [23], and [26]),
I do hope to counteract a false impression students get from current textbooks that
Cauchy epitomizes precision and rigor. To me, browsing Cauchy’s sprawling oeuvre is
like exploring the nooks and crannies of a hyperactive child’s tree house, a convoluted
structure improvised from scrap lumber and bent nails, remodeled and elaborated over
many years. The continuing attraction of the edifice consists in the ingenuity of the
creation, the lofty location, and the expansive views from the windows.

1. FIRST AID. Some preliminary observations about the integral (1) are useful.
Cauchy actually includes three positive parameters a, b, and r in the integral, thus:∫ ∞

0
ea cos(bx) sin(a sin(bx))

x

x2 + r2
dx. (2)

The integral (1) is the special case in which a = b = r = 1. The number b in (2) can
be considered a “fake parameter” in the language of [24]. Indeed, replacing bx with a
new variable u produces the equivalent integral∫ ∞

0
ea cos(u) sin(a sin(u))

u

u2 + (br)2
du.

Since this integral depends on b and r only through the product br, there is no loss of
generality in setting b equal to 1. Once the value of the integral is known when b = 1,
the general value can be obtained by replacing r in the answer by br.

2 I write about Cauchy’s work in the present tense, on the grounds that his mathematics is timeless.
3 Cauchy’s confession of error appears in a footnote. The hammer metaphor is my own.
4 Amusingly, a catchphrase of the prolific Cauchy is “en peu de mots” (literally, “in a few words”).
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When b = 1, why does the improper integral (2) converge? Since the expression
ea cos(x) sin(a sin(x)) is an antisymmetric (odd) function of x, the integral of this quantity
over the symmetric interval [−π, π] is equal to 0. Periodicity implies that the integral of
the same expression vanishes over every interval of width 2π . Therefore, the magnitude
of the integral ∫ R

0
ea cos(x) sin(a sin(x)) dx

is no more than the magnitude of the integral over half a period, hence is bounded
above by πea for every R. The expression x/(x2 + r2) is decreasing when x > r and
has limit 0 when x → ∞, so Dirichlet’s test for integrals [8, p. 430] implies that
the integral (2) converges when b = 1 (hence for every positive value of the fake
parameter b).

The convergence is a delicate issue, however, for the improper integral∫ ∞

0
eae

ibx x

x2 + r2
dx, (3)

of which (2) is formally the imaginary part, actually diverges. To see why, let f (x)
denote the sum of the series

∑∞
n=1

aneibnx

n! ibn , absolutely convergent when x is a real num-

ber, and observe that the derivative f ′(x) equals eae
ibx − 1. Adding and subtracting 1 in

the integrand, then making use of an explicit antiderivative of x/(x2 + r2), and finally
integrating by parts shows that∫ R

0
eae

ibx x

x2 + r2
dx =

∫ R

0
(eae

ibx − 1)
x

x2 + r2
dx+ 1

2
log

(
1 + R2

r2

)

= f (R)
R

R2 + r2
−

∫ R

0
f (x)

r2 − x2

(x2 + r2)2
dx+ 1

2
log

(
1 + R2

r2

)
.

The function f is uniformly bounded on the real line, since
∞∑
n=1

∣∣∣∣a
neibnx

n! ibn

∣∣∣∣ ≤ 1

b

∞∑
n=1

an

n!
= ea − 1

b
.

Therefore, f (R)R/(R2 + r2) → 0 when R → ∞, and

lim
R→∞

[∫ R

0
eae

ibx x

x2 + r2
dx− 1

2
log

(
1 + R2

r2

)]
=

∫ ∞

0
f (x)

x2 − r2

(x2 + r2)2
dx.

Since f is bounded, the improper integral on the right-hand side converges absolutely
by comparison with the convergent integral

∫ ∞
0 (x2 + r2)−1 dx. Thus the integral (3)

diverges at a logarithmic rate.
Accordingly, the idea of computing Cauchy’s integral (2) by first evaluating (3)

seems to be a nonstarter. Following Cauchy’s lead, I will show nonetheless that the
residue method succeeds when (2) is sneakily realized as the imaginary part of the
convergent integral ∫ ∞

−∞

1

2
(eae

ibx − 1)
x

x2 + r2
dx. (4)

2. CAUCHY’S RECTANGULAR MALLET. In 1814, the twenty-five-year-old
Cauchy must have been pleased when the French Academy of Sciences accepted his
long submission about the evaluation of real definite integrals, especially since his bid
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for election to that august body had failed the year before [15, p. 206]. But the actual
printing of his article was delayed until 1827, by which time Cauchy had published
improved accounts of his theory superseding the first paper.

I will focus on the following statement from Cauchy’s 1814 article [11, Théorème 1,
p. 713], paraphrased in modern language: If f (x+ yi) is holomorphic (complex-
analytic) except for some simple poles, and if limy→∞ f (x+ yi) = 0 for every x and
limx→±∞ f (x+ yi) = 0 for every y, then the integral

∫ ∞
−∞ f (x) dx along the real axis

equals 2π i times the sum of the residues of the function f in the upper half-plane. Es-
sentially the same statement appears in the 1823 write-up of his calculus lectures [10,
Leçon 34, p. 136]. Cauchy’s hypotheses actually are not sufficient to guarantee validity
of the conclusion, as his mistaken initial evaluation of (1) reveals. His 1826 correction
strengthens one hypothesis [12, Théorème VI] to the still inadequate assumption that
(x+ yi) f (x+ yi) tends to 0 when y → ∞.

But Cauchy’s new method does give the right answer for many examples, including
this one [11, p. 758]:

∫ ∞

0

x sin(bx)

x2 + 1
dx = π

2
e−b when b > 0. (5)

Cauchy knows that this formula is correct, since he is aware of an alternative deriva-
tion [21, p. 100] by Pierre-Simon Laplace (1749–1827). Further on, Cauchy points out
[11, p. 789] that this integral depends discontinuously on the parameter b, since the
left-hand side of (5) evidently vanishes when b = 0, yet the right-hand side reduces to
the limiting value π/2. This example challenges a belief cherished by many calculus
students that discontinuities appear only in artificial, esoteric situations.

Cauchy’s main observation is that computing the integral of a function from a point
(x1, y1) to a point (x2, y2) in two different ways—either along a horizontal path from
(x1, y1) to (x2, y1) and a vertical path from (x2, y1) to (x2, y2) or, alternatively, along a
vertical path from (x1, y1) to (x1, y2) and a horizontal path from (x1, y2) to (x2, y2)—
produces identical answers if the function is holomorphic in the rectangle bounded by
the indicated line segments (see Figure 1); and if the function has singularities inside the
rectangle, then the two integrals differ by a correction term equal to 2π i times the sum
of the residues of the function inside the rectangle. My paraphrase is anachronistic:
Cauchy does not have the present terminology of line integrals (path integrals), and
only in 1826 does he introduce the word “residue” [13].

1 2

1

2

Figure 1. Two paths from (x1, y1) to (x2, y2).
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1 2

1

2

Figure 2. Evaluating
∫ ∫

∂ f
∂x .

Expressed in today’s language, the proof is straightforward. (Students and teachers
of multivariable calculus should recognize the argument from the proof of Green’s the-
orem in the plane.5) To say that a complex-valued function f of the two real variables
x and y is holomorphic means intuitively that the function depends only on the com-
bination x+ yi (the complex variable z); a more precise statement is that the partial
derivative of f with respect to y equals i times the partial derivative with respect to x.
Assuming (as Cauchy does implicitly) that the partial derivative ∂ f /∂x is continuous,
apply the fundamental theorem of calculus to rewrite the two-dimensional integral of
∂ f /∂x over the rectangle as

∫ y2

y1

f (x2, y) − f (x1, y) dy

(see Figure 2). Similarly, the two-dimensional integral of ∂ f /∂y over the rectangle
equals ∫ x2

x1

f (x, y2) − f (x, y1) dx.

When f is holomorphic, the second two-dimensional integral equals i times the first.
The geometric interpretation is that the line integral

∫
f (x, y) d(x+ yi) around the ori-

ented boundary of the rectangle equals 0.
If f has some simple poles (first-order singularities), then a correction term needs

to be computed. To say that f has a simple pole at z0 with residue equal to the com-
plex number c means that the difference f (z) − c(z− z0)−1 is holomorphic near z0 or
(equivalently) can be expanded near z0 in a Taylor series in powers of (z− z0). Adding
and subtracting integrals along suitable line segments and then discarding vanishing
integrals over rectangles that avoid the singularities, as indicated in Figure 3, reduces
the problem to calculating

∫
1/(z− z0) dz around a square centered at z0. Making a

translation and a dilation converts the problem into showing that 2π i equals the value
of the counterclockwise line integral∫

1

x+ yi
d(x+ yi), equivalently

∫
x− yi

x2 + y2
d(x+ yi),

5 Although the remarkable George Green (1793–1841) privately published his essay concerning the three-
dimensional theorem in 1828, his work became known only after his death. But that is another story [9, 18].
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1 2

1

2

*
*

Figure 3. Localizing the singularities.

around the square with vertices at (±1, ±1). Symmetry considerations show that the
preceding integral equals

4
∫ 1

−1

i

t2 + 1
dt, or 4i [arctan(1) − arctan(−1)] , or 2π i,

as claimed. (Higher-order singularities can be handled too, as Cauchy makes explicit
in [12, Théorème II, p. 131], but this refinement is not needed for the main examples.)

Cauchy’s application is to put the bottom edge of the rectangle on the real axis and
to let the top and the sides zoom off to infinity. He supposes—wrongly—that if the
function vanishes at infinity, then so do the limits of the integrals over the line segments,
and he deduces that the integral of the function over the real axis equals 2π i times
the sum of the residues of the function in the upper half-plane. At this stage in the
development of his theory, Cauchy is not thinking about integrals over general simple
closed curves: rectangles suffice for evaluating integrals over the real axis.

Issues about domains do not concern Cauchy, for most of his examples involve con-
crete elementary functions. I will suppose that all functions in question are holomor-
phic on an open neighborhood of the closed upper half-plane except for finitely many
isolated singularities. Using his new invention of singular integrals, Cauchy can al-
low poles on the real axis, but I will assume for simplicity that all the singular points
have nonzero imaginary part. With these conventions in force, Cauchy’s method can
be formalized rigorously as follows.

Theorem 1 (after Cauchy). If the improper integral
∫ ∞
0 f (x+ yi) dy tends to 0 when

x → ±∞, and if for each bounded interval I the integral
∫
I f (x+ yi) dx tends to 0

when y → ∞, then
∫ ∞
−∞ f (x) dx equals 2π i times the sum of the residues of f in the

upper half-plane.

For the proof, fix a small positive number ε, and invoke the hypotheses to say that
for all sufficiently large positive numbers A and B, the integrals

∫ ∞
0 f (−A+ yi) dy

and
∫ ∞
0 f (B+ yi) dy have absolute value less than ε/3, and every singular point of f

has real part between −A and B. Fix such numbers A and B, and use the meaning of
convergence of an improper integral to deduce that for every sufficiently large positive
numberC, the integrals

∫ C
0 f (−A+ yi) dy and

∫ C
0 f (B+ yi) dy have absolute value less

than ε/3. By hypothesis, the number C can be chosen additionally large enough that
the integral

∫ B
−A f (x+Ci) dx has absolute value less than ε/3. Consequently, the inte-

gral of f over the rectangle with opposite corners (−A, 0) and (B,C) not only equals
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2π i times the sum of the residues of f in the upper half-plane but also differs from∫ B
−A f (x) dx by less than ε. Since ε is arbitrary, the doubly improper integral

∫ ∞
−∞ f (x) dx

converges and has the required value.
The problem to which Cauchy has no adequate solution is to specify readily verified

conditions on the integrand to guarantee that the hypotheses of the theorem hold. The
assumption that limy→∞

∫
I f (x+ yi) dx = 0 certainly holds when f (x+ yi) tends to 0

uniformly with respect to x when y → ∞. This assumption may be what Cauchy has
in mind when he says that limy→∞ f (x+ yi) = 0, but he lacks the concept of uniform
convergence. The property certainly holds when f is a rational function whose denom-
inator has higher degree than the numerator, for then | f (x+ yi)| decays at least as fast
as a constant times 1/|x+ yi|, and this expression is uniformly bounded above by 1/y
when y → ∞. A trickier issue is to identify simple but widely applicable conditions
on f to control the integrals on vertical lines. There is no trouble working with a ratio-
nal function if the degree of the denominator is at least 2 larger than the degree of the
numerator, for then | f (x+ yi)| decays at least as fast as a constant times 1/|x+ yi|2,
and

∫ ∞

0

1

x2 + y2
dy = π

2|x| ,

which does tend to 0 when x → ±∞. To handle more general functions requires further
analysis, a topic that I address next.

3. WHACKING JORDAN. At first sight, Theorem 1 seems insufficient to evaluate
the integral in (5). That the integral lives on only a part of the real axis is no difficulty:
by symmetry, the value equals half the integral over the whole axis. A serious issue,
however, is that sin[b(x+ yi)] blows up as y tends to infinity. When x = 0, for instance,
this function becomes sin(byi), which equals the unbounded purely imaginary expres-
sion i sinh(by). As suggested in the introduction, Cauchy’s device for overcoming this
obstacle is to express the real function sin(bx) as the imaginary part of the complex
exponential eibx and to view the integral as the imaginary part of

1

2

∫ ∞

−∞

x

x2 + 1
eibx dx.

If z = x+ yi, then |eibz| = e−by, an expression that tends to 0 uniformlywith respect to x
when y → ∞. Since the fraction z/(z2 + 1) also tends to 0 uniformly when y → ∞,
the second hypothesis in Theorem 1 holds. To check the hypothesis about integrals on
vertical lines, observe that

∣∣∣∣ z

z2 + 1

∣∣∣∣ =
∣∣∣∣ (z− i) + i

(z− i)(z+ i)

∣∣∣∣ ≤ 1

|z+ i| + 1

|z− i| |z+ i| ≤ 1

|x| + 1

x2
.
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−

Figure 4. Jordan’s contour.

Therefore, ∣∣∣∣
∫ ∞

0

x+ yi

(x+ yi)2 + 1
eib(x+yi) dy

∣∣∣∣ ≤
(

1

|x| + 1

x2

) ∫ ∞

0
e−by dy.

The right-hand side tends to 0 when x → ±∞, the integral
∫ ∞
0 e−by dy being finite.

Thus both hypotheses of Theorem 1 are satisfied. The residue of

1

2
· z

z2 + 1
eibz

at the singular point i equals e−b/4, so Theorem 1 validates formula (5).
Curiously, a more difficult argument for establishing such integral formulas has been

standard in textbooks since the 19th-century Cours d’analyse [19] of Camille Jordan
(1838–1922). Students are taught to evaluate

lim
R→∞

1

2

∫ R

−R

x

1 + x2
eibx dx

by closing the contour with a semicircleCR in the upper half-plane (see Figure 4). This
method is trickier than using Cauchy’s rectangle. Indeed, I was unable to complete the
proof as an undergraduate until a fellow student proposed integrating over a triangle
instead of a semicircle. Our instructor was Lars Ahlfors (1907–1996), recipient of the
Fields medal at the first award ceremony (in 1936). He indicated that he had not seen
triangles used before in this context, so we students published the idea [5], naively
unaware that rectangles are the original polygonal contrivance from the dawn of the
theory.

A student who attempts to prove that the integral overCR has limit equal to 0 when
R → ∞ typically falls short on the first try as follows. Since |eib(x+yi)| = e−by ≤ 1,
and |z/(1 + z2)| ≤ R/(R2 − 1) when |z| = R (as long as R > 1), bounding the integral
by the length of the integration path times the maximum of the absolute value of the
integrand shows that ∣∣∣∣

∫
CR

z

1 + z2
eibz dz

∣∣∣∣ ≤ πR · R

R2 − 1
. (6)

The indicated upper bound tends to π , not 0, when R → ∞. This inequality admits an
essential improvement, however, for e−by not only is bounded but actually decays when
y grows. Since y is large only on part of the semicircleCR, care is needed to exploit this
extra information.

The second try is to parametrize the semicircle by setting z equal to Reiθ . Moving
the absolute value signs inside the integral yields the following upper bound for the
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left-hand side of (6):

R2

R2 − 1

∫ π

0
e−bR sin(θ ) dθ. (7)

The factor in front of the integral tends to 1 when R → ∞, so what needs to be shown
is that the integral with respect to θ has limit equal to 0. When 0 < θ < π , the quantity
b sin(θ ) is positive, so the integrand e−bR sin(θ ) has limit 0. But this limit is not uniform
with respect to θ , a complication that could trip up even professional mathematicians
as recently as the early 20th century. Edmund Taylor Whittaker (1873–1956) waves his
hands unconvincingly in the first edition of A Course of Modern Analysis [28, p. 86],
claiming nonsensically that since the original integrand zeibz/(1 + z2) “is infinitesimal
compared with 1/z at points on γ [= CR], the integral round γ is infinitesimal com-
pared with

∫
γ

|dz/z| or 2π , and is therefore zero.” The integrand is certainly not small
in comparison to 1/z on the real axis! Nonetheless, the required convergence of the
integral (7) to 0 when R → ∞ does follow directly from any one of several proposi-
tions that are standard nowadays: the bounded convergence theorem, the dominated
convergence theorem, and the monotone convergence theorem.

The preceding analysis shows, more generally, that if f is a function for which
|z f (z)| is bounded when |z| is sufficiently large, then ∫

CR
f (z)eibz dz tends to zero when

R → ∞. In particular, f can be any rational function that vanishes at infinity.
This argument can be sharpened by leveraging the fast decay of the exponential to

avoid using any quantitative information about the decay rate of the other factor. Jordan
observes [19, §289] for a general function f that∣∣∣∣

∫
CR

f (z)eiz dz

∣∣∣∣ ≤ sup
0<θ<π

| f (Reiθ )|
∫ π

0
e−R sin(θ )R dθ.

(Adjusting the argument to hold for eibz in place of eiz is a simple matter of rescaling
the variable.) Since sin(π − θ ) = sin(θ ), the θ integral equals twice the integral from 0
to π/2. Now sin(θ ) ≥ (2/π )θ when 0 ≤ θ ≤ π/2, so an upper bound for the θ integral
is

2
∫ π/2

0
e−(2/π )RθR dθ, or π (1 − e−R).

Accordingly, if f (Reiθ ) → 0 when R → ∞, and if the convergence is uniform with
respect to the angle θ , then

∫
CR
f (z)eiz dz has limit 0 too.

Rarely needed in practice, this refinement is dubbed “Jordan’s lemma” in textbooks.
The person responsible for naming the lemma seems to be George Neville Watson
(1886–1965) in his textbook [27, §30]. Although historically accurate, the nomencla-
ture is unfortunate, for an identically named algebraic proposition exists in the theory
of invariants (see, for instance, [16, Appendix III]). The name of the analytic lemma is
recorded in the second edition of A Course of Modern Analysis [29], presumably due
to Watson’s collaboration with his teacher on the revision; the wide influence of this
book, still in print, has ensured the permanence of the terminology. Jordan himself died
at the age of 84 during the interval between the third edition and the fourth edition of
this treatise, familiarly known as “Whittaker and Watson.”

Watson’s own textbook evaluates Cauchy’s integral (2) by “arguments similar to
those used in proving Jordan’s lemma” [27, p. 62], but the exposition requires some
contortions, since the lemma does not apply as formulated. Thus, there is a need to
upgrade Jordan’s lemma. I offer a replacement in the spirit of Cauchy’s initial work on
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definite integrals. Although not explicitly covered by Cauchy’s writings of 1825–1826,
the statement is in the penumbra.

The integrand in Jordan’s lemma is a product of two functions of different character.
Accordingly, I consider functions f1 and f2 that are holomorphic in a neighborhood of
the closed upper half-plane and have finitely many singularities, all located in the open
upper half-plane.

Theorem 2 (after Cauchy). Suppose that when y → ∞, the function f1(x+ yi) tends
to 0 uniformly with respect to x in an arbitrary bounded interval I, and the in-
tegral

∫
I | f2(x+ yi)| dx stays bounded. Suppose that when x → ±∞, the function

f2(x+ yi) tends to 0 uniformly with respect to y, and the integral
∫ ∞
0 | f1(x+ yi)| dy

stays bounded. Then
∫ ∞
−∞ f1(x) f2(x) dx equals 2π i times the sum of the residues of

f1 f2 in the upper half-plane.

This statement is an immediate corollary of Theorem 1, for the hypotheses imply
that the product function f1 f2 satisfies the conditions of that theorem. The traditional
Jordan lemma is the special case in which f1(z) is an exponential function of the form
eibz (where b > 0) and f2(z) vanishes when z → ∞.

There are many other interesting functions to which Theorem 2 applies. Indeed, let
g(w) be an arbitrary power series

∑∞
n=1 cnw

n that has radius of convergence greater
than 1 and lacks a constant term. I claim that the composite function g(eibz) will serve
for f1(z) in Theorem 2 when b > 0. Indeed,

|g(eib(x+yi) )| ≤ e−by
∞∑
n=1

|cn| when y > 0.

Now
∑∞

n=1 |cn| converges, because
∑∞

n=1 cn = g(1), and every power series converges
absolutely inside the open disk of convergence. Accordingly, the function g(eib(x+yi) )
tends to 0 uniformly with respect to x when y → ∞. The preceding inequality addi-
tionally implies that

∫ ∞

0

∣∣g(eib(x+yi) )∣∣ dy ≤ 1

b

∞∑
n=1

|cn|,

the finite upper bound being independent of x. Thus the function g(eibz) does satisfy
both hypotheses required of f1(z) in Theorem 2.

In particular, choosing eaw − 1 for the function g(w) shows that f1(z) can be taken
to be eae

ibz − 1 in Theorem 2. Letting f2(z) be z/(z2 + r2) reveals that the value of the
integral (4) is 2π i times the residue at ir of the function

1

2
· z

z2 + r2
(eae

ibz − 1), the residue being
1

4
(eae

−br − 1).

Consequently, the integral (2) equals

π

2
(eae

−br − 1); and the integral (1) equals
π

2

(
e1/e − 1

)
.

Cauchy’s blunder in his first attempt is the failure to account for the term −1 needed
to make g(0) equal to 0.

4. DRIVINGTHEPOINTHOME. Cauchy’s marvelous tool for computing definite
integrals has remained useful into modern times, notwithstanding the development
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of automated computation. One example dear to my heart is the following formula
from my mother’s Ph.D. dissertation on theoretical physics [6], directed by Herman
Feshbach:

∫ ∞

0

1

x(1 + x2)
log

∣∣∣∣∣
x+ √

3

x− √
3

∣∣∣∣∣ dx = π2

6
.

The integrand has a removable singularity when x = 0 and an integrable singularity
when x = √

3. The relatively fast decay of the integrand at infinity yields an easy
verification of the main hypotheses of Theorem 1, and the indicated result follows after
a bit of care to define a suitable branch of the complex logarithm function and a finesse
to handle innocuous singularities on the real axis. Yet both Maple and Mathematica
beg the question by evaluating the integral in terms of the dilogarithm function, which
itself is defined as an integral, and neither software program succeeds in simplifying6

the answer to π2/6.
To emphasize the continuing strength and value of Cauchy’s simple rectangle

method, I offer the following sampler of additional formulas that can be deduced from
Theorem 2. As in the integral (2), the parameters a, b, and r represent arbitrary positive
numbers. In the final three formulas, the additional positive parameter c is assumed to
have a value greater than a.∫ ∞

0
sin(a cos(bx)) sinh(a sin(bx))

x

x2 + r2
dx = π

2

(
1 − cos

( a

ebr

))
(8)

∫ ∞

0
cos(a cos(bx)) sinh(a sin(bx))

x

x2 + r2
dx = π

2
sin

( a

ebr

)
(9)

∫ ∞

0

x sin(bx)

(x2 + r2)(a2 + 2ac cos(bx) + c2)
dx = π

2c
· 1

a+ cebr
(10)

∫ ∞

0

log(a2 + 2ac cos(bx) + c2)

x2 + r2
dx = π

r
log

(
c+ a

ebr

)
(11)

∫ ∞

0

x

x2 + r2
log

a2 + 2ac sin(bx) + c2

a2 − 2ac sin(bx) + c2
dx = 2π arctan

( a

cebr

)
(12)

Which of these formulas can you prove? Here is your assessment rubric:

One correct. You beat both Maple 18 andMathematica 11, which cannot solve any
of these problems. Indeed, the computer programs have to be coached
even to produce accurate numerical approximations of these slowly
converging integrals.

Two correct. You are on a par with the tables of Gradshteyn and Ryzhik, which to
the best of my knowledge contain only (10) and (11) [17, 3.792(13),
4.322(10)].

Three correct. You outperform the tables of Bierens de Haan, which contain a cor-
rect version of (8) [4, 375(1)] but erroneous versions of (9) and
(10) [4, 375(3), 192(2)].

6 An amusing exercise for human readers is to massage the computer’s output into the required simple form
by applying two known identities for the dilogarithm function [1, Theorem 2.6.1 and Equation 2.6.6].
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Four correct. You may apply for a job as assistant to Cauchy, whose own supple-
mentary list of integrals that his method handles “without difficulty”
includes the left-hand sides of (11) and (12) explicitly and (8) and (9)
implicitly [14, pp. 88–89].

Five correct. Congratulations! You are in a position now to establish “an infinity of
other [examples]” [14, p. 88] by the rectangle method.

DEDICATION. This article is dedicated to the memory of E. S. Pondiczery.

ORCID. Harold P. Boas http://orcid.org/0000-0002-5031-3414
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100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

Large numbers of teachers of mathematics in secondary schools and colleges have
enlisted in the military service since the opening of the present academic year. It has
been the plan of the editors of the Monthly to record as many of these enlistments
as possible, especially the members of the Association. The editor of the “Notes and
News” columns of the Monthly welcomes all notices sent him concerning the mil-
itary service of any member of the Association, or other mathematicians.

The twenty-fourth annual meeting of the American Mathematical Society was
held in NewYork on December 27–28, 1917. There were eleven papers on the printed
program, the authors representing seven colleges and universities.

The attendance at the third annual meeting [of the MAA] was most gratifying, in
view of war conditions. The total number present at the various sessions was 119,
including 93 members.

—Excerpted from “Notes and News” and “Notes on the Third
Annual Meeting of the Association” 25 (1918) 38–42.
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