
4. Real Numbers

The set of all real numbers R (the real line or the continuum) is the unique
ordered field in which every nonempty bounded set has a least upper bound.
The proof of the following theorem marks the beginning of Cantor’s theory
of sets.

Theorem 4.1 (Cantor). The set of all real numbers is uncountable.

Proof. Let us assume that the set R of all reals is countable, and let c0,
c1, . . . , cn, . . . , n ∈ N , be an enumeration of R. We shall find a real number
different from each cn.

Let a0 = c0 and b0 = ck0 where k0 is the least k such that a0 < ck.
For each n, let an+1 = cin where in is the least i such that an < ci < bn,
and bn+1 = ckn where kn is the least k such that an+1 < ck < bn. If we let
a = sup{an : n ∈ N}, then a �= ck for all k. ��

The Cardinality of the Continuum

Let c denote the cardinality of R. As the set Q of all rational numbers is
dense in R, every real number r is equal to sup{q ∈ Q : q < r} and because
Q is countable, it follows that c ≤ |P (Q)| = 2ℵ0 .

Let C (the Cantor set) be the set of all reals of the form
∑∞

n=1 an/3n,
where each an = 0 or 2. C is obtained by removing from the closed interval
[0, 1], the open intervals (1

3 , 2
3 ), (1

9 , 2
9 ), (7

9 , 8
9 ), etc. (the middle-third intervals).

C is in a one-to-one correspondence with the set of all ω-sequences of 0’s
and 2’s and so |C| = 2ℵ0 .

Therefore c ≥ 2ℵ0 , and so by the Cantor-Bernstein Theorem we have

(4.1) c = 2ℵ0 .

By Cantor’s Theorem 4.1 (or by Theorem 3.1), c > ℵ0. Cantor conjectured
that every set of reals is either at most countable or has cardinality of the
continuum. In ZFC, every infinite cardinal is an aleph, and so 2ℵ0 ≥ ℵ1.
Cantor’s conjecture then becomes the statement

2ℵ0 = ℵ1

known as the Continuum Hypothesis (CH).
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Among sets of cardinality c are the set of all sequences of natural numbers,
the set of all sequences of real numbers, the set of all complex numbers. This
is because ℵℵ0

0 = (2ℵ0)ℵ0 = 2ℵ0 , 2ℵ0 · 2ℵ0 = 2ℵ0 .
Cantor’s proof of Theorem 4.1 yielded more than uncountability of R; it

showed that the set of all transcendental numbers has cardinality c (cf. Ex-
ercise 4.5).

The Ordering of R

A linear ordering (P, <) is complete if every nonempty bounded subset of P
has a least upper bound. We stated above that R is the unique complete
ordered field. We shall generally disregard the field properties of R and will
concern ourselves more with the order properties.

One consequence of being a complete ordered field is that R contains the
set Q of all rational numbers as a dense subset. The set Q is countable and
its ordering is dense.

Definition 4.2. A linear ordering (P, <) is dense if for all a < b there exists
a c such that a < c < b.

A set D ⊂ P is a dense subset if for all a < b in P there exists a d ∈ D
such that a < d < b.

The following theorem proves the uniqueness of the ordered set (R, <).
We say that an ordered set is unbounded if it has neither a least nor a greatest
element.

Theorem 4.3 (Cantor).

(i) Any two countable unbounded dense linearly ordered sets are isomor-
phic.

(ii) (R, <) is the unique complete linear ordering that has a countable
dense subset isomorphic to (Q, <).

Proof. (i) Let P1 = {an : n ∈ N} and let P2 = {bn : n ∈ N} be two
such linearly ordered sets. We construct an isomorphism f : P1 → P2 in the
following way: We first define f(a0), then f−1(b0), then f(a1), then f−1(b1),
etc., so as to keep f order-preserving. For example, to define f(an), if it is not
yet defined, we let f(an) = bk where k is the least index such that f remains
order-preserving (such a k always exists because f has been defined for only
finitely many a ∈ P1, and because P2 is dense and unbounded).

(ii) To prove the uniqueness of R, let C and C′ be two complete dense
unbounded linearly ordered sets, let P and P ′ be dense in C and C′, re-
spectively, and let f be an isomorphism of P onto P ′. Then f can be
extended (uniquely) to an isomorphism f∗ of C and C′: For x ∈ C, let
f∗(x) = sup{f(p) : p ∈ P and p ≤ x}. ��
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The existence of (R, <) is proved by means of Dedekind cuts in (Q, <).
The following theorem is a general version of this construction:

Theorem 4.4. Let (P, <) be a dense unbounded linearly ordered set. Then
there is a complete unbounded linearly ordered set (C,≺) such that :

(i) P ⊂ C, and < and ≺ agree on P ;
(ii) P is dense in C.

Proof. A Dedekind cut in P is a pair (A, B) of disjoint nonempty subsets
of P such that

(i) A ∪ B = P ;
(ii) a < b for any a ∈ A and b ∈ B;
(iii) A does not have a greatest element.

Let C be the set of all Dedekind cuts in P and let (A1, B1) � (A2, B2) if
A1 ⊂ A2 (and B1 ⊃ B2). The set C is complete: If {(Ai, Bi) : i ∈ I} is
a nonempty bounded subset of C, then (

⋃
i∈I Ai,

⋂
i∈I Bi) is its supremum.

For p ∈ P , let

Ap = {x ∈ P : x < p}, Bp = {x ∈ P : x ≥ p}.

Then P ′ = {(Ap, Bp) : p ∈ P} is isomorphic to P and is dense in C. ��

Suslin’s Problem

The real line is, up to isomorphism, the unique linearly ordered set that is
dense, unbounded, complete and contains a countable dense subset.

Since Q is dense in R, every nonempty open interval of R contains a ra-
tional number. Hence if S is a disjoint collection of open intervals, S is at
most countable. (Let 〈rn : n ∈ N〉 be an enumeration of the rationals. To
each J ∈ S assign rn ∈ J with the least possible index n.)

Let P be a dense linearly ordered set. If every disjoint collection of open
intervals in P is at most countable, then we say that P satisfies the countable
chain condition.

Suslin’s Problem. Let P be a complete dense unbounded linearly ordered
set that satisfies the countable chain condition. Is P isomorphic to the real
line?

This question cannot be decided in ZFC; we shall return to the problem
in Chapter 9.
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The Topology of the Real Line

The real line is a metric space with the metric d(a, b) = |a − b|. Its metric
topology coincides with the order topology of (R, <). Since Q is a dense
set in R and since every Cauchy sequence of real numbers converges, R is
a separable complete metric space. (A metric space is separable if it has
a countable dense set; it is complete if every Cauchy sequence converges.)

Open sets are unions of open intervals, and in fact, every open set is the
union of open intervals with rational endpoints. This implies that the number
of all open sets in R is the continuum and so is the number of all closed sets
in R (Exercise 4.6).

Every open interval has cardinality c, therefore every nonempty open
set has cardinality c. We show below that every uncountable closed set has
cardinality c. Proving this was Cantor’s first step in the search for the proof of
the Continuum Hypothesis. In Chapter 11 we show that CH holds for Borel
and analytic sets as well.

A nonempty closed set is perfect if it has no isolated points. Theorems 4.5
and 4.6 below show that every uncountable closed set contains a perfect set.

Theorem 4.5. Every perfect set has cardinality c.

Proof. Given a perfect set P , we want to find a one-to-one function F from
{0, 1}ω into P . Let S be the set of all finite sequences of 0’s and 1’s. By
induction on the length of s ∈ S one can find closed intervals Is such that
for each n and all s ∈ S of length n,

(i) Is ∩ P is perfect,
(ii) the diameter of Is is ≤ 1/n,
(iii) Is�0 ⊂ Is, Is�1 ⊂ Is and Is�0 ∩ Is�1 = ∅.

For each f ∈ {0, 1}ω, the set P ∩
⋂∞

n=0 If�n has exactly one element, and we
let F (f) to be this element of P . ��

The same proof gives a more general result: Every perfect set in a sepa-
rable complete metric space contains a closed copy of the Cantor set (Exer-
cise 4.19).

Theorem 4.6 (Cantor-Bendixson). If F is an uncountable closed set,
then F = P ∪ S, where P is perfect and S is at most countable.

Corollary 4.7. If F is a closed set, then either |F | ≤ ℵ0 or |F | = 2ℵ0 . ��
Proof. For every A ⊂ R, let

A′ = the set of all limit points of A

It is easy to see that A′ is closed, and if A is closed then A′ ⊂ A. Thus we let

F0 = F, Fα+1 = F ′
α,

Fα =
⋂

γ<α
Fγ if α > 0 is a limit ordinal.
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Since F0 ⊃ F1 ⊃ . . . ⊃ Fα ⊃ . . ., there exists an ordinal θ such that Fα = Fθ

for all α ≥ θ. (In fact, the least θ with this property must be countable, by
the argument below.) We let P = Fθ.

If P is nonempty, then P ′ = P and so it is perfect. Thus the proof is
completed by showing that F − P is at most countable.

Let 〈Jk : k ∈ N〉 be an enumeration of rational intervals. We have F−P =⋃
α<θ(Fα − F ′

α); hence if a ∈ F − P , then there is a unique α such that a is
an isolated point of Fα. We let k(a) be the least k such that a is the only
point of Fα in the interval Jk. Note that if α ≤ β, b �= a and b ∈ Fβ − F ′

β ,
then b /∈ Jk(a), and hence k(b) �= k(a). Thus the correspondence a �→ k(a) is
one-to-one, and it follows that F − P is at most countable. ��

A set of reals is called nowhere dense if its closure has empty interior. The
following theorem shows that R is not the union of countably many nowhere
dense sets (R is not of the first category).

Theorem 4.8 (The Baire Category Theorem). If D0, D1, . . . , Dn, . . . ,
n ∈ N , are dense open sets of reals, then the intersection D =

⋂∞
n=0 Dn is

dense in R.

Proof. We show that D intersects every nonempty open interval I. First
note that for each n, D0 ∩ . . . ∩ Dn is dense and open. Let 〈Jk : k ∈ N〉
be an enumeration of rational intervals. Let I0 = I, and let, for each n,
In+1 = Jk = (qk, rk), where k is the least k such that the closed interval
[qk, rk] is included in In ∩ Dn. Then a ∈ D ∩ I, where a = limk→∞ qk. ��

Borel Sets

Definition 4.9. An algebra of sets is a collection S of subsets of a given
set S such that

(i) S ∈ S,
(ii) if X ∈ S and Y ∈ S then X ∪ Y ∈ S,
(iii) if X ∈ S then S − X ∈ S.

(4.2)

(Note that S is also closed under intersections.)
A σ-algebra is additionally closed under countable unions (and intersec-

tions):

(iv) If Xn ∈ S for all n, then
⋃∞

n=0 Xn ∈ S.

For any collection X of subsets of S there is a smallest algebra (σ-alge-
bra) S such that S ⊃ X ; namely the intersection of all algebras (σ-algebras) S
of subsets of S for which X ⊂ S.

Definition 4.10. A set of reals B is Borel if it belongs to the smallest σ-
algebra B of sets of reals that contains all open sets.
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In Chapter 11 we investigate Borel sets in more detail. In particular, we
shall classify Borel sets by defining a hierarchy of ω1 levels. For that we need
however a weak version of the Axiom of Choice that is not provable in ZF
alone. At this point we mention the lowest level of the hierarchy (beyond
open sets and closed sets): The intersections of countably many open sets
are called Gδ sets, and the unions of countably many closed sets are called
Fσ sets.

Lebesgue Measure

We assume that the reader is familiar with the basic theory of Lebesgue
measure. As we shall return to the subject in Chapter 11 we do not define
the concept of measure at this point. We also caution the reader that some
of the basic theorems on Lebesgue measure require the Countable Axiom of
Choice (to be discussed in Chapter 5).

Lebesgue measurable sets form a σ-algebra and contain all open intervals
(the measure of an interval is its length). Thus all Borel sets are Lebesgue
measurable.

The Baire Space

The Baire space is the space N = ωω of all infinite sequences of natural
numbers, 〈an : n ∈ N〉, with the following topology: For every finite sequence
s = 〈ak : k < n〉, let

(4.3) O(s) = {f ∈ N : s ⊂ f} = {〈ck : k ∈ N〉 : (∀k < n) ck = ak}.

The sets (4.3) form a basis for the topology of N . Note that each O(s) is also
closed.

The Baire space is separable and is metrizable: consider the metric
d(f, g) = 1/2n+1 where n is the least number such that f(n) �= g(n). The
countable set of all eventually constant sequences is dense in N . This sepa-
rable metric space is complete, as every Cauchy sequence converges.

Every infinite sequence 〈an : n ∈ N〉 of positive integers defines a con-
tinued fraction 1/(a0 + 1/(a1 + 1/(a2 + . . .))), an irrational number between
0 and 1. Conversely, every irrational number in the interval (0, 1) can be
so represented, and the one-to-one correspondence is a homeomorphism. It
follows that the Baire space is homeomorphic to the space of all irrational
numbers.

For various reasons, modern descriptive set theory uses the Baire space
rather than the real line. Often the functions in ωω are called reals.

Clearly, the space N satisfies the Baire Category Theorem; the proof is
similar to the proof of Theorem 4.8 above. The Cantor-Bendixson Theorem
holds as well. For completeness we give a description of perfect sets in N .
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Let Seq denote the set of all finite sequences of natural numbers. A (se-
quential) tree is a set T ⊂ Seq that satisfies

(4.4) if t ∈ T and s = t�n for some n, then s ∈ T .

If T ⊂ Seq is a tree, let [T ] be the set of all infinite paths through T :

(4.5) [T ] = {f ∈ N : f�n ∈ T for all n ∈ N}.

The set [T ] is a closed set in the Baire space: Let f ∈ N be such that f /∈ [T ].
Then there is n ∈ N such that f�n = s is not in T . In other words, the open
set O(s) = {g ∈ N : g ⊃ s}, a neighborhood of f , is disjoint from [T ]. Hence
[T ] is closed.

Conversely, if F is a closed set in N , then the set

(4.6) TF = {s ∈ Seq : s ⊂ f for some f ∈ F}

is a tree, and it is easy to verify that [TF ] = F : If f ∈ N is such that f�n ∈ T
for all n ∈ N , then for each n there is some g ∈ F such that g�n = f�n; and
since F is closed, it follows that f ∈ F .

If f is an isolated point of a closed set F in N , then there is n ∈ N such
that there is no g ∈ F , g �= f , such that g�n = f�n. Thus the following
definition:

A nonempty sequential tree T is perfect if for every t ∈ T there exist
s1 ⊃ t and s2 ⊃ t, both in T , that are incomparable, i.e., neither s1 ⊃ s2 nor
s2 ⊃ s1.

Lemma 4.11. A closed set F ⊂ N is perfect if and only if the tree TF is
a perfect tree. ��

The Cantor-Bendixson analysis for closed sets in the Baire space is carried
out as follows: For each tree T ⊂ Seq, we let

(4.7) T ′ = {t ∈ T : there exist incomparable s1 ⊃ t and s2 ⊃ t in T}.

(Thus T is perfect if and only if ∅ �= T = T ′.)
The set [T ]−[T ′] is at most countable: For each f ∈ [T ] such that f /∈ [T ′],

let sf = f�n where n is the least number such that f�n /∈ T ′. If f, g ∈
[T ] − [T ′], then sf �= sg, by (4.7). Hence the mapping f �→ sf is one-to-one
and [T ]− [T ′] is at most countable.

Now we let

(4.8) T0 = T, Tα+1 = T ′
α,

Tα =
⋂

β<α

Tβ if α > 0 is a limit ordinal.

Since T0 ⊃ T1 ⊃ . . . ⊃ Tα ⊃ . . ., and T0 is at most countable, there is an
ordinal θ < ω1 such that Tθ+1 = Tθ. If Tθ �= ∅, then it is perfect.
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Now it is easy to see that
[⋂

β<α Tβ

]
=

⋂
β<α[Tβ], and so

(4.9) [T ] − [Tθ] =
⋃

α<θ

([Tα] − [T ′
α]);

hence (4.9) is at most countable. Thus if [T ] is an uncountable closed set
in N , the sets [Tθ] and [T ] − [Tθ] constitute the decomposition of [T ] into
a perfect and an at most countable set.

In modern descriptive set theory one often speaks about the Lebesgue
measure on N . This measure is the extension of the product measure m on
Borel sets in the Baire space induced by the probability measure on N that
gives the singleton {n} measure 1/2n+1. Thus for every sequence s ∈ Seq of
length n ≥ 1 we have

(4.10) m(O(s)) =
n−1∏
k=0

1/2s(k)+1.

Polish Spaces

Definition 4.12. A Polish space is a topological space that is homeomorphic
to a separable complete metric space.

Examples of Polish spaces include R, N , the Cantor space, the unit in-
terval [0, 1], the unit circle T , the Hilbert cube [0, 1]ω, etc.

Every Polish space is a continuous image of the Baire space. In Chapter 11
we prove a somewhat more general statement.

Exercises

4.1. The set of all continuous functions f : R → R has cardinality c (while the set
of all functions has cardinality 2c).

[A continuous function on R is determined by its values at rational points.]

4.2. There are at least c countable order-types of linearly ordered sets.
[For every sequence a = 〈an : n ∈ N 〉 of natural numbers consider the order-

type
τa = a0 + ξ + a1 + ξ + a2 + . . .

where ξ is the order-type of the integers. Show that if a �= b, then τa �= τb.]

A real number is algebraic if it is a root of a polynomial whose coefficients are
integers. Otherwise, it is transcendental.

4.3. The set of all algebraic reals is countable.

4.4. If S is a countable set of reals, then |R − S| = c.
[Use R ×R rather than R (because |R ×R| = 2ℵ0).]
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4.5. (i) The set of all irrational numbers has cardinality c.
(ii) The set of all transcendental numbers has cardinality c.

4.6. The set of all open sets of reals has cardinality c.

4.7. The Cantor set is perfect.

4.8. If P is a perfect set and (a, b) is an open interval such that P ∩ (a, b) �= ∅,
then |P ∩ (a, b)| = c.

4.9. If P2 �⊂ P1 are perfect sets, then |P2 − P1| = c.
[Use Exercise 4.8.]

If A is a set of reals, a real number a is called a condensation point of A if every
neighborhood of a contains uncountably many elements of A. Let A∗ denote the
set of all condensation points of A.

4.10. If P is perfect then P ∗ = P .
[Use Exercise 4.8.]

4.11. If F is closed and P ⊂ F is perfect, then P ⊂ F ∗.
[P = P ∗ ⊂ F ∗.]

4.12. If F is an uncountable closed set and P is the perfect set constructed in
Theorem 4.6, then F ∗ ⊂ P ; thus F ∗ = P .

[Every a ∈ F ∗ is a limit point of P since |F − P | ≤ ℵ0.]

4.13. If F is an uncountable closed set, then F = F ∗ ∪ (F − F ∗) is the unique
partition of F into a perfect set and an at most countable set.

[Use Exercise 4.9.]

4.14. Q is not the intersection of a countable collection of open sets.
[Use the Baire Category Theorem.]

4.15. If B is Borel and f is a continuous function then f−1(B) is Borel.

4.16. Let f : R → R. Show that the set of all x at which f is continuous is a Gδ set.

4.17. (i) N ×N is homeomorphic to N .
(ii) Nω is homeomorphic to N .

4.18. The tree TF in (4.6) has no maximal node, i.e., s ∈ T such that there is no
t ∈ T with s ⊂ t. The map F �→ TF is a one-to-one correspondence between closed
sets in N and sequential trees without maximal nodes.

4.19. Every perfect Polish space has a closed subset homeomorphic to the Cantor
space.

4.20. Every Polish space is homeomorphic to a Gδ subspace of the Hilbert cube.
[Let {xn : n ∈N} be a dense set, and define f(x) = 〈d(x, xn) : n ∈N 〉.]

Historical Notes

Theorems 4.1, 4.3 and 4.5 are due to Cantor. The construction of real numbers by
completion of the rationals is due to Dedekind [1872].

Suslin’s Problem: Suslin [1920].
Theorem 4.6: Cantor, Bendixson [1883].
Theorem 4.8: Baire [1899].
Exercise 4.5: Cantor.


