
12. Models of Set Theory

Modern set theory uses extensively construction of models to establish rela-
tive consistency of various axioms and conjectures. As the techniques often
involve standard model-theoretic concepts, we assume familiarity with basic
notions of models and satisfaction, submodels and embeddings, as well as
Skolem functions, direct limit and ultraproducts. We shall review the basic
notions, notation and terminology of model theory.

Review of Model Theory

A language is a set of symbols: relation symbols, function symbols, and con-
stant symbols:

L = {P, . . . , F, . . . , c, . . .}.
Each P is assumed to be an n-placed relation for some integer n ≥ 1; each F
is an m-placed function symbol for some m ≥ 1.

Terms and formulas of a language L are certain finite sequences of sym-
bols of L, and of logical symbols (identity symbol, parentheses, variables,
connectives, and quantifiers). The set of all terms and the set of all formulas
are defined by recursion. If the language is countable (i.e., if |L| ≤ ℵ0), then
we may identify the symbols of L, as well as the logical symbols, with some
hereditarily finite sets (elements of Vω); then formulas are also hereditarily
finite.

A model for a given language L is a pair A = (A, I), where A is the
universe of A and I is the interpretation function which maps the symbols
of L to appropriate relations, functions, and constants in A. A model for L
is usually written in displayed form as

A = (A, PA, . . . , FA, . . . , cA, . . .)

By recursion on length of terms and formulas one defines the value of a term

tA[a1, . . . , an]

and satisfaction
A � ϕ[a1, . . . , an]

where t is a term, ϕ is a formula, and 〈a1, . . . , an〉 is a finite sequence in A.
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Two models A = (A, P, . . . , F, . . . , c, . . .) and A′ = (A′, P ′, . . . , F ′, . . . ,
c′, . . .) are isomorphic if there is an isomorphism between A and A′, that is
a one-to-one function f of A onto A′ such that

(i) P (x1, . . . , xn) if and only if P ′(f(x1), . . . , f(xn)),
(ii) f(F (x1, . . . , xn)) = F ′(f(x1), . . . , f(xn)),
(iii) f(c) = c′,

for all relations, functions, and constants of A. If f is an isomorphism, then
f(tA[a1, . . . , an]) = tA

′
[f(a1), . . . , f(an)] for each term, and

A � ϕ[a1, . . . , an] if and only if A′ � ϕ[f(a1), . . . , f(an)]

for each formula ϕ and all a1, . . . , an ∈ A.
A submodel of A is a subset B ⊂ A endowed with the relations PA ∩ Bn,

. . . , functions FA�Bm, . . . , and constants cA, . . . ; all cA belong to B, and
B is closed under all FA (if (x1, . . . , xm) ∈ Bm, then FA(x1, . . . , xm) ∈ B).

An embedding of B into A is an isomorphism between B and a submodel
B′ ⊂ A.

A submodel B ⊂ A is an elementary submodel

B ≺ A

if for every formula ϕ, and every a1, . . . , an ∈ B,

(12.1) B � ϕ[a1, . . . , an] if and only if A � ϕ[a1, . . . , an].

Two models A, B are elementarily equivalent if they satisfy the same
sentences.

The key lemma in construction of elementary submodels is this: A subset
B ⊂ A forms an elementary submodel of A if and only if for every formula
ϕ(u, x1, . . . , xn), and every a1, . . . , an ∈ B,

if ∃a ∈ A such that A � ϕ[a, a1, . . . , an], then ∃a ∈ B such that
A � ϕ[a, a1, . . . , an].

(12.2)

A function h : An → A is a Skolem function for ϕ if

(∃a ∈ A)A � ϕ[a, a1, . . . , an] implies A � ϕ[h(a1, . . . , an), a1, . . . , an]

for every a1, . . . , an. Using the Axiom of Choice, one can construct a Skolem
function for every ϕ. If a subset B ⊂ A is closed under (some) Skolem func-
tions for all formulas, then B satisfies (12.2) and hence forms an elementary
submodel of A.

Given a set of Skolem functions, one for each formula of L, the closure of
a set X ⊂ A is a Skolem hull of X . It is clear that the Skolem hull of X is
an elementary submodel of A, and has cardinality at most |X | · |L| · ℵ0. In
particular, we have the following:
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Theorem 12.1 (Löwenheim-Skolem). Every infinite model for a count-
able language has a countable elementary submodel. ��

An elementary embedding is an embedding whose range is an elementary
submodel.

A set X ⊂ A is definable over A if there exist a formula ϕ and some
a1, . . . , an ∈ A such that

X = {x ∈ A : A � ϕ[x, a1, . . . , an]}.

We say that X is definable in A from a1, . . . , an. If ϕ is a formula of x only,
without parameters a1, . . . , an, then X is definable in A. An element a ∈ A
is definable (from a1, . . . , an) if the set {a} is definable (from a1, . . . , an).

Gödel’s Theorems

The cornerstone of modern logic are Gödel’s theorems: the Completeness
Theorem and two incompleteness theorems.

A set Σ of sentences of a language L is consistent if there is no formal
proof of contradiction from Σ. The Completeness Theorem states that every
consistent set of sentences has a model.

The First Incompleteness Theorem shows that no consistent (recursive)
extension of Peano Arithmetic is complete: there exists a statement that is
undecidable in the theory. In particular, if ZFC is consistent (as we believe),
no additional axioms can prove or refute every sentence in the language of
set theory.

The Second Incompleteness Theorem proves that sufficiently strong math-
ematical theories such as Peano Arithmetic or ZF (if consistent) cannot prove
its own consistency. Gödel’s Second Incompleteness Theorem implies that it
is unprovable in ZF that there exists a model of ZF. This fact is significant for
the theory of large cardinals, and we shall return to it later in this chapter.

Direct Limits of Models

An often used construction in model theory is the direct limit of a directed
system of models. A directed set is a partially ordered set (D, <) such that
for every i, j ∈ D there is a k ∈ D such that i ≤ k and j ≤ k.

First consider a system of models {Ai : i ∈ D}, indexed by a directed
set D, such that for all i, j ∈ D, if i < j then Ai ≺ Aj. Let A =

⋃
i∈D Ai; i.e.,

the universe of A is the union of the universes of the Ai, PA =
⋃

i∈D PAi , etc.
It is easily proved by induction on the complexity of formulas that Ai ≺ A
for all i.

In general, we consider a directed system of models which consists of
models {Ai : i ∈ D} together with elementary embeddings ei,j : Ai → Aj

such that ei,k = ej,k ◦ ei,j for all i < j < k.
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Lemma 12.2. If {Ai, ei,j : i, j ∈ D} is a directed system of models, there
exists a model A, unique up to isomorphism, and elementary embeddings ei :
Ai → A such that A =

⋃
i∈D ei(Ai) and that ei = ej ◦ ei,j for all i < j.

The model A is called the direct limit of {Ai, ei,j}i,j∈D.

Proof. Consider the set S of all pairs (i, a) such that i ∈ D and a ∈ Ai, and
define an equivalence relation on S by

(i, a) ≡ (j, b) ↔ ∃k (i ≤ k, j ≤ k and ei,k(a) = ej,k(b)).

Let A = S/≡ be the set of all equivalence classes, and let ei(a) = [(i, a)] for
all i ∈ D and a ∈ Ai. The rest is routine. ��

In set theory, a frequent application of direct limits involves the case when
D is an ordinal number (and < is its well-ordering).

Reduced Products and Ultraproducts

An important method in model theory uses filters and ultrafilters. Let S be
a nonempty set and let {Ax : x ∈ S} be a system of models (for a language L).
Let F be a filter on S. Consider the set

A =
∏

x∈S

Ax/=F

where =F is the equivalence relation on
∏

x∈x Ax defined as follows:

(12.3) f =F g if and only if {x ∈ S : f(x) = g(x)} ∈ F.

It follows easily that =F is an equivalence relation.
The model A with universe A is obtained by interpreting the language as

follows:
If P (x1, . . . , xn) is a predicate, let

PA([f1], . . . , [fn]) if and only if {x ∈ S : PAx(f1(x), . . . , fn(x))} ∈ F .(12.4)

If F (x1, . . . , xn) is a function, let

FA([f1], . . . , [fn]) = [f ] where f(x) = FAx(f1(x), . . . , fn(x)) for all
x ∈ S.

(12.5)

If c is a constant, let

cA = [f ] where f(x) = cAx for all x ∈ S.(12.6)

(Note that (12.4) and (12.5) does not depend on the choice of representatives
from the equivalence classes [f1], . . . , [fn]).
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The model A is called a reduced product of {Ax : x ∈ S} (by F ).
Reduced products are particularly important in the case when the filter

is an ultrafilter. If U is an ultrafilter on S then the reduced product defined
in (12.3)–(12.6) is called the ultraproduct of {Ax : x ∈ S} by U :

A = UltU{Ax : x ∈ S}.

The importance of ultraproducts is due mainly to the following funda-
mental property.

Theorem 12.3 (�Loś). Let U be an ultrafilter on S and let A be the ultra-
product of {Ax : x ∈ S} by U .

(i) If ϕ is a formula, then for every f1, . . . , fn ∈
∏

x∈S Ax,

A � ϕ([f1], . . . , [fn]) if and only if {x ∈ S : Ax � ϕ[f1(x), . . . , fn(x)]} ∈ U.

(ii) If σ is a sentence, then

A � σ if and only if {x ∈ S : Ax � σ} ∈ U.

Part (ii) is a consequence of (i). Note that by the theorem, the satisfaction
of ϕ at [f1], . . . , [fn] does not depend on the choice of representatives f1,
. . . , fn for the equivalence classes [f1], . . . , [fn]. Thus we may further abuse
the notation and write

A � ϕ[f1, . . . , fn].

It will also be convenient to adopt a measure-theoretic terminology. If

{x ∈ S : Ax � ϕ[f1(x), . . . , fn(x)]} ∈ U

we say that Ax satisfies ϕ(f1(x), . . . , fn(x)) for almost all x, or that Ax �
ϕ(f1(x), . . . , fn(x)) holds almost everywhere. In this terminology, �Loś’s The-
orem states that ϕ(f1, . . . , fn) holds in the ultraproduct if and only if for
almost all x, ϕ(f1(x), . . . , fn(x)) holds in Ax.

Proof. We shall prove (i) by induction on the complexity of formulas. We
shall prove that (i) holds for atomic formulas, and then prove the induction
step for ¬, ∧, and ∃.

Atomic formulas. First we consider the formula u = v, and we have

(12.7) A � [f ] = [g] ↔ [f ] = [g]

↔ f =U g

↔ {x : f(x) = g(x)} ∈ U

↔ {x : Ax � f(x) = g(x)} ∈ U.
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For a predicate P (v1, . . . , vn) we have

(12.8) A � P ([f1], . . . , [fn]) ↔ PA([f1], . . . , [fn])

↔ {x : PAx(f1(x), . . . , fn(x))} ∈ U

↔ {x : Ax � P (f1(x), . . . , fn(x))} ∈ U.

Both (12.7) and (12.8) remain true if variables are replaced by terms, and so
(i) holds for all atomic formulas.

Logical connectives. First we assume that (i) holds for ϕ and show that it
also holds for ¬ϕ (here we use that X ∈ U if and only if S − X /∈ U).

A � ¬ϕ[f ] ↔ not A � ϕ[f ]
↔ {x : Ax � ϕ[f(x)]} /∈ U

↔ {x : Ax � ϕ[f(x)]} ∈ U

↔ {x : Ax � ¬ϕ[f(x)]} ∈ U.

Similarly, if (i) is true for ϕ and ψ, we have

A � ϕ ∧ ψ ↔ A � ϕ and A � ψ

↔ {x : Ax � ϕ} ∈ U and {x : Ax � ψ} ∈ U

↔ {x : Ax � ϕ ∧ ψ} ∈ U

(The last equivalence uses this: X ∈ U and Y ∈ U if and only if X ∩Y ∈ U .)

Existential quantifier. We assume that (i) is true for ϕ(u, v1, . . . , vn) and
show that it remains true for the formula ∃u ϕ. Let us assume first that

(12.9) A � ∃u ϕ[f1, . . . , fn].

Then there is g ∈
∏

x∈S Ax such that A � ϕ[g, f1, . . . , fn], and therefore

(12.10) {x : Ax � ϕ[g(x), f1(x), . . . , fn(x)]} ∈ U,

and it clearly follows that

(12.11) {x : Ax � ∃u ϕ[u, f1(x), . . . , fn(x)]} ∈ U.

Now let us assume that (12.11) holds. For each x ∈ S, let ux ∈ Ax be such
that Ax � [ux, f1(x), . . . , fn(x)] if such ux exists, and arbitrary otherwise. If
we define g ∈

∏
x∈S Ax by g(x) = ux, then we have (12.10), and therefore

A � ϕ[g, f1, . . . , fn].

Now (12.9) follows. ��
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Let us consider now the special case of ultraproducts, when each Ax is
the same model A. Then the ultraproduct is called an ultrapower of A; de-
noted UltU A.

Corollary 12.4. An ultrapower of a model A is elementarily equivalent to A.

Proof. By Theorem 12.3(ii) we have UltU A � σ if and only if {x : A � σ} is
either S or empty, according to whether A � σ or not. ��

We shall now show that a model A is elementarily embeddable in its
ultrapower. If U is an ultrafilter on S, we define the canonical embedding
j : A → UltU A as follows: For each a ∈ A, let ca be the constant function
with value a:

(12.12) ca(x) = a (for every x ∈ S),

and let

(12.13) j(a) = [ca].

Corollary 12.5. The canonical embedding j : A → UltU A is an elementary
embedding.

Proof. Let a ∈ A. By �Loś’s Theorem, UltU A � ϕ[j(a)] if and only if UltU A �
ϕ[ca] if and only if A � ϕ[a] for almost all x if and only if A � ϕ[a]. ��

Models of Set Theory and Relativization

The language of set theory consists of one binary predicate symbol ∈, and
so models of set theory are given by its universe M and a binary relation E
on M that interprets ∈.

We shall also consider models of set theory that are proper classes. How-
ever, due to Gödel’s Second Incompleteness Theorem, we have to be careful
how the generalization is formulated.

Definition 12.6. Let M be a class, E a binary relation on M and let
ϕ(x1, . . . , xn) be a formula of the language of set theory. The relativization
of ϕ to M , E is the formula

(12.14) ϕM,E(x1, . . . , xn)

defined inductively as follows:

(12.15) (x ∈ y)M,E ↔ x E y

(x = y)M,E ↔ x = y

(¬ϕ)M,E ↔ ¬ϕM,E

(ϕ ∧ ψ)M,E ↔ ϕM,E ∧ ψM,E

(∃xϕ)M,E ↔ (∃x ∈ M)ϕM,E

and similarly for the other connectives and ∀.
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When E is ∈, we write ϕM instead of ϕM,∈.

When using relativization ϕM,E(x1, . . . , xn) it is implicitly assumed that
the variables x1, . . . , xn range over M . We shall often write

(M, E) � ϕ(x1, . . . , xn)

instead of (12.14) and say that the model (M, E) satisfies ϕ. We point out
however that while this is a legitimate statement in every particular case of ϕ,
the general satisfaction relation is formally undefinable in ZF.

Let Form denote the set of all formulas of the language {∈}. As with any
actual (metamathematical) natural number we can associate the correspond-
ing element of N , we can similarly associate with any given formula of set
theory the corresponding element of the set Form . To make the distinction,
if ϕ is a formula, let �ϕ� denote the corresponding element of Form .

If M is a set and E is a binary relation on M and if a1, . . . , an are
elements of M , then

(12.16) ϕM,E(a1, . . . , an) ↔ (M, E) � �ϕ�[a1, . . . , an]

as can easily be verified. Thus in the case when M is a set and ϕ a particular
(metamathematical) formula, we shall not make a distinction between the
two meanings of the symbol �. We note however that the left-hand side
of (12.16) (relativization) is not defined for ϕ ∈ Form , and the right-hand
side (satisfaction) is not defined if M is a proper class.

Below we sketch a proof of a theorem of Tarski, closely related to Gödel’s
Second Incompleteness Theorem. The theorem states that there is no set-
theoretical property T (x) such that if σ is a sentence that T (�σ�) holds if and
only if σ holds.

Let us arithmetize the syntax and consider some fixed effective enumera-
tion of all expressions by natural numbers (Gödel numbering). In particular,
if σ is a sentence, then #σ is the Gödel number of σ, a natural number. We
say that T (x) is a truth definition if:

(i) ∀x (T (x) → x ∈ ω);
(ii) if σ is a sentence, then σ ↔ T (#σ).

(12.17)

Theorem 12.7 (Tarski). A truth definition does not exist.

Proof. Let us assume that there is a formula T (x) satisfying (12.17). Let

ϕ0, ϕ1, ϕ2, . . .

be an enumeration of all formulas with one free variable. Let ψ(x) be the
formula

x ∈ ω ∧ ¬T (#(ϕx(x))).

There is a natural number k such that ψ is ϕk. Let σ be the sentence ψ(k).
Then we have

σ ↔ ψ(k) ↔ ¬T (#(ϕk(k))) ↔ ¬T (#σ)
which contradicts (12.17). ��
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Relative Consistency

By Gödel’s Second Incompleteness Theorem it is impossible to show the
consistency of ZF (or related theories) by means limited to ZF alone.

Once we assume that ZF (or ZFC) is consistent, we may ask whether the
theory remains consistent if we add an additional axiom A.

Let T be a mathematical theory (in our case, T is either ZF or ZFC), and
let A be an additional axiom. We say that T + A is consistent relative to T
(or that A is consistent with T) if the following implication holds:

if T is consistent, then so is T + A.

If both A and ¬A are consistent with T, we say that A is independent of T.
The question whether A is consistent with T is equivalent to the question

whether the negation of A is provable in T (provided T is consistent); this is
because T + A is consistent if and only if ¬A is not provable in T.

The way to show that an axiom A is consistent with ZF (ZFC) is to
use models. For assume that we have a model M (possibly a proper class)
of ZF such that M � A. (More precisely, the relativizations σM hold for all
axioms σ of ZF, as well as AM .) Then A is consistent with ZF: If it were not,
then ¬A would be provable in ZF, and since M is a model of ZF, M would
satisfy ¬A. However, (¬A)M contradicts AM .

Transitive Models and ∆0 Formulas

If M is a transitive class then the model (M,∈) is called a transitive model.
We note that transitive models satisfy the Axiom of Extensionality (see Ex-
ercise 12.4) and that every well-founded extensional model is isomorphic to
a transitive model (Theorem 6.15).

Definition 12.8. A formula of set theory is a ∆0-formula if

(i) it has no quantifiers, or
(ii) it is ϕ∧ψ, ϕ∨ψ, ¬ϕ, ϕ → ψ or ϕ ↔ ψ where ϕ and ψ are ∆0-formulas,

or
(iii) it is (∃x ∈ y)ϕ or (∀x ∈ y)ϕ where ϕ is a ∆0-formula.

Lemma 12.9. If M is a transitive class and ϕ is a ∆0-formula, then for all
x1, . . . , xn,

(12.18) ϕM (x1, . . . , xn) ↔ ϕ(x1, . . . , xn).

If (12.18) holds, we say that the formula ϕ is absolute for the transitive
model M .
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Proof. If ϕ is an atomic formula, then (12.18) holds. If (12.18) holds for ϕ
and ψ, then it holds for ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, and ϕ ↔ ψ.

Let ϕ be the formula (∃u ∈ x)ψ(u, x, . . .) and assume that (12.18) is true
for ψ. We show that (12.18) is true for ϕ (the proof for ∀u ∈ x is similar).

If ϕM holds then we have (∃u (u ∈ x∧ψ))M , i.e., (∃u ∈ M)(u ∈ x∧ψM ).
Since ψM ↔ ψ, it follows that (∃u ∈ x)ψ. Conversely, if (∃u ∈ x)ψ, then
since M is transitive, u belongs to M , and since ψ(u, x, . . .) ↔ ψM (u, x, . . .),
we have ∃u (u ∈ M ∧ u ∈ x ∧ ψM ) and so ((∃u ∈ x)ψ)M . ��

Lemma 12.10. The following expressions can be written as ∆0-formulas
and thus are absolute for all transitive models.

(i) x = {u, v}, x = (u, v), x is empty, x ⊂ y, x is transitive, x is an
ordinal, x is a limit ordinal, x is a natural number, x = ω.

(ii) Z = X × Y , Z = X − Y , Z = X ∩ Y , Z =
⋃

X , Z = domX ,
Z = ranX.

(iii) X is a relation, f is a function, y = f(x), g = f�X.

Proof.

(i) x = {u, v} ↔ u ∈ x ∧ v ∈ x ∧ (∀w ∈ x)(w = u ∨ w = v).
x = (u, v) ↔ (∃w ∈ x)(∃z ∈ x)(w = {u} ∧ z = {u, v})

∧ (∀w ∈ x)(w = {u} ∨ w = {u, v}).
x is empty ↔ (∀u ∈ x)u �= u.
x ⊂ y ↔ (∀u ∈ x)u ∈ y.
x is transitive ↔ (∀u ∈ x)u ⊂ x.
x is an ordinal ↔ x is transitive∧(∀u ∈ x)(∀v ∈ x)(u ∈ v∨v ∈ u∨u = v)

∧ (∀u ∈ x)(∀v ∈ x)(∀w ∈ x)(u ∈ v ∈ w → u ∈ w).
x is a limit ordinal ↔ x is an ordinal ∧ (∀u ∈ x)(∃v ∈ x)u ∈ v.
x is a natural number ↔ x is an ordinal ∧ (x is not a limit ∨ x = 0)

∧ (∀u ∈ x)(u = 0 ∨ u is not a limit).
x = ω ↔ x is a limit ordinal ∧ x �= 0 ∧ (∀u ∈ x)x is a natural number.

(ii) Z = X × Y ↔ (∀z ∈ Z)(∃x ∈ X)(∃y ∈ Y ) z = (x, y)
∧ (∀x ∈ X)(∀y ∈ Y )(∃z ∈ Z) z = (x, y).

Z = X − Y ↔ (∀z ∈ Z)(z ∈ X ∧ z /∈ Y ) ∧ (∀z ∈ X)(z /∈ Y → z ∈ Z).
Z = X ∩ Y . . . similar.
Z =

⋃
X ↔ (∀z ∈ Z)(∃x ∈ X) z ∈ x ∧ (∀x ∈ X)(∀z ∈ x) z ∈ Z.

Z = dom(X) ↔ (∀z ∈ Z) z ∈ dom X ∧ (∀z ∈ domX) z ∈ Z,

and we show that:

(a) z ∈ dom X is a ∆0-formula;
(b) if ϕ is ∆0, then (∀z ∈ domX)ϕ is ∆0.

(12.19)

(a) z ∈ dom X ↔ (∃x ∈ X)(∃u ∈ X)(∃v ∈ u)x = (z, v).
(b) (∀z ∈ dom X)ϕ ↔ (∀x ∈ X)(∀u ∈ x)(∀z, v ∈ u)(x = (z, v) → ϕ).
An assertion similar to (12.19) holds for ran(X), and for ∃.
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(iii) X is a relation ↔ (∀x ∈ X)(∃u ∈ domX)(∃v ∈ ranX)x = (u, v).
f is a function ↔ f is a relation ∧

(∀x ∈ dom f)(∀y, z ∈ ran f)((x, y) ∈ f ∧ (x, z) ∈ f → y = z)
where

(x, y) ∈ f ↔ (∃u ∈ f)u = (x, y).

g = f�X ↔ g is a function ∧ g ⊂ f ∧ (∀x ∈ dom g)x ∈ X
∧ (∀x ∈ X)(x ∈ dom f → x ∈ dom g). ��

It should be emphasized that cardinal concepts are generally not absolute.
In particular, the following expressions are known not to be absolute:

Y = P (X), |Y | = |X |, α is a cardinal, β = cf(α), α is regular.

Compare with Exercise 12.6.

Consistency of the Axiom of Regularity

As an application of the theory of transitive models we show that the Axiom
of Regularity is consistent with the other axioms of ZF. In this section only
we work in the theory ZF minus Regularity, i.e., axioms 1.1–1.7.

The cumulative hierarchy Vα is defined as in Chapter 6, and we denote (in
the present section only) V not the universal class but the class

⋃
α∈Ord Vα.

We shall show that V is a transitive model of ZF. Thus the Axiom of Regu-
larity is consistent relative to the theory 1.1–1.7.

Theorem 12.11. In ZF minus Regularity, σV holds for every axiom σ
of ZF.

Proof. We use absoluteness of ∆0-formulas and the fact that for every set x,
if x ⊂ V , then x ∈ V .

Extensionality. The formula

((∀u ∈ X)u ∈ Y ∧ (∀u ∈ Y )u ∈ X) → X = Y

is ∆0.

Pairing. Given a, b ∈ V , let c = {a, b}. The set c is in V and since “c = {a, b}”
is ∆0 (see Lemma 12.10), the Pairing Axiom holds in V .

Separation. Let ϕ be a formula; we shall show that

V � ∀X ∀p ∃Y ∀u (u ∈ Y ↔ u ∈ X ∧ ϕ(u, p)).

Given X, p ∈ V , we let Y = {u ∈ X : ϕV (u, p)}. Since Y ⊂ X and X ∈ V ,
we have Y ∈ V , and

V � ∀u (y ∈ Y ↔ u ∈ X ∧ ϕ(u, p)).
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Union. Given X ∈ V , let Y =
⋃

X . The set Y is in V and since “Y =
⋃

X”
is ∆0, the Axiom of Union holds in V .

Power Set. Given X ∈ V , let Y = P (X). The set Y is in V , and we claim
that V � ∀u ϕ(u) where ϕ(u) is the formula u ∈ Y ↔ u ⊂ X . Since ϕ(u)
is ∆0 and because ϕ(u) holds for all u, we have ϕV (u) for all u ∈ V , as
claimed.

Infinity. We want to show that

(12.20) V � ∃S (∅ ∈ S ∧ (∀x ∈ S)x ∪ {x} ∈ S).

The formula in (12.20) contains defined notions, { }, ∪, and ∅; and strictly
speaking, we should first eliminate these symbols and use a formula in which
they are replaced by their definitions, using only ∈ and =. However, we have
already proved that both pairing and union are the same in the universe as
in V , and similarly one shows that X ∈ V is empty if and only if (X is
empty)V . In other words,

{a, b}V = {a, b},
⋃V

X =
⋃

X, ∅V = ∅

where {a, b}V ,
⋃V , and ∅V denote pairing, union, and the empty set in the

model V .
Since ω ∈ V , we easily verify that (12.20) holds when S = ω.

Replacement. Let ϕ be a formula; we shall show that

V � ∀x∀y ∀z (ϕ(x, y, p) ∧ ϕ(x, z, p) → y = z)

→ ∀X ∃Y ∀y (y ∈ Y ↔ (∃x ∈ X)ϕ(x, y, p)).

Given p ∈ V , assume that V � ∀x∀y ∀z ( . . . ). Thus

F = {(x, y) ∈ V : ϕV (x, y, p)}

is a function, and we let Y = F (X). Since Y ⊂ V , we have Y ∈ V , and one
verifies that for every y ∈ V ,

V � y ∈ Y ↔ (∃x ∈ X)ϕ(x, y, p).

Regularity. We want to show that V � ∀S ϕ(S), where ϕ is the formula

S �= ∅ → (∃x ∈ S)S ∩ x = ∅.

If S ∈ V is nonempty, then let x ∈ S be of least rank; then S ∩ x = ∅.
Hence ϕ(S) is true for any S; moreover, (S ∩x)V = S ∩x, and ϕ is ∆0. Thus
V � ∀S ϕ(S). ��
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Inaccessibility of Inaccessible Cardinals

Theorem 12.12. The existence of inaccessible cardinals is not provable
in ZFC. Moreover, it cannot be shown that the existence of inaccessible car-
dinals is consistent with ZFC.

We shall prove the first assertion and invoke Gödel’s Second Incomplete-
ness Theorem to obtain the second part.

First we prove (in ZFC):

Lemma 12.13. If κ is an inaccessible cardinal, then Vκ is a model of ZFC.

Proof. The proof of all axioms of ZFC except Replacement is as in the proof
of consistency of the Axiom of Regularity (see Exercises 12.7 and 12.8). To
show that Vκ � Replacement, it is enough to show:

(12.21) If F is a function from some X ∈ Vκ into Vκ, then F ∈ Vκ.

Since κ is inaccessible, we have |Vκ| = κ and |X | < κ for every X ∈ Vκ. If
F is a function from X ∈ Vκ into Vκ, then |F (X)| ≤ |X | < κ and (since κ is
regular) F (X) ⊂ Vα for some α < κ. It follows that F ∈ Vκ. ��
Proof of Theorem 12.12. If κ is an inaccessible cardinal, then not only is Vκ

a model of ZFC, but in addition

(α is an ordinal)Vκ ↔ α is an ordinal.

(α is a cardinal)Vκ ↔ α is a cardinal.

(α is a regular cardinal)Vκ ↔ α is a regular cardinal.

(α is an inaccessible cardinal)Vκ ↔ α is an inaccessible cardinal.

We leave the details to the reader.
In particular, if κ is inaccessible cardinal, then

Vκ � there is no inaccessible cardinal.

Thus we have a model of ZFC+“there is no inaccessible cardinal” (if there is
no inaccessible cardinal, we take the universe as the model). Hence it cannot
be proved in ZFC that inaccessible cardinals exist.

To prove the second part, assume that it can be shown that the existence
of inaccessible cardinals is consistent with ZFC; in other words, we assume

if ZFC is consistent, then so is ZFC + I

where I is the statement “there is an inaccessible cardinal.”
We naturally assume that ZFC is consistent. Since I is consistent with

ZFC, we conclude that ZFC + I is consistent. It is provable in ZFC + I that
there is a model of ZFC (Lemma 12.13). Thus the sentence “ZFC is consis-
tent” is provable in ZFC + I. However, we have assumed that “I is consistent
with ZFC” is provable, and so “ZFC+I is consistent” is provable in ZFC+I.
This contradicts Gödel’s Second Incompleteness Theorem. ��
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The wording of the second part of Theorem 12.12 (and its proof) is some-
what vague; “it cannot be shown” means: It cannot be shown by methods
formalizable in ZFC.

Reflection Principle

The theorem that we prove below is the analog of the Löwenheim-Skolem
Theorem. While that theorem states that every model has a small elemen-
tary submodel, the Reflection Principle provides, for any finite number of
formulas, a set M that is like an “elementary submodel” of the universe,
with respect to the given formulas. The theorem is proved without the use
of the Axiom of Choice, but using the Axiom of Choice, one can obtain
countable model.

Theorem 12.14 (Reflection Principle).

(i) Let ϕ(x1, . . . , xn) be a formula. For each M0 there exists a set M ⊃ M0

such that

(12.22) ϕM (x1, . . . , xn) ↔ ϕ(x1, . . . , xn)

for every x1, . . . , xn ∈ M . (We say that M reflects ϕ.)
(ii) Moreover, there is a transitive M ⊃ M0 that reflects ϕ; moreover,

there is a limit ordinal α such that M0 ⊂ Vα and Vα reflects ϕ.
(iii) Assuming the Axiom of Choice, there is an M ⊃ M0 such that M re-

flects ϕ and |M | ≤ |M0| · ℵ0. In particular, there is a countable M
that reflects ϕ.

Remarks. 1. We may require either that M be transitive or that |M | ≤
|M0| · ℵ0 but not both.

2. The proof works for any finite number of formulas, not just one. Thus
if ϕ1, . . . , ϕn are formulas, then there exists a set M that reflects each of ϕ1,
. . . , ϕn.

3. If σ is a true sentence, then the Reflection Principle yields a set M that
is a model of σ; using the Axiom of Choice, one can get a countable transitive
model of σ.

4. As a consequence of the Reflection Principle, and of Gödel’s Second
Incompleteness Theorem, it follows that the theory ZF is not finitely axiom-
atizable: Any finite number of theorems of ZF have a model (a set) by the
Reflection Principle, while the existence of a model of ZF is not provable. (By
the same argument, no consistent extension of ZF is finitely axiomatizable.)

The key step in the proof of Theorem 12.14 is the following lemma, which
we prove first.
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Lemma 12.15.

(i) Let ϕ(u1, . . . , un, x) be a formula. For each set M0 there exists a set
M ⊃ M0 such that

(12.23) if ∃xϕ(u1, . . . , un, x) then (∃x ∈ M)ϕ(u1, . . . , un, x)

for every u1, . . . , un ∈ M . Assuming the Axiom of Choice, there is
M ′ ⊃ M0 such that (12.23) holds for M ′ and |M ′| ≤ |M0| · ℵ0.

(ii) If ϕ1, . . . , ϕk are formulas, then for each M0 there is an M ⊃ M0

such that (12.23) holds for each ϕ1, . . . , ϕk.

Proof. We shall give a detailed proof of (i). An obvious modification of the
proof gives (ii); we leave that to the reader.

Note that the operation H(u1, . . . , un) defined below plays the same role
as Skolem functions in the Löwenheim-Skolem Theorem.

Let us recall the definition (6.4):

(12.24) Ĉ = {x ∈ C : (∀z ∈ C) rankx ≤ rank z}.

For every u1, . . . , un, let

(12.25) H(u1, . . . , un) = Ĉ

where

(12.26) C = {x : ϕ(u1, . . . , un, x)}.

Thus H(u1, . . . , un) is a set with the property

(12.27) if ∃xϕ(u1, . . . , un, x), then (∃x ∈ H(u1, . . . , un))ϕ(u1, . . . , un, x).

We construct the set M by induction. We let M =
⋃∞

i=0 Mi where for each
i ∈ N ,

(12.28) Mi+1 = Mi ∪
⋃
{H(u1, . . . , un) : u1, . . . , un ∈ Mi}.

Now, if u1, . . . , un ∈ M , then there is an i ∈ N such that u1, . . . , un ∈ Mi

and if ϕ(u1, . . . , un, x) holds for some x, then it holds for some x ∈ Mi+1, by
(12.27) and (12.28).

Assuming the Axiom of Choice, let F be a choice function on P (M).
For every u1, . . . , un ∈ M , let h(u1, . . . , un) = F (H(u1, . . . , un)) (and let
h(u1, . . . , un) remain undefined if H(u1, . . . , un) is empty). Let us define M ′ =⋃∞

i=0 M ′
i , where M ′

0 = M0 and for each i ∈ N ,

M ′
i+1 = M ′

i ∪ {h(u1, . . . , un) : u1, . . . , un ∈ M ′
i}.

Condition (12.23) can be verified for M ′ in the same way as for M . Moreover,
each M ′

i has cardinality at most |M0| · ℵ0, and so does M ′. ��
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Proof of Theorem 12.14. Let ϕ(x1, . . . , xn) be a formula. We may assume
that the universal quantifier does not occur in ϕ (∀x . . . can be replaced by
¬∃x¬ . . . ). Let ϕ1, . . . , ϕk be all the subformulas of the formula ϕ.

Given a set M0, there exists, by Lemma 12.15(ii), a set M ⊃ M0, such
that

(12.29) ∃xϕj(u, . . . , x) → (∃x ∈ M)ϕj(u, . . . , x), j = 1, . . . , k

for all u, . . . ∈ M . We claim that M reflects each ϕj , j = 1, . . . , k, and in
particular M reflects ϕ. This is proved by induction on the complexity of ϕj .

It is easy to see that (every) M reflects atomic formulas, and that if
M reflects formulas ψ and χ, then M reflects ¬ψ, ψ ∧ χ, ψ ∨ χ, ψ → χ, and
ψ ↔ χ. Thus assume that M reflects ϕj(u1, . . . , um, x) and let us prove that
M reflects ∃xϕj .

If u1, . . . , um ∈ M , then

M � ∃xϕj(u1, . . . , um, x) ↔ (∃x ∈ M)ϕM
j (u1, . . . , um, x)

↔ (∃x ∈ M)ϕj(u1, . . . , um, x)

↔ ∃xϕj(u1, . . . , um, x).

The last equivalence holds by (12.29).
This proves part (i) of the theorem. Part (iii) is proved by taking M of

size ≤ |M0| · ℵ0. To prove (ii), one has to modify the proof of Lemma 12.15
so that the set M used in (12.29) is transitive (or M = Vα). This is done as
follows: In (12.28), we replace Mi+1 by its transitive closure (or by the least
Vγ ⊃ Mi+1). Then M is transitive (or M = Vα). ��

Exercises

12.1. Let U be a principal ultrafilter on S, such that {a} ∈ U . Show that the
ultraproduct UltU{Ax : x ∈ S} is isomorphic to Aa.

12.2. If U is a principal ultrafilter, then the canonical embedding j is an isomor-
phism between A and UltU A.

12.3. Let κ be a measurable cardinal and let U be an ultrafilter on κ. Let (A, <∗)
be the ultrapower of (κ, <) by U , and let j : κ→ A be the canonical embedding.

(i) (A,<∗) is a linear ordering.
(ii) If U is σ-complete then (A,<∗) is a well-ordering; (A, <∗) is isomorphic,

and can be identified with, (γ, <), where γ is an ordinal.
(iii) If U is κ-complete then j(α) = α for all α < κ
(iv) If d is the diagonal function, [d] ≥ κ. The measure U is normal if and only

if [d] = κ.
[Compare with Exercise 10.5.]

12.4. A class M is extensional if and only if σM holds where σ is the Axiom of
Extensionality.
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12.5. The following can be written as ∆0-formulas: x is an ordered pair, x is
a partial (linear) ordering of y, x and y are disjoint, z = x ∪ y, y = x ∪ {x}, x is
an inductive set, f is a one-to-one function of X into (onto) Y , f is an increasing
ordinal function, f is a normal function.

12.6. Let M be a transitive class.

(i) If M � |X| ≤ |Y |, then |X| ≤ |Y |.
(ii) If α ∈M and if α is a cardinal, then M � α is a cardinal.

[ |X| ≤ |Y | ↔ ∃f ϕ(f, X, Y ); α is a cardinal ↔ ¬∃f (∃β ∈ α) ψ(α, β, f), where
ϕ and ψ are ∆0-formulas.]

12.7. If α is a limit ordinal, then Vα is a model of Extensionality, Pairing, Separa-
tion, Union, Power Set, and Regularity. If AC holds, then Vα is a model of AC.

12.8. If α > ω, then Vα is a model of Infinity.

12.9. Vω, the set of all hereditarily finite sets, is a model of ZFC minus Infinity.

12.10. The existence of an infinite set is not provable in ZFC minus Infinity. More-
over, it cannot be shown that the existence of an infinite set is consistent with ZFC
minus Infinity.

12.11. If κ is an inaccessible cardinal then Vκ � there is a countable model of ZFC.
[Since 〈Vκ,∈〉 is a model of ZFC, there is a countable model (by the Löwenheim-

Skolem Theorem). Thus there is E ⊂ ω×ω such that A = (ω,E) is a model of ZFC.
Verify that Vκ � (A is a countable model of ZFC).]

12.12. If κ is an inaccessible cardinal, then there is α < κ such that 〈Vα,∈〉 ≺
〈Vκ,∈〉 Moreover, the set {α < κ : 〈Vα,∈〉 ≺ 〈Vκ,∈〉} is closed unbounded.

[Construct Skolem functions h for Vκ, and let α = limn αn, where αn+1 < κ is
such that h(Vαn) ⊂ Vαn+1 for each h.]

For every infinite regular cardinal κ let Hκ be the set of all x such that
|TC(x)| < κ. The sets in Hω are hereditarily finite sets. The sets in Hω1 are
hereditarily countable sets. Each Hκ is transitive and Hκ ⊂ Vκ.

12.13. If κ is a regular uncountable cardinal then Hκ is a model of ZFC minus the
Power Set Axiom.

12.14. For every formula ϕ, there is a closed unbounded class Cϕ of ordinals such
that for each α ∈ Cϕ, Vα reflects ϕ.

[Cϕ∧ψ = Cϕ ∩ Cψ, C∃x ϕ = Cϕ ∩Kϕ, where Kϕ is the closed unbounded class
{α ∈ Ord : ∀x1, . . . , xn ∈ Vα (∃x ϕ(x, x1, . . . , xn)→ (∃x ∈ Vα)ϕ(x, x1, . . . , xn))}.]
12.15. Let M be a transitive class and let ϕ be a formula. For each M0 ⊂ M
there exists a set M1 ⊃ M0 such that M1 ⊂ M and that ϕM (x1, . . . , xn) ↔
ϕM1(x1, . . . , xn) for all x1, . . . , xn ∈M1.

A transfinite sequence 〈Wα : α ∈ Ord〉 is called a cumulative hierarchy if W0 = ∅
and

(i) Wα ⊂Wα+1 ⊂ P (Wα),
(ii) if α is limit, then Wα =

S

β<α Wβ.
(12.30)

Each Wα is transitive and Wα ⊂ Vα.

12.16. Let 〈Wα : α ∈ Ord〉 be a cumulative hierarchy, and let W =
S

α∈Ord Wα.
Let ϕ be a formula. Show that there are arbitrary large limit ordinals α such that
ϕW (x1, . . . , xn)↔ ϕWα (x1, . . . , xn) for all x1, . . . , xn ∈ Wα.
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Historical Notes

For concepts of model theory, the history of the subject and for model-theoretical
terminology, I refer the reader to Chang and Keisler’s book [1973].

Reduced products were first investigated by �Loś in [1955], who also proved
Theorem 12.3 on ultraproducts.

For Tarski’s Theorem 12.7, see Tarski [1939].
The impossibility of a consistency proof of the existence of inaccessible cardinals

follows from Gödel’s Theorem [1931]. An argument that more or less establishes
the consistency of the Axiom of Regularity appeared in Skolem’s work in 1923 (see
Skolem [1970], pp. 137–152).

The study of transitive models of set theory originated with Gödel’s work on
constructible sets. The Reflection Principle was introduced by Montague; see [1961]
and Lévy [1960b].

Exercise 12.12: Montague and Vaught [1959].
Exercise 12.14: Galvin.


