
5. The Axiom of Choice and Cardinal
Arithmetic

The Axiom of Choice

Axiom of Choice (AC). Every family of nonempty sets has a choice func-
tion.

If S is a family of sets and ∅ /∈ S, then a choice function for S is a func-
tion f on S such that

(5.1) f(X) ∈ X

for every X ∈ S.
The Axiom of Choice postulates that for every S such that ∅ /∈ S there

exists a function f on S that satisfies (5.1).
The Axiom of Choice differs from other axioms of ZF by postulating

the existence of a set (i.e., a choice function) without defining it (unlike,
for instance, the Axiom of Pairing or the Axiom of Power Set). Thus it is
often interesting to know whether a mathematical statement can be proved
without using the Axiom of Choice. It turns out that the Axiom of Choice is
independent of the other axioms of set theory and that many mathematical
theorems are unprovable in ZF without AC.

In some trivial cases, the existence of a choice function can be proved
outright in ZF:

(i) when every X ∈ S is a singleton X = {x};
(ii) when S is finite; the existence of a choice function for S is proved by

induction on the size of S;
(iii) when every X ∈ S is a finite set of real numbers; let f(X) = the least

element of X .

On the other hand, one cannot prove existence of a choice function (in ZF)
just from the assumption that the sets in S are finite; even when every X ∈ S
has just two elements (e.g., sets of reals), we cannot necessarily prove that
S has a choice function.

Using the Axiom of Choice, one proves that every set can be well-ordered,
and therefore every infinite set has cardinality equal to some ℵα. In particular,
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any two sets have comparable cardinals, and the ordering

|X | ≤ |Y |

is a well-ordering of the class of all cardinals.

Theorem 5.1 (Zermelo’s Well-Ordering Theorem). Every set can be
well-ordered.

Proof. Let A be a set. To well-order A, it suffices to construct a transfinite
one-to-one sequence 〈aα : α < θ〉 that enumerates A. That we can do by
induction, using a choice function f for the family S of all nonempty subsets
of A. We let for every α

aα = f(A − {aξ : ξ < α})

if A − {aξ : ξ < α} is nonempty. Let θ be the least ordinal such that A =
{aξ : ξ < θ}. Clearly, 〈aα : α < θ〉 enumerates A. ��

In fact, Zermelo’s Theorem 5.1 is equivalent to the Axiom of Choice:
If every set can be well-ordered, then every family S of nonempty sets has
a choice function. To see this, well-order

⋃
S and let f(X) be the least element

of X for every X ∈ S.
Of particular importance is the fact that the set of all real numbers can

be well-ordered. It follows that 2ℵ0 is an aleph and so 2ℵ0 ≥ ℵ1.
The existence of a well-ordering of R yields some interesting counterex-

amples. Well known is Vitali’s construction of a nonmeasurable set (Exer-
cise 10.1); another example is an uncountable set of reals without a perfect
subset (Exercise 5.1).

If every set can be well-ordered, then every infinite set has a countable
subset: Well-order the set and take the first ω elements. Thus every infinite
set is Dedekind-infinite, and so finiteness and Dedekind finiteness coincide.

Dealing with cardinalities of sets is much easier when we have the Axiom
of Choice. In the first place, any two sets have comparable cardinals. Another
consequence is:

(5.2) if f maps A onto B then |B| ≤ |A|.

To show (5.2), we have to find a one-to-one function from B to A. This is
done by choosing one element from f−1({b}) for each b ∈ B.

Another consequence of the Axiom of Choice is:

(5.3) The union of a countable family of countable sets is countable.

(By the way, this often used fact cannot be proved in ZF alone.) To prove (5.3)
let An be a countable set for each n ∈ N . For each n, let us choose an
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enumeration 〈an,k : k ∈ N〉 of An. That gives us a projection of N ×N onto⋃∞
n=0 An:

(n, k) �→ an,k.

Thus
⋃∞

n=0 An is countable.
In a similar fashion, one can prove a more general statement.

Lemma 5.2. |
⋃

S| ≤ |S| · sup{|X | : X ∈ S}.

Proof. Let κ = |S| and λ = sup{|X | : X ∈ S}. We have S = {Xα : α < κ}
and for each α < κ, we choose an enumeration Xα = {aα,β : β < λα}, where
λα ≤ λ. Again we have a projection

(α, β) �→ aα,β

of κ × λ onto
⋃

S, and so |
⋃

S| ≤ κ · λ. ��

In particular, the union of ℵα sets, each of cardinality ℵα, has cardinal-
ity ℵα.

Corollary 5.3. Every ℵα+1 is a regular cardinal.

Proof. This is because otherwise ωα+1 would be the union of at most ℵα sets
of cardinality at most ℵα. ��

Using the Axiom of Choice in Mathematics

In algebra and point set topology, one often uses the following version of
the Axiom of Choice. We recall that if (P, <) is a partially ordered set, then
a ∈ P is called maximal in P if there is no x ∈ P such that a < x. If X is
a nonempty subset of P , then c ∈ P is an upper bound of X if x ≤ c for every
x ∈ X .

We say that a nonempty C ⊂ P is a chain in P if C is linearly ordered
by <.

Theorem 5.4 (Zorn’s Lemma). If (P, <) is a nonempty partially ordered
set such that every chain in P has an upper bound, then P has a maximal
element.

Proof. We construct (using a choice function for nonempty subsets of P ),
a chain in P that leads to a maximal element of P . We let, by induction,

aα = an element of P such that aα > aξ for every ξ < α if there is one.

Clearly, if α > 0 is a limit ordinal, then Cα = {aξ : ξ < α} is a chain in P
and aα exists by the assumption. Eventually, there is θ such that there is no
aθ+1 ∈ P , aθ+1 > aθ. Thus aθ is a maximal element of P . ��
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Like Zermelo’s Theorem 5.1, Zorn’s Lemma 5.4 is equivalent to the Axiom
of Choice (in ZF); see Exercise 5.5.

There are numerous examples of proofs using Zorn’s Lemma. To mention
only of few:

Every vector space has a basis.
Every field has a unique algebraic closure.
The Hahn-Banach Extension Theorem.
Tikhonov’s Product Theorem for compact spaces.

The Countable Axiom of Choice

Many important consequences of the Axiom of Choice, particularly many
concerning the real numbers, can be proved from a weaker version of the
Axiom of Choice.

The Countable Axiom of Choice. Every countable family of nonempty
sets has a choice function.

For instance, the countable AC implies that the union of countably many
countable sets is countable. In particular, the real line is not a countable
union of countable sets. Similarly, it follows that ℵ1 is a regular cardinal. On
the other hand, the countable AC does not imply that the set of all reals can
be well-ordered.

Several basic theorems about Borel sets and Lebesgue measure use the
countable AC; for instance, one needs it to show that the union of count-
ably many Fσ sets is Fσ. In modern descriptive set theory one often works
without the Axiom of Choice and uses the countable AC instead. In some
instances, descriptive set theorists use a somewhat stronger principle (that
follows from AC):

The Principle of Dependent Choices (DC). If E is a binary relation
on a nonempty set A, and if for every a ∈ A there exists b ∈ A such that
b E a, then there is a sequence a0, a1, . . . , an, . . . in A such that

(5.4) an+1 E an for all n ∈ N .

The Principle of Dependent Choices is stronger than the Countable Axiom
of Choice; see Exercise 5.7.

As an application of DC we have the following characterization of well-
founded relations and well-orderings:

Lemma 5.5.

(i) A linear ordering < of a set P is a well-ordering of P if and only if
there is no infinite descending sequence

a0 > a1 > . . . > an > . . .

in A.
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(ii) A relation E on P is well-founded if and only if there is no infinite
sequence 〈an : n ∈ N〉 in P such that

(5.5) an+1 E an for all n ∈ N .

Proof. Note that (i) is a special case of (ii) since a well-ordering is a well-
founded linear ordering.

If a0, a1, . . . , an, . . . is a sequence that satisfies (5.5), then the set {an :
n ∈ N} has no E-minimal element and hence E is not well-founded.

Conversely, if E is not well-founded, then there is a nonempty set A ⊂ P
with no E-minimal element. Using the Principle of Dependent Choices we
construct a sequence a0, a1, . . . , an, . . . that satisfies (5.5). ��

Cardinal Arithmetic

In the presence of the Axiom of Choice, every set can be well-ordered and so
every infinite set has the cardinality of some ℵα. Thus addition and multipli-
cation of infinite cardinal numbers is simple: If κ and λ are infinite cardinals
then

κ + λ = κ · λ = max{κ, λ}.
The exponentiation of cardinals is more interesting. The rest of Chapter 5 is
devoted to the operations 2κ and κλ, for infinite cardinals κ and λ.

Lemma 5.6. If 2 ≤ κ ≤ λ and λ is infinite, then κλ = 2λ.

Proof.

2λ ≤ κλ ≤ (2κ)λ = 2κ·λ = 2λ. ��(5.6)

If κ and λ are infinite cardinals and λ < κ then the evaluation of κλ

is more complicated. First, if 2λ ≥ κ then we have κλ = 2λ (because κλ ≤
(2λ)λ = 2λ), but if 2λ < κ then (because κλ ≤ κκ = 2κ) we can only conclude

(5.7) κ ≤ κλ ≤ 2κ.

Not much more can be claimed at this point, except that by Theorem 3.11
in Chapter 3 (κcf κ > κ) we have

(5.8) κ < κλ if λ ≥ cf κ.

If λ is a cardinal and |A| ≥ λ, let

(5.9) [A]λ = {X ⊂ A : |X | = λ}.

Lemma 5.7. If |A| = κ ≥ λ, then the set [A]λ has cardinality κλ.
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Proof. On the one hand, every f : λ → A is a subset of λ × A, and |f | = λ.
Thus κλ ≤ |[λ×A]|λ = |[A]λ|. On the other hand, we construct a one-to-one
function F : [A]λ → Aλ as follows: If X ⊂ A and |X | = λ, let F (X) be some
function f on λ whose range is X . Clearly, F is one-to-one. ��

If λ is a limit cardinal, let

(5.10) κ<λ = sup{κµ : µ is a cardinal and µ < λ}.

For the sake of completeness, we also define κ<λ+
= κλ for infinite successor

cardinals λ+.
If κ is an infinite cardinal and |A| ≥ κ, let

(5.11) [A]<κ = Pκ(A) = {X ⊂ A : |X | < κ}.

It follows from Lemma 5.7 and Lemma 5.8 below that the cardinality of
Pκ(A) is |A|<κ.

Infinite Sums and Products

Let {κi : i ∈ I} be an indexed set of cardinal numbers. We define

(5.12)
∑
i∈I

κi =
∣∣∣ ⋃
i∈I

Xi

∣∣∣,
where {Xi : i ∈ I} is a disjoint family of sets such that |Xi| = κi for each
i ∈ I.

This definition does not depend on the choice of {Xi}i; this follows from
the Axiom of Choice (see Exercise 5.9).

Note that if κ and λ are cardinals and κi = κ for each i < λ, then∑
i<λ

κi = λ · κ.

In general, we have the following

Lemma 5.8. If λ is an infinite cardinal and κi > 0 for each i < λ, then

(5.13)
∑
i<λ

κi = λ · supi<λ κi.

Proof. Let κ = supi<λ κi and σ =
∑

i<λ κi. On the one hand, since κi ≤ κ
for all i, we have

∑
i<λ κ ≤ λ ·κ. On the other hand, since κi ≥ 1 for all i, we

have λ =
∑

i<λ 1 ≤ σ, and since σ ≥ κi for all i, we have σ ≥ supi<λ κi = κ.
Therefore σ ≥ λ · κ. ��
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In particular, if λ ≤ supi<λ κi, we have∑
i<λ

κi = supi<λ κi.

Thus we can characterize singular cardinals as follows: An infinite cardinal κ
is singular just in case

κ =
∑
i<λ

κi

where λ < κ and for each i, κi < κ.

An infinite product of cardinals is defined using infinite products of sets.
If {Xi : i ∈ I} is a family of sets, then the product is defined as follows:

(5.14)
∏
i∈I

Xi = {f : f is a function on I and f(i) ∈ Xi for each i ∈ I}.

Note that if some Xi is empty, then the product is empty. If all the Xi are
nonempty, then AC implies that the product is nonempty.

If {κi : i ∈ I} is a family of cardinal numbers, we define

(5.15)
∏
i∈I

κi =
∣∣∣∏
i∈I

Xi

∣∣∣,
where {Xi : i ∈ I} is a family of sets such that |Xi| = κi for each i ∈ I.
(We abuse the notation by using

∏
both for the product of sets and for the

product of cardinals.)
Again, it follows from AC that the definition does not depend on the

choice of the sets Xi (Exercise 5.10).
If κi = κ for each i ∈ I, and |I| = λ, then

∏
i∈I κi = κλ. Also, infinite sums

and products satisfy some of the rules satisfied by finite sums and products.
For instance,

∏
i κλ

i = (
∏

i κi)λ, or
∏

i κλi = κ
P

i λi . Or if I is a disjoint union
I =

⋃
j∈J Aj , then

(5.16)
∏
i∈I

κi =
∏

j∈J

( ∏
i∈Aj

κi

)
.

If κi ≥ 2 for each i ∈ I, then

(5.17)
∑
i∈I

κi ≤
∏
i∈I

κi.

(The assumption κi ≥ 2 is necessary: 1+1 > 1 ·1.) If I is finite, then (5.17) is
certainly true; thus assume that I is infinite. Since

∏
i∈I κi ≥

∏
i∈I 2 = 2|I| >

|I|, it suffices to show that
∑

i κi ≤ |I| ·
∏

i κi. If {Xi : i ∈ I} is a disjoint
family, we assign to each x ∈

⋃
i Xi a pair (i, f) such that x ∈ Xi, f ∈

∏
i Xi

and f(i) = x. Thus we have (5.17).
Infinite product of cardinals can be evaluated using the following lemma:
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Lemma 5.9. If λ is an infinite cardinal and 〈κi : i < λ〉 is a nondecreasing
sequence of nonzero cardinals, then∏

i<λ

κi = (supi κi)λ.

Proof. Let κ = supi κi. Since κi ≤ κ for each i < λ, we have∏
i<λ

κi ≤
∏
i<λ

κ = κλ.

To prove that κλ ≤
∏

i<λ κi, we consider a partition of λ into λ disjoint
sets Aj , each of cardinality λ:

(5.18) λ =
⋃

j<λ

Aj .

(To get a partition (5.18), we can, e.g., use the canonical pairing function
Γ : λ×λ → λ and let Aj = Γ(λ×{j}).) Since a product of nonzero cardinals
is greater than or equal to each factor, we have

∏
i∈Aj

κi ≥ supi∈Aj
κi = κ,

for each j < λ. Thus, by (5.16),

∏
i<λ

κi =
∏

j<λ

( ∏
i∈Aj

κi

)
≥

∏
j<λ

κ = κλ. ��

The strict inequalities in cardinal arithmetic that we proved in Chapter 3
can be obtained as special cases of the following general theorem.

Theorem 5.10 (König). If κi < λi for every i ∈ I, then∑
i∈I

κi <
∏
i∈I

λi.

Proof. We shall show that
∑

i κi �
∏

i λi. Let Ti, i ∈ I, be such that |Ti| = λi

for each i ∈ I. It suffices to show that if Zi, i ∈ I, are subsets of T =
∏

i∈I Ti,
and |Zi| ≤ κi for each i ∈ I, then

⋃
i∈I Zi �= T .

For every i ∈ I, let Si be the projection of Zi into the ith coordinate:

Si = {f(i) : f ∈ Zi}.

Since |Zi| < |Ti|, we have Si ⊂ Ti and Si �= Ti. Now let f ∈ T be a function
such that f(i) /∈ Si for every i ∈ I. Obviously, f does not belong to any Zi,
i ∈ I, and so

⋃
i∈I Zi �= T . ��

Corollary 5.11. κ < 2κ for every κ.

Proof. 1 + 1 + . . .︸ ︷︷ ︸
κ times

< 2 · 2 · . . .︸ ︷︷ ︸
κ times

. ��

Corollary 5.12. cf(2ℵα) > ℵα.
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Proof. It suffices to show that if κi < 2ℵα for i < ωα, then
∑

i<ωα
κi < 2ℵα .

Let λi = 2ℵα . ∑
i<ωα

κi <
∏

i<ωα

λi = (2ℵα)ℵα = 2ℵα . ��

Corollary 5.13. cf(ℵℵβ
α ) > ℵβ.

Proof. We show that if κi < ℵℵβ
α for i < ωβ, then

∑
i<ωβ

κi < ℵℵβ
α . Let

λi = ℵℵβ
α . ∑

i<ωβ

κi <
∏

i<ωβ

λi = (ℵℵβ
α )ℵβ = ℵℵβ

α . ��

Corollary 5.14. κcf κ > κ for every infinite cardinal κ.

Proof. Let κi < κ, i < cf κ, be such that κ =
∑

i<cf κ κi. Then

κ =
∑

i<cf κ

κi <
∏

i<cf κ

κ = κcf κ. ��

The Continuum Function

Cantor’s Theorem 3.1 states that 2ℵα > ℵα, and therefore 2ℵα ≥ ℵα+1, for
all α. The Generalized Continuum Hypothesis (GCH) is the statement

2ℵα = ℵα+1

for all α. GCH is independent of the axioms of ZFC. Under the assumption
of GCH, cardinal exponentiation is evaluated as follows:

Theorem 5.15. If GCH holds and κ and λ are infinite cardinals then:

(i) If κ ≤ λ, then κλ = λ+.
(ii) If cf κ ≤ λ < κ, then κλ = κ+.
(iii) If λ < cf κ, then κλ = κ.

Proof. (i) Lemma 5.6.
(ii) This follows from (5.7) and (5.8).
(iii) By Lemma 3.9(ii), the set κλ is the union of the sets αλ, α < κ, and

|αλ| ≤ 2|α|·λ = (|α| · λ)+ ≤ κ. ��

The beth function is defined by induction:

�0 = ℵ0, �α+1 = 2�α ,

�α = sup{�β : β < α} if α is a limit ordinal.

Thus GCH is equivalent to the statement �α = ℵα for all α.
We shall now investigate the general behavior of the continuum func-

tion 2κ, without assuming GCH.
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Theorem 5.16.

(i) If κ < λ then 2κ ≤ 2λ.
(ii) cf 2κ > κ.
(iii) If κ is a limit cardinal then 2κ = (2<κ)cf κ.

Proof. (ii) By Corollary 5.12,
(iii) Let κ =

∑
i<cf κ κi, where κi < κ for each i. We have

2κ = 2
P

i κi =
∏
i

2κi ≤
∏
i

2<κ = (2<κ)cf κ ≤ (2κ)cf κ ≤ 2κ. ��

For regular cardinals, the only conditions Theorem 5.16 places on the
continuum function are 2κ > κ and 2κ ≤ 2λ if κ < λ. We shall see that these
are the only restrictions on 2κ for regular κ that are provable in ZFC.

Corollary 5.17. If κ is a singular cardinal and if the continuum function is
eventually constant below κ, with value λ, then 2κ = λ.

Proof. If κ is a singular cardinal that satisfies the assumption of the theorem,
then there is µ such that cf κ ≤ µ < κ and that 2<κ = λ = 2µ. Thus

2κ = (2<κ)cf κ = (2µ)cf κ = 2µ. ��

The gimel function is the function

(5.19) (κ)ג = κcf κ.

If κ is a limit cardinal and if the continuum function below κ is not
eventually constant, then the cardinal λ = 2<κ is a limit of a nondecreasing
sequence

λ = 2<κ = limα→κ 2|α|

of length κ. By Lemma 3.7(ii), we have

cf λ = cf κ.

Using Theorem 5.16(iii), we get

(5.20) 2κ = (2<κ)cf κ = λcf λ.

If κ is a regular cardinal, then κ = cf κ; and since 2κ = κκ, we have

(5.21) 2κ = κcf κ.

Thus (5.20) and (5.21) show that the continuum function can be defined in
terms of the gimel function:

Corollary 5.18.

(i) If κ is a successor cardinal, then 2κ = .(κ)ג
(ii) If κ is a limit cardinal and if the continuum function below κ is even-

tually constant, then 2κ = 2<κ · .(κ)ג
(iii) If κ is a limit cardinal and if the continuum function below κ is not

eventually constant, then 2κ = .(κ>2)ג ��
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Cardinal Exponentiation

We shall now investigate the function κλ for infinite cardinal numbers κ
and λ.

We start with the following observation: If κ is a regular cardinal and
λ < κ, then every function f : λ → κ is bounded (i.e., sup{f(ξ) : ξ < λ} < κ).
Thus

κλ =
⋃

α<κ
αλ.

and so
κλ =

∑
α<κ

|α|λ.

In particular, if κ is a successor cardinal, we obtain the Hausdorff formula

(5.22) ℵℵβ

α+1 = ℵℵβ
α · ℵα+1.

(Note that (5.22) holds for all α and β.)
In general, we can compute κλ using the following lemma. If κ is a limit

cardinal, we use the notation limα→κ αλ to abbreviate sup{µλ : µ is a cardinal
and µ < κ}.

Lemma 5.19. If κ is a limit cardinal, and λ ≥ cf κ, then

κλ = (limα→κ αλ)cf κ.

Proof. Let κ =
∑

i<cf κ κi, where κi < κ for each i. We have κλ ≤
(
∏

i<cf κ κi)λ =
∏

i κλ
i ≤

∏
i(limα→κ αλ) = (limα→κ αλ)cf κ ≤ (κλ)cf κ = κλ.

��

Theorem 5.20. Let λ be an infinite cardinal. Then for all infinite cardi-
nals κ, the value of κλ is computed as follows, by induction on κ:

(i) If κ ≤ λ then κλ = 2λ.
(ii) If there exists some µ < κ such that µλ ≥ κ, then κλ = µλ.
(iii) If κ > λ and if µλ < κ for all µ < κ, then:

(a) if cf κ > λ then κλ = κ,
(b) if cf κ ≤ λ then κλ = κcf κ.

Proof. (i) Lemma 5.6
(ii) µλ ≤ κλ ≤ (µλ)λ = µλ.
(iii) If κ is a successor cardinal, we use the Hausdorff formula. If κ is

a limit cardinal, we have limα→κ αλ = κ. If cf κ > λ then every f : λ → κ is
bounded and we have κλ = limα→κ αλ = κ. If cf κ ≤ λ then by Lemma 5.19,
κλ = (limα→κ αλ)cf κ = κcf κ. ��

Theorem 5.20 shows that all cardinal exponentiation can be defined in
terms of the gimel function:
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Corollary 5.21. For every κ and λ, the value of κλ is either 2λ, or κ, or (µ)ג
for some µ such that cf µ ≤ λ < µ.

Proof. If κλ > 2λ · κ, let µ be the least cardinal such that µλ = κλ, and by
Theorem 5.20 (for µ and λ), µλ = µcf µ. ��

In the Exercises, we list some properties of the gimel function.
A cardinal κ is a strong limit cardinal if

2λ < κ for every λ < κ.

Obviously, every strong limit cardinal is a limit cardinal. If the GCH holds,
then every limit cardinal is a strong limit.

It is easy to see that if κ is a strong limit cardinal, then

λν < κ for all λ, ν < κ.

An example of a strong limit cardinal is ℵ0. Actually, the strong limit cardi-
nals form a proper class: If α is an arbitrary cardinal, then the cardinal

κ = sup{α, 2α, 22α

, . . . }

(of cofinality ω) is a strong limit cardinal.
Another fact worth mentioning is:

(5.23) If κ is a strong limit cardinal, then 2κ = κcf κ.

We recall that κ is weakly inaccessible if it is uncountable, regular, and
limit. We say that a cardinal κ is inaccessible (strongly) if κ > ℵ0, κ is
regular, and κ is strong limit.

Every inaccessible cardinal is weakly inaccessible. If the GCH holds, then
every weakly inaccessible cardinal κ is inaccessible.

The inaccessible cardinals owe their name to the fact that they cannot be
obtained from smaller cardinals by the usual set-theoretical operations.

If κ is inaccessible and |X | < κ, then |P (X)| < κ. If |S| < κ and if |X | < κ
for every X ∈ S, then |

⋃
S| < κ.

In fact, ℵ0 has this property too. Thus we can say that in a sense an
inaccessible cardinal is to smaller cardinals what ℵ0 is to finite cardinals.
This is one of the main themes of the theory of large cardinals.

The Singular Cardinal Hypothesis

The Singular Cardinal Hypothesis (SCH) is the statement: For every singular
cardinal κ, if 2cf κ < κ, then κcf κ = κ+.

Obviously, the Singular Cardinals Hypothesis follows from GCH. If 2cf κ ≥
κ then κcf κ = 2cf κ. If 2cf κ < κ, then κ+ is the least possible value of κcf κ.
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We shall prove later in the book that if SCH fails then a large cardinal
axiom holds. In fact, the failure of SCH is equiconsistent with the existence
of a certain large cardinal.

Under the assumption of SCH, cardinal exponentiation is determined by
the continuum function on regular cardinals:

Theorem 5.22. Assume that SCH holds.

(i) If κ is a singular cardinal then
(a) 2κ = 2<κ if the continuum function is eventually constant below κ,
(b) 2κ = (2<κ)+ otherwise.

(ii) If κ and λ are infinite cardinals, then:
(a) If κ ≤ 2λ then κλ = 2λ.
(b) If 2λ < κ and λ < cf κ then κλ = κ.
(c) If 2λ < κ and cf κ ≤ λ then κλ = κ+.

Proof. (i) If κ is a singular cardinal, then by Theorem 5.16, 2κ is either λ
or λcf κ where λ = 2<κ. The latter occurs if 2α is not eventually constant
below κ. Then cf λ = cf κ, and since 2cf κ < 2<κ = λ, we have λcf λ = λ+ by
the Singular Cardinals Hypothesis.

(ii) We proceed by induction on κ, for a fixed λ. Let κ > 2λ. If κ is
a successor cardinal, κ = ν+, then νλ ≤ κ (by the induction hypothesis), and
κλ = (ν+)λ = ν+ · νλ = κ, by the Hausdorff formula.

If κ is a limit cardinal, then νλ < κ for all ν < κ. By Theorem 5.20, κλ = κ
if λ < cf κ, and κλ = κcf κ if λ ≥ cf κ, In the latter case, 2cf κ ≤ 2λ < κ, and
by the Singular Cardinals Hypothesis, κcf κ = κ+. ��

Exercises

5.1. There exists a set of reals of cardinality 2ℵ0 without a perfect subset.
[Let 〈Pα : α < 2ℵ0〉 be an enumeration of all perfect sets of reals. Construct

disjoint A = {aα : α < 2ℵ0} and B = {bα : α < 2ℵ0} as follows: Pick aα such that
aα /∈ {aξ : ξ < α} ∪ {bξ : ξ < α}, and bα such that bα ∈ Pα − {aξ : ξ ≤ α}. Then
A is the set.]

5.2. If X is an infinite set and S is the set of all finite subsets of X, then |S| = |X|.
[Use |X| = ℵα.]

5.3. Let (P, <) be a linear ordering and let κ be a cardinal. If every initial segment
of P has cardinality < κ, then |P | ≤ κ.

5.4. If A can be well-ordered then P (A) can be linearly ordered.
[Let X < Y if the least element of X � Y belongs to X.]

5.5. Prove the Axiom of Choice from Zorn’s Lemma.
[Let S be a family of nonempty sets. To find a choice function on S, let P = {f :

f is a choice function on some Z ⊂ S}, and apply Zorn’s Lemma to the partially
ordered set (P,⊂).]
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5.6. The countable AC implies that every infinite set has a countable subset.
[If A is infinite, let An = {s : s is a one-to-one sequence in A of length n} for

each n. Use a choice function for S = {An : n ∈ N} to obtain a countable subset
of A.]

5.7. Use DC to prove the countable AC.
[Given S = {An : n ∈ N}, consider the set A of all choice functions on some

Sn = {Ai : i ≤ n}, with the binary relation ⊃.]

5.8 (The Milner-Rado Paradox). For every ordinal α < κ+ there are sets
Xn ⊂ α (n ∈ N ) such that α =

S

n Xn, and for each n the order-type of Xn

is ≤ κn.
[By induction on α, choosing a sequence cofinal in α.]

5.9. If {Xi : i ∈ I} and {Yi : i ∈ I} are two disjoint families such that |Xi| = |Yi|
for each i ∈ I , then |Si∈I Xi| = |

S

i∈I Yi|.
[Use AC.]

5.10. If {Xi : i ∈ I} and {Yi : i ∈ I} are such that |Xi| = |Yi| for each i ∈ I , then
|Qi∈I Xi| = |

Q

i∈I Yi|.
[Use AC.]

5.11.
Q

0<n<ω n = 2ℵ0 .

5.12.
Q

n<ω ℵn = ℵℵ0
ω .

5.13.
Q

α<ω+ω ℵα = ℵℵ0
ω+ω.

5.14. If GCH holds then

(i) 2<κ = κ for all κ, and
(ii) κ<κ = κ for all regular κ.

5.15. If β is such that 2ℵα = ℵα+β for every α, then β < ω.
[Let β ≥ ω. Let α be least such that α + β > β. We have 0 < α ≤ β, and

α is limit. Let κ = ℵα+α; since cf κ = cf α ≤ α < κ, κ is singular. For each
ξ < α, ξ + β = β, and so 2ℵα+ξ = ℵα+ξ+β = ℵα+β. By Corollary 5.17, 2κ = ℵα+β,
a contradiction, since ℵα+β < ℵα+α+β.]

5.16.
Q

α<ω1+ω ℵα = ℵℵ1
ω1+ω.

[ℵℵ1
ω1+ω ≤ (

Q∞
n=0 ℵω1+n)ℵ1 =

Q

n ℵ
ℵ1
ω1+n =

Q

n(ℵℵ1
ω1 ·ℵω1+n) = ℵℵ1

ω1 ·
Q

n ℵω1+n =
Q

α<ω1+ω ℵα.]

5.17. If κ is a limit cardinal and λ < cf κ, then κλ =
P

α<κ |α|λ.

5.18. ℵℵ1
ω = ℵℵ0

ω · 2ℵ1 .

5.19. If α < ω1, then ℵℵ1
α = ℵℵ0

α · 2ℵ1 .

5.20. If α < ω2, then ℵℵ2
α = ℵℵ1

α · 2ℵ2 .

5.21. If κ is regular and limit, then κ<κ = 2<κ. If κ is regular and strong limit
then κ<κ = κ.

5.22. If κ is singular and is not strong limit, then κ<κ = 2<κ > κ.
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5.23. If κ is singular and strong limit, then 2<κ = κ and κ<κ = κcf κ.

5.24. If 2ℵ0 > ℵω, then ℵℵ0
ω = 2ℵ0 .

5.25. If 2ℵ1 = ℵ2 and ℵℵ0
ω > ℵω1 , then ℵℵ1

ω1 = ℵℵ0
ω .

5.26. If 2ℵ0 ≥ ℵω1 , then (ℵω)ג = 2ℵ0 and (ℵω1)ג = 2ℵ1 .

5.27. If 2ℵ1 = ℵ2, then ℵℵ0
ω �= ℵω1 .

5.28. If κ is a singular cardinal and if κ < (λ)ג for some λ < κ such that cf κ ≤ cf λ
then (κ)ג ≤ .(λ)ג

5.29. If κ is a singular cardinal such that 2cf κ < κ ≤ λcf κ for some λ < κ, then
(κ)ג = (λ)ג where λ is the least λ such that κ ≤ λcf κ.

Historical Notes

The Axiom of Choice was formulated by Zermelo, who used it to prove the Well-
Ordering Theorem in [1904]. Zorn’s Lemma is as in Zorn [1935]; for a related prin-
ciple, see Kuratowski [1922]. (Hausdorff in [1914], pp. 140–141, proved that every
partially ordered set has a maximal linearly ordered subset.) The Principle of De-
pendent Choices was formulated by Bernays in [1942].

König’s Theorem 5.10 appeared in J. König [1905]. Corollary 5.17 was found
independently by Bukovský [1965] and Hechler. The discovery that cardinal expo-
nentiation is determined by the gimel function was made by Bukovský; cf. [1965].
The inductive computation of κλ in Theorem 5.20 is as in Jech [1973a].

The Hausdorff formula (5.22): Hausdorff [1904].
Inaccessible cardinals were introduced in the paper by Sierpiński and Tar-

ski [1930]; see Tarski [1938] for more details.
Exercise 5.1: Felix Bernstein.
Exercise 5.8: Milner and Rado [1965].
Exercise 5.15: L. Patai.
Exercise 5.17: Tarski [1925b].
Exercises 5.28–5.29: Jech [1973a].


